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Abstract: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that 

results from mutations in the TSC1 or TSC2 genes. TSC is a multisystem hamartoma syndrome 

with manifestations in the brain, heart, lungs, kidney, skin, and eyes. Neurologically, TSC patients 

may exhibit severe epilepsy, cognitive disabilities, and autism spectrum disorders. Many TSC 

patients also present with renal angiomyolipomas, polycystic kidney disease, skin lesions, and 

lymphangiomyomatosis. TSC1 and TSC2 proteins form a heterodimeric complex that serves 

to inhibit mammalian target of rapamycin (mTOR) signaling pathway through Ras homolog 

enriched in brain (Rheb). TSC1 and TSC2 receive activating or inhibitory signals from multiple 

inputs including growth factors, insulin signaling, energy and amino acid levels, and proin-

flammatory pathways, which are then integrated to regulate the activity of the mTOR pathway. 

mTOR signaling plays a critical role in regulating cell growth, transcription, translation, and 

autophagy. Animal models have shed light on certain features of TSC, but failed to recapitulate 

the disease completely and currently further research is under way to better understand this 

devastating disorder. Clinical trials with mTOR inhibitors have shown promising results for 

some features of TSC, but further research needs to be conducted to establish full indications 

for therapeutic treatment.
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Tuberous sclerosis complex
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with an incidence 

of one in 6000–10,000 live births.1,2 Currently an estimated one million individuals 

are affected worldwide, involving all racial and ethnic groups. TSC is characterized 

by hamartomas, or benign tumor-like growths, in multiple organs including brain, 

lungs, heart, kidney, skin, and eyes.3–5 TSC exhibits both variable penetrance, with 

individuals from the same family showing differential severity of specific features, 

and pleiotropy, in which individuals sharing similar genotypes have disparate clinical 

manifestations. TSC is diagnosed according to a group of major and minor diagnostic 

criteria (see Table 1), which were revised at an NIH-sponsored consensus conference in 

2004.5 Genetic testing is valuable in confirming an early diagnosis but is not  currently 

considered requisite for clinical diagnosis.

Clinical diagnostic features
Neurological manifestations
Neurological disorders are among the most common causes of morbidity in TSC 

patients. Individuals with TSC exhibit epilepsy, cognitive disabilities, and autism 
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spectrum disorders.3 Nearly 90% of TSC patients develop 

epilepsy throughout their lifetime, which is often progressive 

and intractable to medications. TSC is also the most 

 common genetic cause of infantile spasms, a devastating 

epilepsy  syndrome that affects 30%–40% newborn infants. 

Approximately 50%–60% of TSC patients exhibit behavioral 

abnormalities, cognitive disabilities, and autism spectrum dis-

orders. With increasing numbers of cases that are diagnosed 

prenatally or in early infancy, prior to seizure onset, questions 

regarding possible prophylactic anticonvulsant therapy to 

prevent development of epilepsy have emerged.6

TSC brain lesions include developmental brain mal-

formations known as cortical tubers, subependymal nod-

ules (SENs), and subependymal giant cell astrocytomas 

(SEGAs). Cortical tubers are present in 80% of TSC 

patients and are characterized histopathologically by loss 

of normal six-layered structure of the cerebral cortex. 

Tubers are composed of abnormal dysmorphic neurons, 

‘giant’ cells (GCs), and proliferative astrocytes, which have 

abnormal cellular morphology, cytomegaly, aberrant axonal 

projections, and dendritic arbors.7 Fetal tubers have been 

identified as early as 20 weeks gestation8 and it is currently 

believed that TSC1 and TSC2 mutations alter the normal 

development of neural precursors between 7 and 20 weeks.9 

A recent study utilizing magnetic resonance imaging (MRI) 

