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Abstract: Conventional clinical practice in the neonatal intensive care unit (NICU) often fails to actively monitor the brain, relying on 
reactive strategies and imprecise risk indicators. The introduction of Near-Infrared Spectroscopy (NIRS) enhances current approaches 
to brain monitoring, offering non-invasive, real-time, continuous, and tissue-specific measures of oxygen saturation. NIRS leverages 
the physics of light to provide a comprehensive evaluation of oxygen delivery and consumption. This review covers the principles of 
NIRS, normative values for cerebral oximetry, and its applications in various clinical scenarios. Current clinical applications of NIRS 
span diverse areas, including intraventricular hemorrhage, white matter injury, anemia, congenital heart disease, and hypoxic-ischemic 
encephalopathy (HIE). NIRS demonstrates its potential in predicting and preventing adverse outcomes, particularly in optimizing 
cerebral oxygenation during cardiac surgery and guiding respiratory support in neonates. Key highlights of this review include the role 
of NIRS for the detection of cerebral hypoxia, even when other monitors do not show signs of clinical deterioration, a discussion of 
new methods for quantifying cerebral autoregulation and the connection to brain injury, and the potential utility NIRS monitoring 
offers for critically ill infants, such as those with congenital heart disease. The comprehensive insights provided by NIRS, if translated 
effectively into clinical practice, have the potential to improve the care and outcomes of neonates in the NICU. 
Keywords: NIRS, neonatal, brain injury, intraventricular hemorrhage, white matter injury, hypoxic ischemic encephalopathy, seizures, 
congenital heart disease

Introduction
Avoidance of brain injury and prediction of neurodevelopmental outcomes remain some of the highest priorities for 
parents and providers of infants admitted to the neonatal ICU (NICU). Infants are susceptible to distinct forms of brain 
injury; this includes intraventricular hemorrhage (IVH),1 cerebellar hemorrhage (CH), and white matter injury2 for 
preterm infants and hypoxic ischemic injury in term infants who experienced perinatal ischemic events. However, despite 
the importance placed on these outcomes, in standard clinical practice, the brain often goes unmonitored during the 
NICU stay, with the notable exception of EEG monitoring when seizures are suspected.

Typical clinical practice involves screening for injury that has already occurred in populations of at-risk infants, 
judged primarily on fixed and imprecise risk indicators (eg, gestational age, sepsis) with little personalization. While head 
ultrasound screening is practically universal in preterm infants, it provides little information beyond gross anatomic 
injury.3–5 Term equivalent head imaging has been well described in the literature but is limited by poor positive 
predictive value.3,6–8 MR imaging in HIE is less controversial, and although systems for scoring injury have gradually 
demonstrated improved predictive performance, the simultaneous increase in complexity of interpretation has meant 
limited translation to daily clinical practice.9–11 Most importantly, imaging (regardless of modality) is a reactive strategy, 
employed after injury has already occurred when there is little chance to prevent or mitigate adverse impact.

Near-infrared spectroscopy (NIRS) monitors provide non-invasive, real-time, continuous, tissue-specific measures of 
oxygen saturation. Unlike pulse oximetry (SpO2), these devices measure oxygen saturation in all vascular compartments 
(arterial, venous, capillary) which provides an advantageous evaluation of oxygen delivery and consumption. While NIRS has 
been available for nearly two decades, interest and utilization for the NICU population have only begun to increase recently. 
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The work of many clinical studies and several large, randomized trials provide greater information about how best to use the 
information provided by the monitor in a proactive rather than reactive strategy.

For this review, neonatal NIRS literature from the last 20 years was reviewed with a special focus on clinical trials, 
reference studies, and large observational studies with brain injury as the primary outcome. This review summarizes the 
underlying physics principles of the NIRS monitor, examines the types and meaning of data which can be obtained from 
these devices, examines the role of NIRS in many important areas of NICU clinical care, and summarizes the results of 
recent large, randomized trials.

