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Background: Dysregulated macrophages are important causes of Atherosclerosis (AS) formation and increased plaque instability, but 
the heterogeneity of these plaques and the role of macrophage subtypes in plaque instability have yet to be clarified.
Methods: This study integrates single-cell and bulk-seq data to analyze atherosclerotic plaques. Unsupervised clustering was used to 
reveal distinct plaque subtypes, while survival analysis and gene set variation analysis (GSVA) methods helped in understanding their 
clinical outcomes. Enrichment of differential expression of macrophage genes (DEMGs) score and pseudo-trajectory analysis were 
utilized to explore the biological functions and differentiation stages of macrophage subtypes in AS progression. Additionally, 
CellChat and the BayesPrism deconvolution method were used to elucidate macrophage subtype interaction and their prognostic 
significance at single-cell resolution. Finally, the expression of biomarkers was validated in mouse experiments.
Results: Three distinct AS plaque subtypes were identified, with cluster 3 plaque subtype being particularly associated with higher immune 
infiltration and poorer prognosis. The DEMGs score exhibited a significant elevation in three macrophage subtypes (SPP1+/VCAN+ 

macrophages, IL1B+ macrophages, and FLT3LG+ macrophages), associated with cluster 3 plaque subtype and highlighted the prognostic 
significance of these subtypes. Activation trajectory of the macrophage subtypes is divided into three states (Pre-branch, Cell fate 1, and Cell 
fate 2), and Cell fate 2 (SPP1+/VCAN+ macrophages, IL1B+ macrophages, and FLT3LG+ macrophages dominant) exhibiting the highest 
DEMGs score, distinct interactions with other cell components, and relating to poorer prognosis of ischemic events. This study also 
uncovered a unique SPP1+/VCAN+ macrophage subtype, rare in quantity but significant in influencing AS progression. Machine learning 
algorithms identified 10 biomarkers crucial for AS diagnosis. The validation of these biomarkers was performed using Mendelian 
Randomization analysis and in vitro methods, supporting their relevance in AS pathology.
Conclusion: Our study provides a comprehensive view of AS plaque heterogeneity and the prognostic significance of macrophage 
subtypes in plaque instability.
Keywords: atherosclerosis, macrophage subtypes, single-cell analysis, plaque heterogeneity, biomarkers, pseudo-trajectory analysis

Introduction
Atherosclerosis (AS) is a chronic inflammatory disease marked by disruptions in lipid metabolism and immune response, 
resulting from lipid-laden macrophages accumulating in arterial walls.1 This disease is characterized by the formation of 
plaques within arterial walls, which can lead to life-threatening events such as heart attacks, and strokes.2 Stroke, 
a consequence of AS with high mortality and disability rates worldwide, affects 30 million people and poses a significant 
threat to human health. Approximately 795,000 people in the United States experience a new or recurrent stroke annually, 
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87% of which are ischemic strokes.3 Ischemic strokes, are caused by advanced atherosclerotic plaque (AAS), surface 
erosion, and rupture, often without warning,4 lead to significant adverse ischemic events (IE). Hence, early detection and 
prediction of AS plaque instability are crucial. With the deepening of AS-related research, we noticed that the biological 
properties of macrophages are key to determining lesion size, composition, and instability in AS plaque.5 There are 
significant differences in immune cell infiltration between early atherosclerotic plaque (EAS) and advanced athero-
sclerotic plaque. Macrophages in AS plaques demonstrate significant variability and adaptability, modulating their 
microenvironment through mechanisms such as elevated lipid concentrations, deregulated cytokine functions, hypoxia, 
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apoptosis, and necroptosis.6 Furthermore, oxidative stress and inflammation are interconnected processes that establish 
a strong feed-forward cycle, accelerating the progression of atherosclerotic plaque.7 A previous study has indicated that 
excessive mitochondrial reactive oxygen species (mtROS), a byproduct of oxidative stress, inflict damage on mitochon-
drial DNA (mtDNA), proteins, and lipids. These damages have been observed to escalate during AS progression, 
influencing whether the system activates or remains unresponsive and ultimately affecting the stability of AS plaques.8 

Additionally, the risk of plaque rupture is significantly influenced by inflammatory responses, which are driven by 
interactions among lipoproteins, monocytes, and various macrophage subtypes. It’s crucial to acknowledge a significant 
dilemma in current AS research, namely, the evident heterogeneity within the atherosclerotic plaque microenvironment. 
This heterogeneity primarily stems from the diverse biological functions of macrophage subtypes.9 Simply classifying 
them as M1/M2 types cannot adequately elucidate the mechanism of action of macrophage subtypes in AAS and is likely 
to produce deviation.10 Therefore, it is urgent to conduct in-depth research on more effective classification characteristics 
of AS plaque subtypes and macrophage subtypes, in order to accurately identify patients who will suffer from adverse 
ischemic events.

Conventional imaging techniques, focusing on plaque appearance and size, are insufficient for predicting rupture risk 
and acute thrombotic events.11 Macrophage heterogeneity within AS plaques has become a focal point of recent 
research.12 High-throughput sequencing technologies such as transcriptome analysis (bulk-seq) and single-cell RNA 
sequencing (scRNA-seq) have provided deep insights into the complexity and dynamic nature of atherosclerotic lesions. 
In contrast to bulk RNA-seq, which focuses primarily on identifying differentially expressed genes (DEGs) in different 
groups, scRNA-seq offers diverse perspectives on heterogeneity, cellular interactions, and transcriptome changes, crucial 
for understanding disease progression. It also enables the identification of distinct cell populations, including various 
immune cell subtypes within the disease, and offers an in-depth understanding of their roles in disease progression.13–15 

However, scRNA-seq’s high cost, small sample size, and limited clinical follow-up information may bias results. Bulk- 
seq complements single-cell analysis, providing a comprehensive view of gene expression patterns across large cell 
populations within atherosclerotic tissue. Integrating data from both single-cell and bulk-seq allows for a more holistic 
understanding of the pathological processes in AS. It also aids in identifying key biomarkers and therapeutic targets for 
predictive diagnostics, targeted prevention, and personalized treatment strategies, in line with the Predictive, Preventive, 
and Personalized Medicine (PPPM) model. Partial scRNA-seq analysis has elucidated the transcriptomic profiles of 
immune cell subpopulations in AS.16,17 However, the prognostic significance of macrophage subtypes and their cellular 
interactions during AS progression, especially in unstable plaque subtypes, remain poorly understood. Therefore, 
examining the metabolic features and phenotypic changes in dysregulated macrophage subpopulations linked to AS 
plaque subtypes, along with identifying more robust diagnostic biomarkers, holds significant clinical importance. Such 
research could provide a potential treatment for AS by targeting the plaque macrophage microenvironment strategy.

Applying machine learning algorithms, such as weighted correlation network analysis (WGCNA), least absolute 
shrinkage and selection operator (LASSO), support vector machine (SVM-RFE), and random forest algorithm (RF), to 
screen for signature genes can further elucidate the characteristic distribution links between macrophage-related 
biomarkers and inflammatory immune cells, particularly in macrophage subtypes.18 Additionally, a diagnostic model 
based on these biomarkers has been developed to detect unstable plaques and mitigate AS. The efficacy of this model 
was assessed using ten machine learning algorithms. This research aims to identify a new characteristic of AS plaque 
subtype and enhance our understanding of macrophage subtypes in AS, offering insights into their distinct roles and 
origins, finding reliable biomarkers for diagnosing AS plaque progression, and revealing new molecular mechanisms for 
AS detection and treatment.

Materials and Methods
Data Collection
The gene expression profiling data and corresponding clinical information for AS were retrieved from the Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database. Seven GSE datasets (GSE159677, 
GSE155512, GSE21545, GSE41571, GSE43292, GSE28829, and GSE163154) were selected for further analysis. 

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S454505                                                                                                                                                                                                                       

DovePress                                                                                                                       
2401

Dovepress                                                                                                                                                               Xu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.ncbi.nlm.nih.gov/geo/
https://www.dovepress.com
https://www.dovepress.com


scRNA-seq data for AS were obtained from GSE159677 and GSE155512, including six carotid atherosclerotic samples 
and three proximally adjacent vascular samples. The “Seurat” package was utilized to integrate samples from these two 
datasets, both derived from Illumina sequencing platforms. GSE21545 comprised 223 AS samples with corresponding 
prognosis information, while GSE41571 included 11 AS samples, with prognosis information available for six samples. 
GSE28829 included 13 EAS and 16 AAS plaque samples, while GSE43292 comprised 32 EAS and 32 AAS plaque 
samples. Due to methodological and design similarities between GSE21545 and GSE41571, as well as between 
GSE28829 and GSE43292, we merged these two pairs of datasets separately for expression analysis. Batch effects 
were directly adjusted using the combat function of the “sva” package. GSE163154 contained 16 EAS and 27 AAS 
plaque samples. Probe expression matrices were converted to gene expression matrices using platform annotation files 
for GSE21545, GSE41571, GSE43292, GSE28829, and GSE163154 datasets. Principal component analysis (PCA) was 
conducted to assess the effectiveness of the batch effect correction using the combat function. Furthermore, 585 immune- 
related marker genes (IRGs) were obtained from a previously published article,19 Supplementary Table 1 provides 
detailed characteristics of the seven datasets.