has described distinct cortical tuber types based on signal 

intensity of subcortical white matter.10 Tubers Type A were 

isointense on volumetric T1 images and had subtle hyperin-

tensity on T2-weighted and fluid-attenuated inversion recov-

ery (FLAIR); Type B were hypointense on volumetric T1, 

but hyperintense on T2-weighted and FLAIR; and Type C 

were hypointense on volumetric T1 images, hyperintense on 

T2-weighted, and heterogeneous on FLAIR.10 Furthermore, 

this study compared and correlated TSC manifestations 

in patients with different tuber types: Type A patients had 

a milder phenotype, whereas patients with predominantly 

Type C tubers had other MRI abnormalities in addition to 

tubers, such as SEGAs, and a higher probability of having 

autism spectrum disorders, a history of infantile spasms, and 

a higher frequency of epileptic seizures, compared to patients 

with Type A and Type B tubers.10

In the few reported neuropathological analyses of post-

mortem TSC brains, disruption of normal brain  architecture 

distinct from tubers included small structural abnor-

malities including heterotopias, subcortical nodules, radial 

migration lines, areas of hypomyelination, and small cortical 

dysplasias.7,11 These lesions differ from tubers in that they are 

smaller, GCs are an infrequent finding, cortical lamination 

is only mildly altered, and they do not exhibit calcification. 

Recent MRI analyses in TSC patients have confirmed subtle 

structural abnormalities outside of tubers in the cortex and 

within subcortical structures such as the thalamus and basal 

ganglia12,13 and suggest that these non-tuber brain lesions, in 

addition to tubers, may contribute to autism and cognitive 

disability in TSC.

SENs are nodular lesions typically less than 1 cm in size 

and are located on the surfaces of the lateral and third ven-

tricles. SENs are present in about 80% of TSC patients and 

are believed to be asymptomatic, ie, not related to cognitive 

deficits or epilepsy. Typically, SENs are covered by a thin 

layer of ependyma, can exhibit extensive vascularization, 

and extend into the periventricular white matter and the basal 

ganglia. These lesions develop early, in fetal life, and often 

degenerate or calcify later in life.

It is widely believed that SENs transition to form SEGAs, 

although the molecular mechanisms governing transformation 

from SEN to SEGA are unknown. SEGAs generally appear 

within the first 20 years of life. SEGAs generally exceed 1 cm 

in diameter but can grow greater than 10 cm in size. SEGAs 

extend into the lateral ventricle and often obstruct the flow of 

cerebrospinal fluid through the lateral ventricle and foramen 

Table 1 TSC clinical diagnostic criteria5

Major features Minor features

Brain Cortical tuber Cerebral white-matter  
radial migration lines

SeN
SeGA

Lungs LAM
Heart Cardiac rhabdomyoma
Kidney Renal AML Multiple renal cysts
Skin Facial angiofibromas “Confetti” skin lesions

Ungual or periungual fibroma
Hypomelanotic macules  
(three or more)
Shagreen patch

eyes Retinal nodular hamartomas Retinal achromatic patch
Other Multiple pits in dental enamel

Hamartomatous rectal polyps
Bone cysts
Gingival fibromas

Definitive TSC
Two major features
One major plus two minor features
Probable TSC
One major plus one minor feature
Possible TSC
One major feature
Two or more minor features

Abbreviations: AML, angiomyolipoma; LAM, lymphangiomyomatosis; SeGA, sub-
ependymal giant cell astrocytoma; SeN, subependymal nodule.
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of Monro, causing hydrocephalus, focal neurological deficits, 

and death. Thus in a select group of TSC patients, SEGAs 

require surgical removal. Overall, SEGAs are relatively rare 

and represent only about 1%–2% of pediatric brain tumors. 

While SEGAs can occur as sporadic tumors, most of these 

likely represent somatic mosaic TSC cases, ie, TSC gene 

mutation occurring within a restricted population of cells 

within a limited number of organ systems.

Dermatological features
Skin lesions are detected at all ages in more than 90% 

of patients and serve as important clinical diagnostic 

features in both children and adults with TSC. For example, 

hypopigmented macules (‘ash leaf spots’), are a major 

diagnostic  feature of TSC generally detected in infancy or 

early childhood. Hypopigmented macules are generally a few 

millimeters to centimeters in size and can be found anywhere 

on the face, limbs, or trunk. The Shagreen patch is an area of 

roughened skin over the lumbosacral or flank region usually 

a few centimeters in diameter, identified with increasing 

incidence after the age of 5 years. Ungual fibromas are fleshy 

growths near or beneath the nail that typically appear after 

puberty and may develop at any time in later adulthood. Facial 

angiofibromas (formerly referred to as adenoma sebaceum) 

may be detected at any age but are generally more common 

in late childhood or adolescence. They appear around the 

malar region of the face and the chin but can also be found 

within the nose and external ear.