NIRS Principles
NIRS leverages the physics of light to measure tissue oxygen saturation. Each monitor consists of a display unit with one or more 
data channels, each attached to a patient sensor. Sensors contain an emitter, which produces multiple wave lengths of light in the 
red and near-infrared frequency bands, and two receivers which are located at different distances from the emitter.12–14

While hemoglobin light absorption is a foundational element of both NIRS and pulse oximetry, there are key 
differences in how the devices are implemented, resulting in significant clinical ramifications. As light is transmitted 
through tissue, it is scattered, reflected, and absorbed.15 Hemoglobin is a chromophore, meaning that it is a compound 
which absorbs light in a predictable fashion. Importantly for both NIRS and pulse oximetry, different oxidative states of 
hemoglobin (ie, oxy- and de-oxyhemoglobin) have distinctive absorption patterns.16 Oxyhemoglobin absorbs more 
infrared light and less red light, when compared to deoxyhemoglobin. Thus, if a known quantity of specific wavelengths 
of light pass through a tissue, the ratio of absorption at each wavelength can be used to calculate oxygen saturation in the 
tissue under the sensor.17–19 Although typically between 700 and 800 nm, the number of discrete wavelengths of light 
utilized by devices varies by manufacturer (INVOS 730, 810nm; ForeSight 690, 780, 805, 850 nm; EQUANOX 730, 
760, 810, 880nm; NIRO 735, 810, 850 nm; OxyPrem 760, 805, 870 nm).20,21

Pulse oximetry evaluates absorption as light is linearly transmitted through a tissue, passing from one side to the 
other. With each cardiac cycle, the volume of arterial blood rapidly increases then decreases, generating a cyclical change 
in oxyhemoglobin absorption set against an unchanging absorption background of venous blood, skin, muscle, and 
bone.22 In contrast, the NIRS sensor lies flat on the surface of the skin and two or more receivers detect changes in 
absorption as photons return back to the sensor following a curved path.23 It is not pulse synchronized and thus measures 
oxygenation in arterial, venous, and capillary beds simultaneously. Given that only 30% of blood is intra-arterial at any 
given time, the measured values represent a 30% to 70% arterial to venous-weighted estimate and approximate a mixed- 
venous saturation (SvO2).24 NIRS has been extensively validated against other measurements of cerebral blood flow 
including transcranial Doppler ultrasound,25 xenon-enhanced CT,26 and MRI.27

NIRS monitoring necessarily involves the use of a sensor applied directly to the skin. As with any medical device, safety is 
an important priority. Fortunately, the prevailing experience is that these devices can be safely used even in smallest of infants. 
In the SafeBoosC-II trial, 16/166 (14%) infants experienced temporary red marks at the site of the sensor, with no further 
adverse events reported.28 In the much larger SafeBoosC-III trial, 7/772 (1%) infants experienced sensor-related skin issues.29 

All other reported adverse events were common complications of prematurity and were not different between the intervention 
and control groups. To avoid skin-related sensor issues, some recommend frequent (every 12–24 hours) replacement of the 
sensor and the use of underlying clear barrier dressings.14

Normative or Reference Values for Cerebral Oximetry
Clinical accessibility and application of NIRS requires information about the expected range of values experienced by 
neonates. As NIRS is a mixed-venous measure, values from pulse oximetry cannot be used and new normative values 
must be separately established including tissue-specific patterns (eg, cerebral vs renal).

Preterm Infants
The largest reference dataset in neonates was published in 2015 by Alderliesten et al30 and is based on cerebral NIRS 
values obtained in the first 72 hours after birth in 999 very low birth weight (VLBW) infants. In this cross-sectional 
sample, the median cerebral saturation was 65% with the 95% confidence interval spanning 55–85%. This range has been 
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widely adopted in clinical practice and formed the basis for at least two clinical trials. A similar reference dataset of 
cerebral NIRS values in the delivery room was published in 2013 by Pichler et al.31 Similar to the pulse oximetry curves 
developed for targeted oxygen saturation management during resuscitation,32 cerebral saturations rise rapidly over the 
first minutes of life and stabilize by approximately 10 minutes.