The Landscape of Immune Cell Infiltrations and Analysis in Bulk Dataset
Single-sample gene set enrichment analysis (ssGSEA) was conducted using the “GSVA” package to quantify the relative 
infiltration scores of 28 types of immune cells in the GSE21545−41571 dataset.20,21 Kaplan-Meier survival curve were 
employed to analyze the differences in ischemic event-free survival among AS groups with high and low macrophage 
infiltration scores. Additionally, the hallmark gene set (h.all.v7.5.1.symbols.gmt) was obtained from the Molecular 
Signatures Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Spearman correlation was utilized 
to assess the relationship between macrophage infiltration scores and various hallmark gene sets. The “limma” package 
was used to identify DEGs between high and low macrophage infiltration score groups in AS, with a filter criterion of | 
logFC| > 0.4 and adjusted p-value < 0.05. Visualization was performed using the “ggstatsplot”, “IOBR”, and “ggplot2” 
packages.

Identification of AS Plaque Subtypes and It’s Biofunction
Based on the expression profiles of 130 DEIRGs in the GSE21545-41571 dataset, we used unsupervised k-means 
clustering analysis in the “ConsensusClusterPlus” package to divide AS plaques into three clusters. The number of 
repetitions was set to 1000 to ensure the stability of clustering. Survival analyses and PCA were performed to evaluate 
prognostic values and the distribution within three clusters. Meanwhile, we performed an ssGSEA algorithm to quantify 
the infiltration scores of the various immune cells among three clusters, and the hallmark gene set was used to assess the 
biological function differences among three clusters. Furthermore, Gene Set Variation Analysis (GSVA) was applied 
using the “GSVA” and “limma” packages to evaluate the pathway activities in these clusters (adjusted p-value < 0.05 and 
|t-value| > 1 were selected). The gene expression of immune checkpoints was quantified between these clusters. Immune 
checkpoints were collected from the literature.22

Weighted Gene Co-Expression Network Analysis
WGCNA was used to construct highly correlated co-expressed gene modules associated with cluster 3 plaque subtype. 
Briefly, the adjacency matrix was established based on the soft power value ß and the similarity matrix was calculated by 
Pearson correlation analysis between each gene. Then, with a threshold soft power of 8 in the GSE21545-41571 dataset, 
the adjacency matrix was transformed into a topological overlap matrix (TOM) and the corresponding dissimilarity 
(1-TOM). Next, genes with similar expression profiles were classified into modules to further build a hierarchical 
clustering dendrogram (minModuleSize = 80, mergeCutHeight = 0.25). Finally, we calculated the gene significance (GS) 
and module membership (MM) through WGCNA. This study focused on gene modules significantly associated with the 
cluster 3 plaque subtype.
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Define DEMGs and Enrichment Analysis
Differentially Expressed Macrophage-Related Genes (DEMGs) were identified through the intersection of WGCNA gene 
modules correlated with the cluster 3 plaque subtype and the previously identified 130 DEIRGs. Gene Ontology (GO) 
annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted on the 
DEMGs. Enrichment analyses were performed based on the “clusterProfiler” package with a p-value < 0.05 as the 
cutoff criterion. Visualization was achieved using the “circlize”, “ComplexHeatmap”, and “ggplot2” packages.

ScRNA-Seq Data Processing
The “Seurat” package was used to analyze the scRNA-seq data. First, quality control was conducted by filtering out cells 
satisfying the following criteria: cells with > 200 and < 4000, and a percentage of mitochondrial and ribosomal genes < 
10%. Next, a global-scaling normalization method (“LogNormalize”) was applied to equalize the total gene expression in 
each cell, with a set scale factor of 10,000. The top 2000 variably expressed genes were returned for downstream analysis 
using the “vst” method. The ScaleData and RunPCA functions to obtain the number of principal components (PCs), and 
the top 30 PCs were further used for downstream integration. Afterwards, the data were processed by homogenization 
using the “harmony” package.23 Clustering analysis was conducted utilizing edge weights between individual cells, 
generating a shared nearest-neighbor graph via the Louvain algorithm, seamlessly integrated into the FindNeighbors and 
FindClusters functions. The cell cluster/sub-cluster analysis with the resolution set to 0.4 and 1. The identified clusters 
were visualized using the Uniform Manifold Approximation and Projection (UMAP) method. The cell clusters were 
labeled as different major cell types based on DEGs and classical marker genes. For sub-clustering analysis, we 
performed the second-round PCA reduction, harmony homogenization and UMAP projection separately on cells within 
myeloid cell. The second-round dimension reduction and clustering revealed 10 distinct myeloid subtypes. Cell types 
were visualized using UMAP plots, displayed by the “scRNAtoolVis” package. We obtained DEGs of different 
macrophages subtypes using the FindAllMarkers function, and the Wilcoxon rank sum test algorithm was used to 
calculate the marker genes (logFC > 0.25; p-value < 0.05; min.pct > 0.1). Furthermore, we use the CellMarker2 database 
(http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html) and the “SingleR” package to assist with annotation cell types. 
The “ggplot2”, “ggalluvial”, and “pheatmap” package were used to display the cellular composition and correlation 
between normal and AS groups.

Evolutionary Trajectory Analysis
To investigate dynamic biological processes, such as interconversion and evolutionary trajectories of macrophages. We 
first extracted macrophage subtype objects for trajectory analysis using the “Monocle2” package. 2500 significantly 
pseudotime-dependent genes were identified by the differentialGeneTest function and used for cell ordering. Then we 
used the “DDRTree” method to reduce cell dimensions and calculated the cell differentiation state types using the 
reduceDimension function. Finally, we used the plotCellTrajectory function to visualize the differentiation trajectory of 
DEMGs score/macrophage subtypes/ in the three-state differentiation process (Pre-branch, Cell fate 1, Cell fate 2) for the 
macrophage subtypes, and the plot_pseudotime_heatmap function was used to visualize the expression patterns of 43 
DEMGs in different macrophage subtypes. Branched Expression Analysis Modeling (BEAM) analysis was used to 
identify DEGs associated with differentiated macrophage states (q-value < 1e-200 were selected), which were then 
visualized using the plot genes branched heatmap function. Based on the enrichment scores of Cell fate 2’s DEGs 
calculated using the “GSVA” package, we conducted survival analysis. Furthermore, we conducted enrichment analysis 
to clarify the biological functions of DEGs associated with differentiated macrophage states (p-value < 0.05). 
CytoTRACE scores were calculated using the “CytoTRACE” package (version 0.3.5) to verify the linear transitions 
inferred by Monocle. The CytoTRACE algorithm can infer developmental initiation stages of macrophage subtypes from 
scRNA-Seq data based on stemness scores.24 The “ggridges” package was used to analyze the distribution of macro-
phage subtypes across different groups/states along the pseudotime axis.
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Identification of DEMGs Score and Pathways Activities in Different Cell Types/States
For scRNA-seq data, we calculated DEMGs enrichment scores at a single-cell resolution using the AddModuleScore 
function in the “Seurat” package. Additionally, the “ggpubr” package was used for visualizing DEMGs scoring across 
different states generated with Monocle. We also assessed whether fifty hallmark gene sets were enriched in myeloid 
subtypes using the RRA method of the “irGSEA” package. Signature genes of hypoxia, angiogenesis, cholesterol 
homeostasis, and fatty acid metabolism were obtained from fifty hallmark gene sets in MSigDB. Inflammatory genes 
included TNF, CCL2, CCL3, CCL4, CXCL10, S100A8, S100A9, CXCL1, and MPO. And then, the AUCell algorithm 
with default settings was used to infer these three AS-related pathways (hypoxia, inflammatory, and fatty acid 
metabolism) score for myeloid subtypes embedding the UMAP plot. Furthermore, the Ucell algorithm in the “Ucell” 
package was used to evaluate the enrichment scores of the AS-related pathways in different groups/states, as pseudo- 
trajectory time progressed.

SCENIC Analysis
The Single-Cell Regulatory Network Inference and Clustering (SCENIC) method was employed to define regulons, 
which are complexes consisting of a transcription factor (TF), its potential targets, and their activity levels. Macrophage 
subtypes in different states confirmed using Monocle were further included in SCENIC, and they were then sorted based 
on states. This process begins with a count matrix representing gene abundances across all macrophage subtypes and 
unfolds in three steps. Initially, co-expression modules are deduced using “GRNBoost2”, a regression approach targeting 
individual genes. Further, “cisTarget” is utilized to remove indirect targets from these modules by identifying cis- 
regulatory motifs. The final step involves quantifying regulon activity by calculating an enrichment score for the target 
genes of the regulon (AUCell). We employed the “pySCENIC” package, a Python-based tool of the SCENIC pipeline, to 
analyze TF activity. This study utilized its command-line version, databases for cis-target (hg38_10kbp_up_10kbp_-
down_full_tx_v10_clust.genes_vs_motifs.rankings.feather), and TF motifs (motifs-v10nr_clust-nr.hgnc-m0.001-o0.0), 
along with specific command-line parameters. All 1892 TFs with available motifs in the database were included as 
input. Lastly, the “CalcRSS” function was employed to pinpoint regulons with high Regulon Specificity Scores (RSS), 
facilitating the identification of macrophage subtypes/states-specific regulons based on RSS ranking, and regulon 
modules are identified according to connection specificity index (CSI).25 Further details of the SCENIC analysis are 
described in a previous study.26

Metabolism Pathways Analysis at the Single-Cell Resolution
To assess metabolic activity at the single-cell level, “scMetabolism” package, a novel computational framework for 
single-cell metabolic activity quantification, was used.27 This method calculates a metabolic activity score for each cell 
across various metabolic pathways using a single-cell matrix and the Vision algorithm. This package is preloaded with 
KEGG pathways and Reactome entries. The Vision algorithm also calculates the metabolic score. We compared 
metabolic activities across different groups/states in various pathways to identify significant differences. For this analysis, 
we employed the “VISION” method using KEGG metabolic gene sets. Visualization of the results was achieved using 
the DotPlot.metabolism and BoxPlot.metabolism functions.