The impact of other clinical factors becomes apparent when looking at longitudinal cerebral oxygenation extending 
further into the NICU stay. Several studies33,34 have demonstrated a steady decline in cerebral regional oxygen saturation 
(rSO2) over the first 6–8 weeks following birth, which closely parallels anemia of prematurity over the same period. 
Injury also has an impact, with persistently lower cerebral saturations following intraventricular hemorrhage, an effect 
lasting for at least two months.34

Term Infants
Fewer studies have examined similar longitudinal trends in term neonates. In contrast to preterm infants, cerebral 
saturations for term infants are higher, likely reflective of a lower metabolic demand in a more developed brain. In 
one report of 26 normal newborns, mean cerebral rSO2 was approximately 80% soon after birth, falling slightly over the 
first few days.35 Infants with perinatal asphyxia seem to exhibit the opposite pattern, with lower initial cerebral rSO2 then 
rising over the first few days.36

Cerebral Autoregulation
The concept of cerebral autoregulation was first described by Claassen in 1961, who conceived of the idea that the 
cerebral vasculature maintains homeostasis of cerebral blood flow, despite fluctuations in cardiac output.37 This has been 
summarized in the now classic sigmoidal “autoregulatory curve” where constant cerebral blood flow is maintained across 
a wide range of blood pressures, with rapid changes at the limits of autoregulation. The cerebral NIRS signal is an 
indirect measure of cerebral blood flow and thus can be used as a proxy for more invasive measures of cerebral blood 
when investigating cerebral autoregulatory function in neonates.

Time Domain Methods
Several different strategies have been employed to quantify autoregulation. The most straightforward approach evaluates 
correlation between the mean arterial blood pressure and the cerebral rSO2. When autoregulation is intact, the correlation 
between these two measures should be either zero or negative. In the method pioneered at University College London,38 

the correlations between cerebral NIRS and mean arterial blood pressure are analyzed in serial 10-minute windows and 
assigned to “bins” corresponding to the mean blood pressure during the window. After analysis is complete, the mean 
correlation value for each of the blood pressure “bin” is calculated. Intact autoregulation would demonstrate zero or 
negative correlations across the middle range of blood pressures, with increasing or even positive values at the 
extremes.39–41 This method can also be used to identify the “optimal” blood pressure, defined as the mean arterial 
blood pressure at which the most negative correlation is found.42 Increased time spent with blood pressure outside the 
optimal range has been associated with an increased burden of brain injury in neonates.43,44

Coherence Methods
Coherence is a mathematical technique for assessing correlation in the frequency domain, essentially the degree to which 
low-frequency oscillations in blood pressure are dampened before transmission to the brain. Intact and functioning 
autoregulation should reshape blood supply to match the metabolic demands of the brain, thus little or no coherence 
should be seen.45 Several groups46,47 have applied this method to neonates, using similar 10-min windows to calculate 
the value of coherence with a range between 0 (no correlation) and 1 (complete correlation). Autoregulatory function is 
then assessed by evaluating the time spent with coherence above a pre-defined threshold, described as a “pressure 
passive” state by Soul et al.46 Although there is some disagreement about the selection of the threshold,39,45,48 multiple 
studies have demonstrated that increased pressure passivity (increase time spent above coherence threshold) is associated 
with smaller, sicker preterm infants46 and with adverse outcomes in infants suffering from HIE.47
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Transfer Function Methods
One additional method that has been used to quantity autoregulation builds on the concepts of coherence and frequency 
domain analysis. There are well-described low-frequency oscillations in cardiovascular signals, most notably at 0.1 Hz 
(once every ten seconds) often called the Mayer wave frequency.49 The oscillations at 0.1 Hz (and other frequencies) are 
thought to be the manifestation of intrinsic and extrinsic vascular autoregulation, influenced by the autonomic nervous 
system and local metabolic demands, amongst others.50–52 Autoregulatory mechanisms should dampen these oscillations 
as they pass from the central circulation into the cerebral circulation. A method called transfer function analysis53,54 can 
quantify this dampening curve across the frequency spectrum. This method has been used to study autoregulation in 
neonates, finding both a developmental effect, with increased dampening capacity as gestational age increases and a loss 
of dampening in the setting of IVH.55,56

Although this technology is far from utilization in clinical practice, an improved ability to quantify autoregulation will help to 
better explain mechanisms of brain injury and could eventually be employed at the bedside. Real-time measures of autoregulation 
could guide hemodynamic management or periods where handling should be avoided (eg, pressure passive periods).

Clinical Applications of NIRS
IVH
Intraventricular hemorrhage is perhaps the most studied outcome in neonatal NIRS literature, and these investigations 
have revealed new insights into the genesis and longitudinal course of injury. First, cerebral NIRS monitoring has 
provided evidence of a biphasic pattern of injury, with early hyperperfusion and later tissue hypoxia. In at least two 
reports,57,58 infants later diagnosed with IVH were found to have markedly elevated cerebral saturations during the 
period where the bleeding was presumed to occur, likely the effect of a stunned brain with reduced oxygen extraction and 
hyperemia from impaired cerebral autoregulation. However, after that acute period, infants with IVH have profoundly 
lower cerebral saturation, an effect which worsens with increasing grade and lasts for weeks to months in duration.34,59

In addition to acute changes in cerebral saturation during catastrophic hemorrhage, the NIRS monitor can detect the 
longitudinal burden of cerebral hypoxia experienced during the cardiorespiratory instability common in the first week of 
life for VLBW infants. Multiple reports60–62 have shown a strong relationship between an increasing burden of cerebral 
hypoxia and increasing risk of IVH. More recently, advanced machine learning techniques have been applied63 to the 
cerebral NIRS signal, quantifying the impact of prolonged periodic desaturations in a powerful prediction model for 
subsequent IVH. These results underscore the value of cerebral NIRS monitoring to identify and avoid acute and chronic 
changes in cerebral saturation, which may not be detectable with other monitoring devices.

White Matter Injury
Intraventricular hemorrhage is an acute form of brain injury resulting from disruption in cerebral blood supply and/or 
autoregulation. In contrast, white matter injury is an indolent disease which takes weeks to become radiographically 
apparent and is strongly linked to chronic hypoxia and inflammation,64,65 the course of which was succinctly described 
by Volpe in the “encephalopathy of prematurity” framework.66,67 The cumulative impact of intermittent and partial 
prolonged hypoxia, particularly in the periventricular white matter where the short penetrating arteries provide insuffi-
cient blood supply,68 creates an environmental milieu primed for injury. Although the exact threshold of the critical 
fractional tissue oxygen extraction (FTOE), beyond which metabolism switches from aerobic to anaerobic, is not 
precisely known, studies of adults suggest that it is approximately 0.60.69 Many studies of preterm infants have identified 
a significantly elevated FTOE late in the NICU course for preterm infants, as high as 0.40–0.50.34,70,71 When baseline 
extraction operates near to this limit, it is not surprising that common systemic desaturation events associated with apnea 
of prematurity or the stress of concurrent illness (such as necrotizing enterocolitis or sepsis) would exceed that threshold 
and expose the brain to ischemia, initiating, and/or perpetuating the cascade of preoligodendrocyte injury and loss that 
characterizes white matter injury.
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Anemia
Neonates admitted to the NICU have more than one potential mechanism of anemia—anemia of prematurity, physiologic 
anemia, and phlebotomy loss. In each case, it leads to the common result of lost oxygen carrying capacity. A strong 
correlation between anemia and cerebral desaturation or increased cerebral oxygen extraction has been described in 
multiple observational studies.71–74 There is evidence that lower cerebral saturations are associated with worse anemia 
and transfusion restores cerebral oxygenation.75–78 However, potentially unwarranted transfusions are associated with an 
increased risk of ROP.79 It is important to note that pulse oximetry is of limited value in the setting of anemia, with 
essentially no differences between low and high hemoglobin groups.80,81 This stands in contrast to the utility of cerebral 
NIRS which can detect both severity of anemia71,75,80,81 and may provide more information about ROP risk.82 Although 
additional study is needed, NIRS holds significant promise as a tool in transfusion decision-making.

Congenital Heart Disease
Near-infrared spectroscopy also plays a role in the monitoring of infants with congenital heart disease (CHD), providing 
beneficial data during the peri-operative period to preempt acute decompensation, guide interventions, and predict 
neurodevelopmental outcomes.