Intercellular Communication Analysis
The “CellChat” package was used to infer and visualize the intercellular communication networks between macrophage 
subtypes and other immune cells at the single-cell levels. This method can predict major signaling inputs and outputs for 
macrophage subtypes and how those ligand–receptor interactions and specific signaling pathways for functions using 
network analysis and pattern recognition approaches. The “CellChat” was conducted as described previously,28 and the 
“circlize” package was used for visualization.
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Deconvolution of Cell Type and Gene Expression in AS
The BayesPrism model was employed to construct a matrix from the scRNA-seq of AS as a reference to deconvolute the 
immune cell abundances of macrophage subtypes in the bulk-seq datasets of AS plaque.29 The scRNA-seq reference 
were obtained from GSE159677-155512. Default parameters were used for the deconvolution analysis. The BayesPrism 
model showed the best overall performance and robustness compared to eight other deconvolution methods when 
deconvolving granular immune lineages, as demonstrated in previously research.30 Spearman correlation of macrophage 
subtypes abundances was evaluated using the “corrplot” package. Kaplan-Meier survival curves were employed to 
analyze the differences in ischemic event-free survival between groups with high and low macrophage subtypes 
abundances in AS plaques. Visualization was performed using the “ggstatsplot” and “ggplot2” packages.

To Explore the Diagnostic Value of Biomarkers in AS by Multiple Machine Learning 
Algorithms
We used Venn diagram to intersect marker genes identified through scRNA-seq datasets and DEMGs in the bulk-seq. 
Thus, we obtained biomarkers highly associated with the macrophage subtype in the cluster 3 plaque subtype. The 
diagnostic value of biomarkers in AS was determined via integrated analysis using three machine learning algorithms: 
LASSO, RF, and SVM-RFE. Moreover, ROC curve analysis using the “pROC” package to assessed the diagnostic value 
of biomarkers in multiple GEO datasets. Subsequently, the diagnosis biomarkers were used to construct a diagnostic 
model in AS, and the model’s performance was evaluated by 10 machine learning algorithms using the “mlr3verse” 
package. Additionally, the reliability of diagnostic model was validated using the GSE21545-41571 and GSE163154 
datasets. The expression of biomarkers in different groups and their correlation with 28 types of immune cells were 
calculated and visualized using the “ggpubr” and “circlize” packages. Kaplan–Meier survival analysis curves for high 
versus low biomarker gene expression groups in AS plaques were generated using the “survival” package.

Mendelian Randomization Analysis in AS
Additionally, for biomarkers exhibiting an area under curve (AUC) < 0.6, we executed a two-sample Mendelian 
Randomization (MR) analysis using the “TwoSampleMR” and “coloc” packages. This analysis was aimed to investigate 
whether the genetic determinants (eQTLs) associated with these low-AUC biomarkers play a causal role in the 
advancement of AS. eQTLs linked to AS were identified using the publicly accessible genome-wide association study 
(GWAS) datasets from the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/). We extracted eQTLs related to the 
biomarker as the exposure factor from public databases.31 Significant SNPs were selected as instrumental variables by 
setting a p-value < 5×10−8 and performing population stratification. F-statistics were calculated for the selected eQTLs to 
assess the strength of instrumental variables. Only eQTLs with F-statistics greater than 10 were retained for further 
analysis.32 In case of multiple instruments, the inverse variance weighting (IVW) method was used, which uses 
information on all instruments. Additionally, assessments for reverse causality and colocalization analysis were con-
ducted to determine the pleiotropy between FLT3LG’s eQTL and AS shared the same genetic variation.

Mice Atherosclerotic Experiments
Twelve male ApoE−/− mice, aged 20 weeks, were obtained from Wuhan Servicebio Technology Co., Ltd., for animal 
experiments. After acclimating for four weeks with a standard chow diet (SCD) (SCD obtained from Jiangsu Xietong 
Pharmaceutical Bio-engineering Co., Ltd., Nanjing, China) and water, six ApoE−/− mice were switched from SCD to an 
atherogenic high-cholesterol diet (HCD) (20% kcal protein, 40% kcal fat, and 40% kcal carbohydrate; Beijing Hfk 
Bioscience Co. Ltd., Beijing, China) for a 16-week long feeding period. Six additional mice, serving as a negative control 
group, were fed SCD for 16 weeks. In the final stage of the study, all mice were sacrificed by intraperitoneal injection of 
sodium pentobarbital (60 mg/kg) and euthanized to obtain aortic samples.
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Quantitative Real-Time Polymerase Chain Reaction and Western Blot
Biomarker expression was detected by qPCR to validate our bioinformatics results. Total RNA extraction and qPCR were 
conducted as previously described.33 Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control 
gene. The relative expression level of the target gene was calculated using the 2−ΔΔCt method. The qPCR forward and reverse 
primer sequences are as follows: (1) GAPDH, CCTCGTCCCGTAGACAAAATG, and TGAGGTCAATGAAGGGGTCGT; (2) 
CD36, GGAACTGTGGGCTCATTGCT, and CAACTTCCCTTTTGATTGTCTTCTC; (3) FCER1G, CCGTGATCT 
TGTTCTTGCTCCT, and GGCTCGGAGAGAATTAGAAGTGG; (4) VAMP8, CTGCCTTGGGTGGAAACAGA, and 
TTGTTTCGGAGGTGGTCCAG. Western blotting (WB) was performed as previously described17 with primary antibodies 
against HSP70 (GB12241, Servicebio, China), CD36 (GB112562, Servicebio, China), and FCER1G (BS-13167R, Bioss, 
China). Western blots were quantified by densitometric analysis with ImageJ software V1.53a.

Multiplex Immunofluorescence Staining
Tissue slices of mouse arterial tissues were obtained from samples set in paraffin. A multiplex immunofluorescence 
staining assay was conducted as previously described.17 Primary antibodies included anti-CD68 (1:3000, GB113109, 
Servicebio, China), anti-FCER1G (1:200, BS-13167R, Bioss, China). Slides were counterstained with DAPI (1:5, G1012, 
Servicebio, China) at room temperature for 10 min. Multispectral images were acquired and performed using 
a fluorescence microscope (Nikon Eclipse C1, Nikon, Japan) and ImageJ software V1.53a.

Statistical Analysis
The bioinformatics analysis was conducted with R software (version 4.2.1). Survival differences between groups were 
assessed using Kaplan-Meier curves and Log rank tests. p-value < 0.05 was considered statistically significant. 
Correlation analysis was performed by Pearson and Spearman correlation. P-value < 0.05 was deemed statistically 
significant in all cases. Statistical analyses and graphs were performed using GraphPad Prism (version 8 GraphPad 
Software, La Jolla, CA, USA).

Results
Identification and Analysis of High Infiltration Macrophage-Score DEGs in AS
We combined the gene expression matrices GSE21545 and GSE41571 after removing batch effects and standardization, 
resulting in a total of 229 AS samples with prognostic information related to ischemic events. Supplementary Figure 1 
demonstrates the absence of apparent batch effects between the two pairs of datasets after batch removal. Applying 
a deconvolution method based on ssGSEA, we evaluated the infiltration scores of 28 immune cell types in 229 AS 
samples (Figure 1A). AS samples were then categorized into high and low macrophage score groups based on the median 
value of macrophage infiltration scores. As anticipated, survival analysis showed significantly lower ischemic event-free 
survival in the high macrophage score group compared to the low group (Figure 1B, p-value < 0.05). Further, we 
identified 1438 up-DEGs in the high macrophage score group (Figure 1C). Utilizing the hallmark gene set from MsigDB, 
we conducted Spearman correlation analysis to assess the relationship between high macrophage infiltration scores and 
various hallmark gene sets. A significant positive correlation was found between high macrophage infiltration scores and 
multiple immune signaling pathways, including inflammation response, pyroptosis, and autophagy (Figure 1D and E). 
Conversely, a negative correlation was noted with epithelial-mesenchymal transition (EMT) and cholesterol homeostasis. 
Previous studies have shown that as inflammatory macrophages are continuously activated, the microenvironment within 
atherosclerotic plaques experiences increasingly intense and complex inflammatory responses.34–36 Combine our results 
above suggest a complex interplay of immune-inflammatory reactions associated with macrophage infiltration. To clarify 
the immune-related functions of up-DEGs, we intersected them with 585 IRGs identified in a prior study.19 This process 
yielded 130 distinct differentially expressed immune-related genes (DEIRGs) (Figure 1F).
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Distinguishing Characteristics and Functional Attributes Indicative of a Poorer 
Prognosis in AS Plaques Subtypes
To further unravel potential mechanisms and subtype characteristics of AS plaques, we applied unsupervised clustering to 130 
previously identified DEIRGs. This analysis revealed distinct clustering of 131 carotid atherosclerotic plaques into three 
clusters: cluster 1, cluster 2, and cluster 3. Intriguingly, DEIRGs demonstrated significantly increased expression in the cluster 
3 plaque subtype. Notably, most plaques linked to ischemic events were categorized within this cluster. Furthermore, DEIRGs 
showed reduced expression in cluster 2, whereas cluster 1 exhibited expression levels intermediate to both clusters 
(Figure 2A). This finding has not been observed in prior similar studies.16,17 Survival analysis demonstrated significant 
prognostic differences among the three subtypes, with cluster 3 plaque subtype exhibiting markedly lower ischemic event-free 
survival (p-value < 0.01) (Figure 2B). PCA results further indicated distinct separation among the three clusters, suggesting 
diverse features and functions among three plaque subtypes (Figure 2C). Through ssGSEA of the immune landscape, we 
observed increased infiltration of 28 immune cell types in the cluster 3 plaque subtype. In contrast, the lowest infiltration was 
noted in cluster 2, with cluster 1 exhibiting intermediate levels (Figure 2D). This variation in immune cell infiltration 
corresponded with the DEIRGs expression patterns across three AS plaque subtypes, suggesting a potential link between 
the cluster 3 subtype and more prevalent immune inflammatory responses. Moreover, by employing hallmark gene sets, we 
evaluated the biological functions of the different plaque subtypes. Consistently, the cluster 3 subtype showed increased 