For infants with hypoplastic left heart syndrome (HLHS), standard monitoring plus NIRS have been linked to reduced pre- 
surgical mechanical ventilation requirements and improved evaluation of surgical timing.83,84 Furthermore, lower preopera-
tive cerebral rSO2 values are associated with poorer outcomes after cardiac surgery and can predict need for extracorporeal 
membrane oxygenation.85,86 NIRS monitoring has also proven beneficial in infants with aortic coarctation and transposition of 
the great arteries (TGA) to guide necessity and timing of interventions.87 Specifically in infants with TGA, cerebral NIRS 
values improve after successful balloon atrial septostomy, providing insight on the response to intervention and underscoring 
the value of NIRS monitoring in perioperative planning and anticipation of long-term outcomes.88

The use of intra-operative NIRS monitoring may also lead to decreased post-operative neurologic sequelae and 
decreased length of stay by providing additional information to optimize cerebral oxygenation during cardiopulmonary 
bypass.89 The validity of intra-operative NIRS monitoring was confirmed by its strong correlation with direct mixed 
venous blood sampling during cardiac surgery.90

Throughout the peri-operative period, NIRS monitoring offers prognostic insights into long-term neurodevelopmental 
outcome, with consistent patterns of low cerebral rSO2 values or with minimal variability for patients with adverse 
neurodevelopmental indices.91–94 Although the exact pathophysiology which links low cerebral saturation and adverse 
neurodevelopmental outcome is unclear, at least two mechanisms may provide explanation: low cerebral saturations may 
reflect ischemia and neuronal loss or alternatively, chronic insufficient delivery of oxygen to meet metabolic needs may 
interfere with the expected trajectory of brain development and growth without causing direct injury. For example, in 
infants with HLHS, prolonged rSO2 values <45% were associated with new or worsening ischemic injury on post- 
operative MRI, and minimum intra-operative rSO2 values were positively correlated with minimum measures of total 
intracranial volume, total brain volume, and white matter.95,96

Hypoxic Ischemic Encephalopathy (HIE)
The capability of cerebral oxygen monitoring to provide information about both oxygen utilization and the cerebral 
autoregulation makes it potentially of great clinical and research value in the setting of HIE. Perinatal ischemia has wide- 
ranging deleterious effects on the brain. Beyond direct neuronal damage from the initial ischemic insult, this injury 
fundamentally alters cerebral metabolism. Cerebral NIRS provides a measure of oxygen delivery and consumption, 
where both low and high values of cerebral saturations are meaningful; exceptionally high values are predictive of severe 
injury97–99 while low values may indicate cardiovascular insufficiency or seizures.100,101 As with preterm infants, FTOE 
can provide valuable insights into adequate oxygen delivery to the brain in the setting of HIE, potentially indicating the 
need for inotropic support, blood transfusion, or increased respiratory support. To date, only one study has examined how 
NIRS monitoring might improve HIE outcomes, finding that the maintenance of blood pressure within NIRS-derived 
optimal values is associated with fewer MRI markers of brain injury.44
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There has been significant study of the prognostic capabilities of NIRS for HIE infants. While there are many 
different technologies that provide prognostic value in the setting of HIE, the immediacy and ease of access to NIRS 
distinguishes it from aEEG/EEG, where predictive power is reached at 48 hours,102 and MRI which is not typically 
performed until 3–4 days after birth. In a number of published studies, NIRS measures alone were predictive of brain 
injury and/or adverse outcomes.43,98,103–105 The predictive ability of NIRS increased when used in combination with 
other monitoring technologies.106–109

Silent Hypoxia and Respiratory Management
Pulse oximetry remains the mainstay of systemic saturation monitoring in neonates and plays a significant role in the 
approach to respiratory support, including the provision of supplemental oxygen. Numerous studies have sought to 
identify target oxygen saturation ranges which maximize survival while minimizing the risk of developing ROP with 
great success. However, pulse oximetry has significant limitations including a lack of end-organ specificity and limited 
insight into the consumption of oxygen, resulting in the potential for delivery-consumption mismatch. Silent or occult 
hypoxia may occur at the tissue level (ie, the brain) even during periods of normal systemic oxygenation on pulse 
oximetry. NIRS has the capacity to overcome these limitations, identifying tissue-level hypoxia far earlier than pulse 
oximetry.110,111 Pulse oximetry is also a lagging indicator of response to intervention.112

Recently, this phenomenon in neonates has been studied in detail, demonstrating that silent cerebral hypoxia is 
common in neonates and paradoxically increases at lower levels of respiratory support.113 These findings raise significant 
questions about the optimal management of less acutely ill infants later in the NICU course with regard to level of 
respiratory support, transfusion thresholds, and other interventions which might influence oxygen carrying capacity.

Clinical Trials of NIRS in the NICU
Although most clinical NIRS research in neonates is observational, there have been two major clinical trials comparing 
standard of care monitoring to standard monitoring plus NIRS monitoring in the delivery room (COSGOD) and early 
NICU course (SafeBoosC) for VLBW infants. Both studies completed smaller phase-II pilot studies before subsequent 
large multicenter randomized trials and used similar endpoints of death or severe brain injury.

In the Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery (COSGOD) Phase II trial, 60 premature 
infants were placed on a NIRS monitor immediately after birth. The display was blinded at random in half of the infants 
and their resuscitation proceeded using standard of care monitoring (targeted SpO2). For those infants where the NIRS 
display was randomized to be visible, PEEP and FiO2 were manipulated following a standardized treatment algorithm. 
This strategy led to a relative reduction of cerebral hypoxia by 55% compared to SpO2 alone.114 A larger Phase III trial 
of 607 infants was conducted at 11 centers in Europe and Canada using a similar study design, although in this study, 
only infants randomized to the NIRS arm had sensors placed (ie, no blinded displays). Survival without brain injury was 
4.3% greater in the NIRS arm of the study, however this failed to reach statistical significance.115

The SAFEguarding the Brain Of Our Smallest Children (SafeBoosC) trials followed the same paradigm of the 
COSGOD trials; in the phase II SafeBoosC study, 166 infants were placed on cerebral NIRS monitors, half of which 
were blinded. For those where the monitor was visible, infants received one or more treatments according to 
a standardized treatment algorithm when cerebral saturations were persistently less than the defined threshold. The 
NIRS visible group had a threefold reduction in hypoxia burden (58 vs 16%), lower mortality (25 vs 14%), and less 
severe brain injury on ultrasound (23 vs 13%).28 A phase III trial followed using the same study design and included 
1601 infants from 70 centers in 17 countries. As with the COSGOD trial, only the standard of care plus NIRS monitoring 
group was placed on NIRS monitors in the phase III trial. The primary outcome of death or severe brain injury on 
ultrasound was not statistically different between the two groups (35.2 vs 34%, p = 0.64).29

Conclusion and the Future of NIRS in the NICU
NIRS has emerged as a beneficial non-invasive tool in the management of infants with a wide range of risk factors for brain injury 
and adverse neurodevelopmental outcome, including prematurity, HIE, and congenital heart disease. A considerable body of 
evidence supports NIRS as a monitoring tool to identify cerebral hypoxia not detected using other monitoring devices. NIRS also 
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provides a correlation between cerebral hypoxia and a range of brain injury, a mechanistic understanding of cerebral autoregula-
tion in the normal and injured state, and a method to assess response to interventions. However, despite the strength of these data, 
they have not yet translated to clinical trials showing a definitive benefit in outcomes, which must be considered in the ethical 
context of adding monitoring to guide interventions in a vulnerable population. A limitation of this review is a general lack of 
NIRS clinical trials in the neonatal population; outside of SafeBoosC and COSGOD, there have been none. As the next 
generation of clinical trials is developed, it is important for the community of researchers to reach consensus on a target 
population and target intervention to enable strong multicenter trials with rapid potential for translation to clinical practice.
We propose several strategies for further development of NIRS to improve the neurologic outcomes of neonates.

1. Future devices should incorporate multiple sources of data. This will allow real-time calculation of autoregulation 
in the clinical setting (as opposed to research calculations made after hospital discharge) and develop insights from 
multiple organ systems.

2. Clinical trials should be narrowly focused on infants at the highest risk for injury.
3. The relationship between cerebral hypoxia and brain injury requires further exploration. The definition of a simple 

threshold is likely insufficient—duration, frequency, timing, and degree of hypoxia may be more relevant and 
should be intentionally incorporated in study designs.

4. An international consensus guideline which defines a) which infants should be monitored, b) how long monitoring 
should last, and c) what goals should be accomplished (eg, avoid cerebral hypoxia) is urgently needed.

With continued investigations, further refinement of NIRS monitoring and intervention strategies will strengthen the 
benefit of its use in the clinical setting to optimize neonatal neurocritical care.
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