Figure 1 Identification of 130 DEIRGs in high macrophage infiltration AS samples. (A) Infiltration scores of 28 immune cell types in 229 AS samples. (B) Kaplan–Meier 
analysis showed the differences between AS samples with high and low macrophage infiltration scores. (C) Volcano plot of mRNA expression between high and low 
macrophage infiltration score groups in AS. (D) Scatter plot of correlation between macrophage infiltration score and immune-related pathways with the linear model. (E) 
Heatmap of the correlations between macrophage infiltration score and five pathways. (F) Venn plot of 130 DEIRGs based on up-DEGs from high macrophage infiltration 
score groups and IGRs.
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expression in several immune-inflammatory signatures, such as apoptosis, autophagy, ferroptosis, pyroptosis, complement 
activation, fatty acid metabolism, hypoxia, and inflammation (p-value < 0.05). Conversely, no significant differences or lower 
expression were observed in signatures related to cholesterol homeostasis and EMT (Figure 2E). Given the evident biological 
functional differences between cluster 3 and the other two clusters, we designated cluster 3 as the Differentially Expressed 
Macrophage-Related Genes (DEMGs) cluster, while clusters1 and 2 were defined as non-DEMGs clusters. GSVA analysis 
revealed that the DEMGs cluster was implicated in various immune cell-related signaling pathways, while non-DEMGs 
clusters were associated with EMT-related signaling pathways, such as vascular smooth muscle contraction and cell adhesion 

Figure 2 The consensus clustering of 130 DEIGRs indicated prognostic differences among AS plaque subtypes. (A) The mRNA expression pattern of 130 DEIGRs were observed 
across the three AS plaque subtypes. (B) Kaplan-Meier analysis revealed poorer prognosis in the cluster 3 plaque subtype compared to clusters 1 and 2 in AS. (C) PCA analyses 
showed that the three clusters were fine isolated. (D) Three AS plaque subtypes have different Immune cell infiltration pattern. (E) Three AS plaque subtypes had different 
biofunction through using the ssGSEA algorithm of well-known signatures. (F) Top 10 KEGG pathways ranked by GSVA score differences between non-DEMGs cluster vs DEMGs 
cluster. (G) The differences of expression patterns of immune checkpoint-related genes between non-DEMGs cluster vs DEMGs cluster. *p < 0.05; **p < 0.01; ***p < 0.001; and 
****p < 0.0001. “ns” indicates not significant (p > 0.05).
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aggregation (Figure 2F and Supplementary Figure 2). Additionally, we assessed the expression of immune checkpoint-related 
genes in the DEMGs and Non-DEMGs clusters, and as anticipated, multiple immune checkpoint genes were upregulated in 
the DEMGs cluster, suggesting a more intense immune cell response and inflammatory gene expression in this cluster 
(Figure 2G).

Identification of DEMGs in AS Plaque Subtypes Through WGCNA
The WGCNA was employed to determine the association of the 1438 up-DEGs with the cluster 3 plaque subtype. Illustrated in 
Figure 3A, we set the optimal soft threshold for WGCNA at 8. The black and brown gene modules showed a positive 
correlation with the cluster 3 plaque subtype, with correlation coefficients of 0.28 and 0.35, respectively (Figure 3B and C, 
both p-values < 0.05). Moreover, the gene significance of the black and brown modules within cluster 3 exhibited correlation 
coefficients of 0.6 and 0.37, with p-values < 0.01 (Figure 3D). These results suggest a strong positive correlation between the 
genes in the black and brown modules and the cluster 3 plaque subtype. Gene modules within the black and brown categories 

Figure 3 Identification of DEGs correlated with the cluster plaque subtype based on WGCNA. (A) Selection of the soft threshold powers when the scale-free fit index 
reaches 0.8 and the mean connectivity for various soft threshold powers. (B) Establishment of co-expressed gene modules based on a hierarchical clustering algorithm. (C) 
Correlations between the gene modules and three AS plaque subtypes. The number at the top of each square indicates the correlation coefficients and the p-values shown in 
the brackets below (red indicates a positive correlation, blue indicates a negative correlation, and the depth of the color indicates the degree of correlation). (D) Scatter plot 
of correlation of MM with GS in black and brown modules, respectively. (E) Venn plot of 43 DEMGs based on WGCNA genes and 130 DEIRGs. (F) Circle plots of GO 
annotation (BP, CC, and MF) of 43 DEMGs in AS. (G) KEGG pathways enriched by 43 DEMGs in AS.
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of the WGCNA, which intersect with the previously identified 130 DEIRGs, were defined as DEMGs (Figure 3E). This 
intersection yielded 43 DEMGs that exhibited a high correlation with the cluster 3 plaque subtype. Consequently, these genes 
were designated as pivotal in the differential macrophage expression associated with the cluster 3 plaque subtype. GO 
enrichment analysis of these 43 DEMGs indicated their involvement in positive immune regulation functions, such as the 
positive regulation of inflammatory effector process, positive regulation of macrophage cytokine production, regulation of 
platelet activation, and regulation of inflammatory responses (Figure 3F). KEGG analysis revealed that these DEMGs are 
implicated in immune-inflammatory and lipid metabolism-related signaling pathways, including platelet activation, digestion 
and absorption of fats, cholesterol metabolism, lipid and atherosclerosis, PI3K-Akt signaling pathway, NF-κB signaling 
pathway, inflammatory factor interactions, and cell autophagy (Figure 3G). Both GO and KEGG enrichment analyses 
collectively suggest the participation of these DEMGs in the formation of cluster 3 subtype plaques and their involvement 
in intricate immune-inflammatory activities within the plaque.

A Single-Cell Transcriptomic Atlas of Paired Human Carotid Artery and Carotid 
Atherosclerotic Plaque
To provide a more comprehensive understanding of the immune cell composition and potential intercellular connectivity 
patterns within the cluster 3 plaque subtype, we integrated data from a total of nine single-cell samples sourced from two 
datasets, GSE159677 and GSE155512. These samples included six carotid atherosclerotic plaques and three adjacent normal 
vascular tissues. Following data processing and quality control procedures, a total of 54,701 single cells were subjected to 
subsequent analysis. The major cell-type annotation was performed based on the “SingleR” package and classical gene 
markers to identify cell types. Ultimately, we identified eight major cell types, including B cells, myeloid cells, endothelial 
cells, fibroblasts, smooth muscle cells, T cells, NK cells, and mast cells (Figure 4A). The major cell-type atlas showed 
a significant increase in myeloid cells within the AS group (Figure 4B), and the quality control results for the nine single-cell 
samples indicated no apparent heterogeneity between samples. The mRNA quantity and mitochondrial ratio in each sample 
were controlled within a reasonable range (Figure 4C). Additionally, we observed significant changes in cell distribution in the 
AS compared to the normal group: myeloid cells and T cells increased markedly, whereas endothelial cells and fibroblasts 
showed a notable decrease in distribution proportions (Figure 4D and E). To assess the impact of gene changes in major cell 
types between the AS and normal groups, hierarchical clustering was performed based on the expression changes of major cell 
type genes relative to the normal group. The results clearly indicated an aggregation of these eight major cell types in the AS 
group (Figure 4F). Moreover, there were similar transcriptional features between the AS and normal groups, further 
confirming the accuracy of our cell-type annotation. Furthermore, using the 43 DEMGs, we calculated enrichment scores 
for eight major cell types employing the “AddModuleScore” function. Notably, the DEMGs score exhibited a significant 
elevation in myeloid cells (Figure 4G). This finding aligning with previous studies,36,37 suggests that the polarization of 
subtype cells in myeloid cells may be a crucial factor contributing to plaque instability.

Identification of Macrophages Subtypes Related to DEMGs Score in AS at a Single Cell 
Resolution
We further isolated 11,584 myeloid cells for secondary clustering and annotation. Through literature searches and the 
identification of classical gene markers, we successfully annotated a total of ten myeloid subtypes. These include 
classical monocytes, DC1 cells, DC2 cells, DC3 cells, SPP1+/VCAN+ macrophages (Mac-C1-SPP1/VCAN), SPP1+ 

macrophages (Mac-C2-SPP1), IL1B+ macrophages (Mac-C3-IL1B), TREM2+ macrophages (Mac-C4-TREM2), 
FLT3LG+ macrophages (Mac-C5-FLT3LG), and monocyte-like macrophages (Monolike Mac). As illustrated in 
Figure 5A, we employed multiple classical gene markers to annotate these ten myeloid subtypes. Notably, the classical 
gene markers for SPP1+/VCAN+ macrophages and SPP1+ macrophages exhibited significantly higher expression in the 
AS group, suggesting these two macrophages may be AS-induced. Previous literature has reported the unique functions 
of SPP1+ macrophages, including slowed cholesterol clearance, enhanced vascularization, and glycosylation 
effects.16,38,39 Interestingly, the gene expression profile of Mac-C1-SPP1/VCAN not only include the classical gene 
markers of SPP1+ macrophage but also includes inflammatory, angiogenesis and lipid generation-related genes, such as 
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EREG, VCAN, and AQP9. These results implied that Mac-C1-SPP1/VCAN may represent a novel macrophage subtype 
with more intense inflammatory and angiogenesis reactions based on SPP1+ macrophage subtype. Additionally, the 
single-cell atlas indicates that Mac-C1-SPP1/VCAN is closer in distance to Mac-C3-IL1B and Mac-C5-FLT3LG, 
suggesting potential functional similarities and closer cell connections among these three subtypes (Figure 5B). 
Concurrently, as depicted in Supplementary Figure 3, the distribution of Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac- 
C5-FLT3LG gradually increases in AS. However, the distribution patterns of these subtypes in nine single-cell samples 
suggest a decrease in these three macrophage subtypes in AS. We attribute this result to these three macrophage subtypes 
being relatively rare cell types in AS4, AS5, and AS6 samples, with an uneven proportion of each AS sample compared 
to normal groups. The higher number of AS samples may have statistically diluted the proportion of these rare 
macrophage subtypes (Figure 5C). Based on the previously identified 43 DEMGs, we conducted a subsequent enrichment 
scoring for these ten myeloid subtypes (Figure 5D). Interestingly, we observed a significant upregulation of DEMGs 
scores in Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG, suggesting that these three macrophage subtypes 
may contribute to the increased instability of plaques. Single-cell pathway enrichment analysis was conducted on fifty 
hallmark gene sets, focusing on the ten identified subtypes of myeloid cells. The results indicate that Mac-C1-SPP1 
/VCAN is significantly upregulated in angiogenesis, while oxidative phosphorylation and oxygen responses are sig-
nificantly downregulated. Mac-C3-IL1B is significantly upregulated in angiogenesis, NF-κB signaling pathway, 

Figure 4 Single-cell profile between AS and normal groups. (A) Heatmap plot visualizes the classical markers for each cell type. (B) UMAP plot visualizing eight major cell 
types identified from scRNA-seq in AS vs normal groups. (C) Violin plot of quality for nine samples in scRNA-seq data. (D) Bar graph showing the percentages of eight major 
cell types in AS vs normal groups. (E) The percentage of eight major cell types according to their origins from AS tissue. (F) The hierarchical clustering heatmap shows the 
correlation between eight major cell types in AS vs normal groups. (G) Violin plot shows the DEMGs score for eight major cell types.
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inflammatory response, and IL6-JAK-STAT3 signaling pathway. Mac-C5-FLT3LG is significantly upregulated in NF-κB 
signaling pathway and apoptosis (Figure 5E). These findings suggest that these three macrophage subtypes may primarily 
exert biological functions such as angiogenesis, regulation of immune inflammatory responses, and apoptosis. We also 
conducted enrichment scoring for three AS-related pathways embedded in the UMAP plot: fatty acid metabolism, 
inflammation, and hypoxia. Interestingly, the high-enrichment regions of these three pathways correspond one-to-one 
with the regions of the three macrophage subtypes mentioned above (Figure 5F).

Evolutionary Trajectory Analysis of Macrophages Subtypes in AS
Due to the proximity observed on the UMAP plot among three subtypes of macrophages, namely Mac-C1-SPP1/VCAN, 
Mac-C3-IL1B, and Mac-C5-FLT3LG. We conducted further pseudo-trajectory analysis to investigate the dynamic 
immune states and cellular differentiation trajectories of these macrophage subtypes. Simultaneously, we utilized two 
algorithms, “CytoTRACE” and “Monocle2”, to mutually validate and infer the developmental initiation stages of the 

Figure 5 Characterization of macrophage subtypes in AS. (A) Bubble plot shows the average expression of the classical markers for 10 myeloid subtypes in AS vs normal 
groups. (B) UMAP plot visualizing 10 myeloid subtypes identified from scRNA-seq. (C) The percentages of 10 myeloid subtypes across nine samples. (D) Violin plot shows 
the DEMGs score for 10 myeloid subtypes. (E) Enrichment scores of fifty hallmark gene sets for 10 myeloid subtypes in AS vs normal groups. (F) UMAP plot showing the 
enrichment regions of three AS-related pathways using the AUCell algorithm.

https://doi.org/10.2147/JIR.S454505                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 2412

Xu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


macrophages. Impressively, two distinct activation paths emerged, suggesting a three-state differentiation process for the 
macrophage subtypes, namely state1, state2, and state3 (Figure 6A). Both algorithms indicated that state2 represents the 
initiation stage of development, characterized by generally high stemness scores and the earliest development onset. 
State2 then differentiates into state1 and state3 via node1. We defined these three states inferred from the trajectory 
distribution as Pre-branch, Cell fate 1, and Cell fate 2. Notably, significant differences in the distribution of macrophage 
subtypes were observed under different activation paths. Specifically, Pre-branch was mainly dominated by Monolike 
Mac and Mac-C4-TREM2, Cell fate 1 was mainly dominated by Mac-C1-SPP1/VCAN and Mac-C2-SPP1, and Cell fate 
2 was mainly dominated by Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG (Figure 6A). Ridgeline plot 
indicates that among the macrophage subtypes, those in the Pre-branches show the earliest activation in development 

Figure 6 Activation trajectory of macrophage subtypes in AS. (A) The development trajectory of macrophage subtypes is colored by cell subtypes, cell states, pseudotime 
orders, and CytoTRACE scores. (B) Ridgeline plot shows the distribution of the pseudotime-ordered macrophage subtypes among three states. (C) Two-dimensional plots 
show the expression pattern for signature genes related to hypoxia, angiogenesis, cholesterol homeostasis, and fatty acid metabolism in different groups/states, along with 
the pseudotime. (D) Right: DEMGs score is enriched along the evolutionary trajectory of macrophage subtypes. Left: The box plot shows the comparison of DEMGs scores 
among three states. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001. (E) Heatmap shows the expression pattern of DEMGs, gradually upregulated in Mac-C1-SPP1 
/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG, along with the pseudotime. (F) Macrophage subtypes can be classified into five modules according to the cooperation of 
different transcription factors. (G) Heatmap shows the activity of TF regulons among different macrophage subtypes/states.
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time. In contrast, the subtype under Cell Fate 1 exhibits the latest activation. The subtype (Mac-C1-SPP1/VCAN, Mac- 
C3-IL1B, and Mac-C5-FLT3LG) associated with Cell Fate 2, on the other hand, displays activation at a mid-to-late stage 
in the development timeline (Figure 6B). Consistent with expectations, pseudo-trajectory analysis of the AS-related 
pathways revealed that as pseudo-trajectory time progressed, AS group showed increasing expression scores in four 
pathways: angiogenesis, fatty acid metabolism, cholesterol homeostasis, and hypoxia. In contrast, the normal group 
exhibited the opposite trend. Interestingly, Cell fate 2 also demonstrated the highest expression scores in these four 
pathways, showing a similar expression trend to the AS group (Figure 6C). This finding suggests a key role of these three 
macrophage subtypes within Cell fate 2 in AS formation. Furthermore, we assessed the enrich trends of DEMGs scores 
across the three stages. Surprisingly, the DEMGs scores gradually increased along the activation trajectory of Cell fate 
groups and were significantly higher in Cell fate 2 than in Cell fate 1/Pre-branch (p < 0.0001) (Figure 6D). Subsequently, 
we investigated the transcriptional changes associated with the differentiation state of DEMGs and observed that, except 
for DPP4, PTGS1, LAPTM5, and TMC6, the gene expression trends of other DEMGs gradually upregulated with 
pseudo-trajectory time change, mirroring the expression trend of Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5- 
FLT3LG macrophage subtypes (Figure 6E). Additionally, our SCENIC analysis of macrophage subtypes revealed that 
their regulons can be categorized into five distinct modules, as shown in Figure 6F. Each specific macrophage subtype 
exhibited unique TF regulons. Notably, TFs such as E2F3/6/7, ATF2/4, JUNB, IRF1/7, FOS, and ELF1known for their 
involvement in cell cycle regulation, cellular stress responses, IFN signaling pathways, and immune modulation, were 
found to be highly activated in Cell fate 2 (Figure 6G). This suggests a nuanced regulatory landscape in these 
macrophage subtypes, emphasizing their functional diversity in cellular processes. Collectively, tracing gene fluctuations 
along the bifurcated trajectory, Cell fate 2 appears to play a key role in pathways closely associated with AS, such as 
angiogenesis, lipid metabolism, and hypoxia. Additionally, DEMGs score exhibit the highest in Cell fate 2, suggesting 
selective high expression in Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG macrophage subtypes. These 
macrophage subtypes in Cell fate 2 may be key cell types leading to plaque rupture in AS, resulting in decreased 
ischemic event-free survival.

Identification of the Function and Prognostic Significance of Cell fate 2 Group in AS
Previously, we found significant association between Cell fate 2 and DEMGs scores. Thus, we utilized BEAM analysis to 
identify the DEGs associated with Cell fate 2. The GO Term results reveal that DEGs with Cell fate 2 are predominantly 
expressed in pathways related to immune-inflammatory responses, including immune cell receptor signaling pathways, 
positive regulation of the immune response, and the NF-κB signaling pathway (Figure 7A). Concurrently, Cell fate 1’s 
DEGs were found to be linked to cell recognition, cell signal transduction, and ATP synthesis. Further survival analysis 
demonstrated that high enrichment scores of Cell fate 2’s DEG could predict the occurrence of ischemic events in the AS 
patient cohort, suggesting that these macrophages within the Cell fate 2 can markedly reduce the prognosis of 
cardiovascular disease patients (Figure 7B). We further investigated the tissue distribution of these macrophages within 
the Cell fate 2 using a large pair of samples. Intriguingly, in two independent datasets of AAS, a higher enrichment score 
of Cell fate 2 was observed in AAS (Figure 7C). Additionally, through bulk-seq analysis, significant expression 
differences were observed among the 41 DEGs of Cell fate 2 across different AS plaque subtypes. Specifically, in the 
cluster 3 plaque subtype, Cell fate 2’s DEGs exhibited high expression, whereas they exhibited low expression in the 
cluster 2 subtype and intermediate expression in the cluster 1 subtype (Figure 7D). This finding suggests that these 
macrophages within Cell fate 2 are likely crucial components of the cluster 3 plaque subtype. Subsequently, we 
conducted a metabolic pathway analysis for these three states of macrophage subtypes. The results indicated significant 
upregulation of fatty acid synthesis, fatty acid elongation, and fatty acid degradation pathways in the Cell fate 2 
(Figure 7E and F). Furthermore, GO enrichment analysis revealed that Mac-C1-SPP1/VCAN has relevant functions in 
both inflammation and lipid metabolism (Figure 7E and G). We implied that the inflammatory response of these 
macrophages within the Cell fate 2 group is one of the factors contributing to the overactivation of lipid metabolism. 
Existing research indicates a correlation between excessive fatty acid elongation and the development of AS, where fatty 
acids in the body can transform into pro-inflammatory metabolites, triggering inflammation and exacerbating vascular 
wall damage.6 In summary, these results support the likelihood that macrophage subtypes within Cell fate 2 accumulate 
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in lesions and play a crucial role in the progression and prognosis of atherosclerosis. Additionally, these results suggest 
a close association between cluster 3 plaque subtype and the macrophage subtypes within Cell fate 2.

Transcriptome Characterization of Subtype Macrophages in the AS Plaque Subtype
To investigate macrophage subtype proportion changes in AS plaque subtypes, we employed the BayesPrism model 
trained using referenced literature on scRNA-seq of AS. Subsequently, we inferred proportional cell type fractions and 
gene expression levels in each cell type from the bulk-seq samples of AS plaque. Figure 8A depicts the proportions of 
various cell types (at the single-cell level) in 131 bulk-seq samples from carotid artery plaques. A heatmap of 
intercellular correlations reveals a significant positive correlation (p-value < 0.05) between Mac-C1-SPP1/VCAN and 
Mac-C3-IL1B, in line with expectations (Figure 8B). Notably, a positive correlation is observed between Mac-C1-SPP1 
/VCAN and NK cells and mast cells, suggesting potential immunoregulatory and cytotoxic functions, consistent with 
prior findings (Figure 7G). Interestingly, survival analysis based on the proportion of Mac-C1-SPP1/VCAN indicates 

Figure 7 Identification of DEGs with Cell fate 2 and its prognostic significance. (A) Heatmap exhibits the expression dynamics of DEGs with differentiated macrophage 
states. (B) Kaplan-Meier analysis shows that high enrichment scores of Cell fate 2’s DEGs lead a poorer prognosis in AS. (C) Box plot shows the difference between high and 
low-enrichment scores of Cell fate 2’s DEGs in the GSE28829-43292 dataset and GSE163154 dataset. ****p < 0.0001. (D) The mRNA expression patterns of Cell fate 2’s 
DEGs in three AS plaque subtypes. (E) Heatmap shows the differences in metabolic pathways among different macrophage subtypes/states. (F) Box plot shows the 
differences in three fatty-metabolic pathways among different macrophage states. (G) Top 10 GO-BP terms of Mac-C1-SPP1/VCAN in AS.
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a marked reduction in the ischemic event-free survival for high cell proportion (p-value < 0.0001) (Figure 8C). 
Furthermore, the clustering heatmap of AS plaque subtypes reveals that Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac- 
C5-FLT3LG exhibit high infiltration proportions in cluster 3 plaques, low infiltration proportions in cluster 2 plaques, and 
moderate infiltration proportions in cluster 1 plaques, consistent with our earlier findings (Figures 8D and 7D). Subgroup 
statistics based on AS plaque subtypes for these three macrophage subtypes indicate that, except for Mac-C5-FLT3LG 
cells showing no statistically significant difference, Mac-C1-SPP1/VCAN and Mac-C3-IL1B cell proportions are highest 
in cluster 3 plaques (p-value < 0.0001) (Figure 8E). In summary, we have identified the transcriptional features of these 
three macrophage subtypes in cluster 3 plaques and discovered that the high infiltration proportions of two macrophage 
subtypes (Mac-C1-SPP1/VCAN and Mac-C3-IL1B) are a crucial factor contributing to plaque instability. Finally, we 
selected 17 marker genes by intersecting DEMGs from bulk-seq analysis and DEGs from these three macrophage 
subtypes in scRNA-seq analysis for subsequent validation (Figure 8F).

Figure 8 The cell type percentage from bulk-RNA seq of AS plaque subtypes deconvoluted by BayesPrism. (A) Bar plots show the percentage of each cell type in the bulk-seq of 
AS plaque deconvolution by BayesPrism. (B) Correlation of the infiltration of pairwise 17 cell types in the bulk-seq of AS plaque deconvoluted by BayesPrism. *p < 0.05 was 
considered statistically significant. (C) The Kaplan–Meier analysis shows overall survival analyses for low and high percentages of Mac-C1-SPP1/VCAN. (D) Three AS plaque 
subtypes have different macrophage subtype infiltration patterns. (E) Violin plot shows the comparison of percentages among three AS plaque subtypes in Mac-C1-SPP1/VCAN, 
Mac-C3-IL1B, and Mac-C5-FLT3LG, respectively. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001. “ns” indicates not significant (p > 0.05). (F) Venn plot of 17 marker 
genes based on DEGs with macrophage subtypes and 43 DEMGs.

https://doi.org/10.2147/JIR.S454505                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 2416

Xu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Comparison of the Cellular Interaction in AS
We utilized CellChat to unravel ligand-receptor interactions among distinct cell subtypes in AS. We observed heightened 
interactions among macrophage subtypes, particularly noting that interactions involving Mac-C1-SPP1/VCAN, Mac-C3- 
IL1B, and Mac-C5-FLT3LG were highly similar to those in Cell fate 2 (Figure 9A and B). In group comparison, we 
found significantly augmented interactions among macrophage subtypes in AS, particularly for Mac-C1-SPP1/VCAN, 
Mac-C3-IL1B, and Mac-C5-FLT3LG (Figure 9C). Subsequently, we delved into exploring the ligand-receptor pairs 
involving Mac-C1-SPP1/VCAN, Mac-C3-IL1B, Mac-C5-FLT3LG, and other macrophage subtypes. We found 

Figure 9 Cell-cell communications analysis in AS. (A-B) Chord plots shows interactions between among different macrophage states/subtypes. Each node indicated 
a different cell type; each width of the edge indicated a number of interaction pairs between cell types. (C) Circle plots displayed the significant ligand-receptor pairs between 
AS versus normal groups, which contribute to the signaling from Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG to other cells. (D) Bubble plots showing the 
ligand- receptor pairs of Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG as ligands and all macrophage subtypes as receptors between AS and Normal groups. (E) 
Macrophage cell subtypes with three immune-related signaling pathways (SPP1, ANNEXIN, and MIF signaling pathways) play different roles in AS. (F-G) Macrophage cell 
subtypes have diverse ligand-receptor patterns in SPP1-CD44 signaling, and ANXA1-FPR1 signaling pathways.
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a significant upregulation of ligand-receptor pairs inducing inflammatory responses and participating in immune regula-
tion and angiogenesis in AS, such as SPP1 and its partners, MIF and its partners, and ANXA1-FRP1 (Figure 9D). 
Notably, SPP1, as a cytokine, plays a vital role in the type-I immune response by enhancing the production of IFN and 
IL12 and reducing the production of IL10.39,40 The expression of its ligand-receptor pairs in Mac-C1-SPP1/VCAN is 
significantly higher than in the other two macrophage subtypes. Similar trends were observed for MIF and its partners. 
MIF, a pivotal regulatory protein in the immune system, stimulates inflammation and immune responses, participates in 
the directed movement of immune cells, and regulates cell proliferation, impacting endothelial cell growth and 
differentiation.41 These findings support the inference that Mac-C1-SPP1/VCAN cells exhibit more inflammatory 
responses and angiogenesis. Additionally, we investigated the roles of different cells in the SPP1 signaling pathway, 
ANNEXIN signaling pathway, and MIF signaling pathway. This revealed that Mac-C1-SPP1/VCAN tends to act as 
a ligand cell in these three pathways, while Mac-C3-IL1B and Mac-C5-FLT3LG tend to act as ligands in the ANNEXIN 
signaling pathway and as receptors in the other two pathways (Figure 9E–G).

Screening of Biomarker in AS Based on Machine Learning and Two Sample MR 
Analysis
We employed three machine learning algorithms, SVM-RFE, LASSO, and RF, to individually screen 17 marker genes to 
identify biomarkers with diagnostic features (Figure 10A–C). By intersecting the results from these three algorithms, 
a total of ten biomarkers were selected: CD36, CSF3R, DUSP2, FCER1G, FLT3LG, FRP1, IL17RA, LILRB2, RNASE2, 
and VAMP8. AUC curves based on three independent datasets indicated good diagnostic performance of these 
biomarkers in distinguishing between high macrophage-infiltrated plaques and active AS plaques, with FLT3LG being 
the exception (Figure 10D). To elucidate the diagnostic efficacy of FLT3LG in AS, we applied a two-sample MR 
analysis. Our results indicated a significant causal association between the eQTL of FLT3LG and AS, using two datasets. 
The forward MR analysis showed a positive association, while the reverse MR analysis did not reveal significant 
associations, further strengthening the causal link between FLT3LG’s eQTL and AS (Supplementary Figure 4). 
Furthermore, we developed a diagnostic model using these ten biomarkers, employing the GSE21545-41571 dataset as 
the test set and GSE28829-43292 and GSE163154 as validation sets. The diagnostic efficacy of the model was evaluated 
through the application of ten different machine learning algorithms. The results showed excellent diagnostic efficacy of 
this diagnostic model in the test set (AUC > 0.8), with the generalized linear regression model demonstrating the best 
diagnostic performance (Figure 10E). Validation in two additional datasets confirmed the reliable and robust diagnostic 
performance of this diagnostic model (Figure 10F). Furthermore, we presented gene expression profiles of these 
biomarkers across different groups, showing high expression in both high macrophage infiltration score and AAS groups 
(Figure 10G).

Validation of Macrophage-Related Biomarkers Expression in AS Mice Model
Circular heatmaps revealed a clear positive correlation between ten biomarkers and macrophages (Figure 11A). To 
further support our findings, we utilized qPCR to assess the expression of three biomarkers (CD36, FCER1G, and 
VAMP8) in atherosclerotic tissues from six ApoE−/− mice fed a high-cholesterol diet (HCD) and six ApoE−/− mice fed 
a standard chow diet (SCD). The results demonstrated that the elevated expression patterns of the three biomarkers in AS 
mice were consistent with our bioinformatic data (CD36, p-value = 0.0145; FCER1G, p-value = 0.0130; VAMP8, p-value 
= 0.0350) (Figure 11B). Survival analysis indicated that the high-expression group of these three biomarker genes 
significantly diminished the prognosis of AS patients (Figure 11C). Similar results were observed at the protein levels 
using WB (Figures 11D). Multiplex immunofluorescence of atherosclerotic tissues in mice revealed the colocalization of 
FCER1G with CD68-positive macrophages in atherosclerotic plaques (Figure 11E).

Discussion
This study integrates single-cell and bulk-seq data to unveil the heterogeneity of atherosclerotic plaques and the roles of 
macrophage subtypes in unstable plaques. Previous studies on AS systematically explored the composition of different 
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cell clusters in various groups, particularly focusing on T cells and NK cells. Our approach, blending single-cell and bulk 
data, has clarified the molecular phenotyping of AS plaques linked to ischemic events and highlighted the prognostic 
significance of certain macrophage subtypes.

Macrophages, key to plaque instability, have been extensively studied over the past decade. Earlier research centered 
on macrophage polarization, exploring biological functions, inflammatory genes, and signaling pathways of M1 or M2 
macrophages.42,43 However, as research on AS deepened, the complexity of macrophage heterogeneity in AS requires 
moving beyond this binary classification. The detailed mechanism underlying how macrophage subtypes affect the 

Figure 10 Screening of biomarkers via multiple machine-learning algorithms. (A) Characteristic marker genes were selected using the SVM-RFE algorithm. (B) 
Characteristic marker genes were selected using the LASSO regression algorithm. (C) Characteristic marker genes were selected using the RF algorithm. (D) ROC 
curve for 10 biomarkers in GSE21545-41571, GSE28829-43292, and GSE163154 dataset, respectively. (E) Box plots shows the performance of the diagnostic model base on 
biomarkers by using 10 marine learning algorithms. (F) Left: ROC curve validated the reliability of the diagnostic model by using 10 marine learning algorithms. Right: ROC 
curve validated the reliability of the diagnostic model by using other two datasets. (G) Violin plot shows the comparison of biomarker’s expression levels between AS and 
normal in different datasets, respectively. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001. “ns” indicates not significant (p > 0.05).

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S454505                                                                                                                                                                                                                       

DovePress                                                                                                                       
2419

Dovepress                                                                                                                                                               Xu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


microenvironment has been a prominent topic in recent years. We should notice that the AS plaque microenvironments 
present a complex landscape, especially when considering the transformational capabilities of macrophages. At the heart 
of this complexity lies the dynamic transformation between the M1 and M2 macrophage phenotypes. Some research has 
illuminated that the Kruppel-like factor (KLF) 2 plays a critical role in the transition of M2 macrophages from an anti- 
inflammatory to a pro-inflammatory state.9 This transformational process further complicates the identification of 
unstable plaque characteristics. Moreover, traditional beliefs posited that macrophages originated solely from the 
differentiation of monocytes. However, recent studies have unveiled a more nuanced narrative. These studies suggest 
that resident macrophages are not merely byproducts of differentiation but are actively present at various stages within 

Figure 11 The expression of Top three characteristic biomarkers in mice atherosclerotic tissues. (A) Circle-heatmap plots displayed the correlation between biomarkers’ 
expression level and infiltration scores of 28 immune cell types. (B) qPCR results showed that Top three characteristic biomarkers expression were high in mice 
atherosclerotic tissues. The reference is GAPDH, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Kaplan–Meier analysis showed the differences between high and low Top three 
characteristic biomarkers expression groups in AS samples, respectively. (D) WB results showed that Top three characteristic biomarkers expression were high in mice 
atherosclerotic tissues. (E) mIF validation co-stained for FCER1G (red) and CD68 (green) in AS.

https://doi.org/10.2147/JIR.S454505                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 2420

Xu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


the plaque microenvironment.44 The behavior of these macrophage subtypes is intriguing: under steady-state conditions, 
they exhibit low levels of proliferation. Yet, when faced with inflammatory challenges, they demonstrate a marked 
increase in proliferation rates, significantly contributing to the accumulation of macrophages in plaques.44 Lastly, the 
phenotypic classification of macrophages has traditionally relied on the identification of surface markers and their 
associated functions. However, the issue arises from the fact that many of these markers are shared across different 
macrophage subtypes, with only a few being unique to specific phenotypes.45 This overlap not only blurs the functional 
distinctions between the subtypes but also introduces a degree of ambiguity and complexity in understanding their 
distinct roles in plaque formation and progression. In the present analysis, our results reveal different biological functions 
(eg, hypoxia, fatty acid metabolism, inflammatory response, cholesterol homeostasis) and clinical outcomes for macro-
phage subtypes, particularly in previously identified cluster 3 plaque subtypes. Although identifying macrophage 
subtypes’ biological functions in AS is crucial, it’s more important to understanding which subtypes contribute to plaque 
instability and to identify common traits of these macrophages in unstable plaque subtypes. Here, we identified three AS 
plaque subtypes using unsupervised clustering in bulk-seq data. revealing prognostic differences and transcriptomic 
characteristics linked to high immune cell infiltration and inflammatory response pathways in cluster 3 subtypes through 
survival analysis and GSVA methods. Additionally, we discovered that cluster 3 plaques exhibit high expression 
selectively associated with a specific macrophage subtype. This highlights the importance of actively identifying the 
molecular characteristics of different AS plaques in inflammation-targeted therapies, which could benefit patients with 
ischemic events-related plaques.

Furthermore, using DEMGs as a bridge, three macrophage subtypes significantly associated with DEMGs score were 
identified (Mac-C1-SPP1/VCAN, Mac-C3-IL1B, and Mac-C5-FLT3LG). Pseudo-trajectory analysis further revealed 
various differentiation stages and specific biological functions of these macrophage subtypes. The Cell fate 2 group, 
marked by the highest DEMGs score, represents a differentiation stage formed by the aggregation of these three 
subtypes. It’s appeared crucial for AS progression, as patients with high Cell fate 2 DEGs expression had poorer 
prognoses. The BayesPrism deconvolution method confirmed the high activity of these three macrophage subtypes and 
characteristic genes in cluster 3 plaque subtypes, validating our analysis. Our study also traced the origins of macrophage 
subtypes and the biofunctions of Cell fate 2. Consensus suggests that most macrophage subtypes likely originate from 
activated monocyte-like macrophages,46 as indicated by the trajectory from Pre-branch to Cell fate 2/Cell fate 1. 
Interestingly, our study revealed that Cell fate 2 macrophages are significantly enriched in pathways related to fatty 
lipid synthesis, hypoxia, apoptosis, and NF-κB signaling pathways, with most DEMGs being highly expressed in these 
macrophage subtypes. This underscores their role in immune-inflammatory responses and their selectivity for pro- 
inflammatory and oxidized LDL (OxLDL)-related metabolic processes during differentiation. Previous studies have 
demonstrated that hypoxia can activate immune cells and increase energy demands of resident cells, creating a hypoxic 
microenvironment and mitochondrial dysfunction.47 This leads to an increase in reactive oxygen species, oxidative stress, 
and the activation of inflammation and NF-κB signaling pathways, which in turn, may secrete pro-inflammatory 
cytokines and matrix metalloproteinases, undermining plaque stability through extracellular matrix degradation.48 

Oxidative stress also leads to the oxidation of both lipid and protein components in OxLDL, which plays a crucial 
role in AS formation due to its pro-inflammatory, chemotactic, and procoagulant properties.49 Moreover, OxLDL is 
pivotal in macrophage differentiation and foam cell formation, which are key processes in AS progression.7,49 

Conversely, Cell fate 1’s DEGs were found to be linked to cell recognition, cell signal transduction, and ATP synthesis, 
suggests a pivotal role in initial inflammatory responses, potentially contributing to the recruitment of further immune 
cells and the establishment of an inflammatory milieu conducive to plaque development. Our current findings and these 
previous studies help consolidate the evidence for a potential causal relationship between inflammation and AS and 
further explore potential macrophage subpopulations that may play an important role in the process of inflammation. 
Targeting specific macrophage states or modulating their evolutionary trajectories could offer novel strategies for treating 
AS. For example, therapies designed to inhibit the transition to Cell fate 2 or stay in the Pre-branch state could mitigate 
plaque progression or encourage plaque stabilization, respectively. Additionally, we identified a unique Mac-C1-SPP1 
/VCAN cell, rare in quantity but exhibiting high expression of AS-related genes (CD36, AQP9, EREG). Unlike 
traditional SPP1+ macrophage, it expresses both SPP1 and VCAN genes, known to influence tumor invasion, metastasis, 
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and recruit macrophages as inflammatory factors, while VCAN plays a vital role in angiogenesis in tumor invasion and 
heterogeneity. A previous study on tumor-infiltrating myeloid cells also identified angiogenesis-associated macrophages 
in 8 cancer types, marked by SPP1 expression.50 These findings suggest the existence of other functional 
SPP1+macrophages subtypes. In our study, Mac-C1-SPP1/VCAN was not only highly expressed in cluster 3 plaque 
subtypes but also found to significantly lower the survival of ischemic events-free in AS. Cell communication analysis 
also revealed enhanced inter-macrophage interactions in AS. We noticed that Mac-C1-SPP1/VCAN likely plays a pivotal 
role in regulating the entire inflammatory response and angiogenesis through pathways like SPP1 and MIF significantly 
intensified. Macrophage migration inhibitory factor (MIF) is a prominent atypical chemokine (ACK), an evolutionarily 
conserved multifunctional inflammatory mediator that is structurally distinct from other cytokines.51,52 MIF may enhance 
the recruitment of atherogenic leukocytes via CXC motif chemokine receptor-4 (CXCR4),53–55 promoting atherosclero-
sis. Current data have indicated that MIF activates activated mitogen-activated protein kinases (MAPKs), including 
extracellular signal-regulated kinases in synoviocytes and p38 MAPK, resembling other proinflammatory cytokines. 
MAPK activation can be well characterized as a feature of atherosclerotic inflammation.56,57 Furthermore, MIF is the 
only known cytokine that directly downregulates p53 expression and function, especially under cellular stress. If a small 
molecule MIF inhibitor can be developed, it could represent a new category of direct anti-cytokine drugs that would have 
potential utility in inflammatory diseases. Our findings align with these conclusions that MIF-related signaling pathways 
are actively expressed in pro-inflammatory, especially in Mac-C1-SPP1/VCAN as ligand, Mac-C3-IL1B, and Mac-C5- 
FLT3LG as receptors. Furthermore, in the ANXA1-FPR1 signaling pathway, inflammatory stimulation of the P2X7 
receptors on macrophages leads to the release of the phospholipid-binding protein membrane associate protein A1 
(ANXA1), which binds to the G protein-coupled receptor (GPCR)-formyl peptide receptor 2 (FPR2) and exerts anti- 
inflammatory effects by promoting apoptosis and inhibiting the transport capacity of leukocytes effects.58 Leslie et al 
indicated the ANXA1-FPR1 signaling pathway could promote the maturation of macrophages and migrate them into the 
damaged tissue.59 Our results of activation in the ANXA1-FPR1 signaling pathway with Cell fate 2 macrophages as 
receptors were observed to imply that continuous inflammatory signals induce large amounts of inflammatory gene 
expressions in AS plaque to cause a series of inflammatory responses.

Moreover, we employed three machine learning algorithms to identify ten biomarkers expressed in plaque subtypes 
and macrophages, leading to the construction of a diagnostic model for AS. The reliability of the diagnostic model was 
assessed using ten machine learning algorithms and validation sets, with in vitro validation of three biomarkers 
(FCER1G, CD36 and VAMP8). By searching the literature, we found FCER1G encoding the Fc receptor γ-chain, first 
informed as the third subunit of the high-affinity immunoglobulin E (IgE) receptor,60–62 was abundantly expressed in 
different types of immune cells and involved in various types of immune responses such as phagocytosis and cytokine 
release. Youshi Meng et al proved63,64 that FCER1G is a hub gene significantly upregulated in AAS. However, FCER1G 
is still less studied in interactive mechanisms in AS. In our study, FCER1G was a highly expressed gene in Mac-C3- 
IL1B, proving FCER1G might be involved in inflammation-related signaling pathways by regulated Mac-C3-IL1B 
activity. CD36 belongs to the class B scavenger receptor family and is expressed on monocytes and macrophages.65 

CD36, a pattern recognition receptor, is an important signaling molecule for the uptake of oxidized low-density 
lipoprotein (ox-LDL), foam cell formation, cytoskeleton dynamics, and macrophage migration. Although uptake of ox- 
LDL by CD36 has been verified to be a critical step in foam cell formation, the mechanism regulating ligand-induced 
CD36 internalization and its corresponding downstream signaling remains unclear, so clarification of this regulatory 
mechanism may unexpectedly find the one of discovery of the emerging therapeutic strategies for AS.66 Data from the 
study by Sai Kuchibhotla et al67 indicated that CD36 deficiency not only reduced the level of lipid accumulation in 
macrophages to retard the progression of atherosclerosis but also reduced the secretion of reactive oxygen species (ROS). 
This pro-inflammatory cytokine affects plaque instability due to macrophage migration. These results are consistent with 
our findings and support the pro-atherogenic effect of CD36.68 VAMP8 is a SNARE protein that has been found in 
a variety of important cellular activities,69 which is critical for the fusion between the autophagosomes and lysosomes.70 

Youwei Lu et al suggested that VAMP8 may promote the development of AS and be a new biomarker for diagnosing and 
treating AS.71 In previous studies, no single-cell data confirmed that VAMP8, FGER1G could be effective biomarkers in 
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diagnosing AS. Our in vitro study illustrated that VAMP8, FCER1G, and CD36, in carotid AS plaque were related to 
macrophages.

In conclusion, our comprehensive analysis delineates macrophage subtypes within the context of AS, offering insights 
into their distinct roles and origins. Here, we present several findings from our research that are significantly novel 
compared to previously published papers16,17 (Supplementary Table 2). This study not only sheds light on the potential 
mechanisms driving macrophage diversity in AS but also emphasizes their impact on disease progression and clinical 
outcomes. However, there are still some limitations that need to be addressed. First, our analysis includes both carotid 
plaques and aortic plaques. The plaques used for validation are also aortic plaques. Different types of plaques may have 
mechanisms of disease that are not entirely consistent, and we need more data of AS samples to evaluation and validation 
ours finding. Second, further experimental validation is necessary to confirm the specific functions of each macrophage 
subtype in AS, and investigate how interaction such as AS plaque sites are responses with observed macrophage 
subtypes. Collectively, our findings lay a foundation for targeted macrophage-based therapies in AS.
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