Renal lesions
Over 80% of TSC patients have renal manifestations, includ-

ing angiomyolipomas (AMLs) and polycystic kidney disease. 

Renal AMLs are benign tumors comprised of abnormal blood 

vessels, smooth muscle cells, and adipocytes. While AMLs 

can occur sporadically in TSC patients, multiple AMLs are 

typically found in both kidneys (bilateral). It is estimated that 

AMLs can be detected in 55%–75% of adult TSC patients. 

One study of 25 boys and 35 girls reported that 75% percent 

of children with TSC had renal AMLs by age 10.5 years.14 

AMLs are detected by ultrasound, computed tomography, 

or MRI of the abdomen. Because AMLs contain abnormal 

vasculature (which often contains aneurysms), spontaneous 

and potentially life-threatening hemorrhage is an important 

complication. Current treatment of AMLs includes embo-

lization or systemic treatment with sirolimus.15,16 Rarely, 

surgery is indicated. In addition to AMLs, TSC patients may 

develop cysts, polycystic kidney disease, and renal cell carci-

nomas (RCC, see “TSC and cancer predisposition” section). 

Epithelial cysts, which can be multiple and are generally 

asymptomatic, may also be associated with hypertension 

and renal failure. Two to three percent of TSC patients carry 

a contiguous germline deletion, affecting both TSC2 and 

PKD1 genes on 16p13, resulting in polycystic kidney disease 

renal insufficiency.

Pulmonary manifestations
Lymphangiomyomatosis (also called lymphangioleiomyo-

matosis or LAM) affects women almost exclusively, and 

is characterized by widespread pulmonary proliferation of 

abnormal smooth muscle cells and cystic changes within the 

lung parenchyma (see review by Yu et al, 2010).17 LAM often 

presents clinically with dyspnea or pneumothorax during 

early adulthood. While LAM can occur as a sporadic disorder, 

the incidence of radiographic evidence of LAM among 

women with TSC is 26%–39%. Many women with radio-

graphic evidence of LAM are clinically asymptomatic.

Recent studies have focused on understanding whether 

LAM results as a consequence of metastasis of benign tumors 

from other parts of the body. Approximately 60% of women 

who have sporadic LAM also present with renal AMLs. 

Genetic analyses and fluorescent in situ hybridization studies 

of recurrent LAM following lung transplantation provide 

support for benign tumor metastasis, since cells with the same 

gene mutation were found in the transplanted allograft.18

Cardiac manifestations
Cardiac rhabdomyomas develop in approximately 50% of 

the TSC patients and may result in ventricular obstruction, 

arrhythmias, or congestive heart failure. However, in most 

TSC patients rhabdomyomas regress spontaneously with time 

and many disappear by the first year of life. As a rule, new 

rhabdomyomas do not appear in later life. In TSC patients 

with cardiac rhabodmyomas, medications are prescribed 

to treat arrhythmias and congestive heart failure, and some 

undergo surgery to relieve ventricular obstruction.

TSC and cancer predisposition
TSC is not classically defined as a cancer predisposition 

syndrome and few epidemiological studies have accurately 

assessed the cumulative risk of developing, for example, 

RCC, in TSC. RCC occurs in TSC in 1%–3% of patients and 

likely presents at an earlier age than the general population. 

Conversely, mutations in TSC1 or TSC2 have been reported 

in several sporadic cancers such as transitional cell cancer of 

the bladder,19–22 urothelial carcinoma,23,24 and neuroendocrine 

tumors.25 These tumors are not part of the diagnostic criteria 
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for TSC, and thus their relation to the pathogenesis of TSC 

is unknown.

Genetics
TSC results from mutations in TSC1 (9q34) or TSC2 (16p13.3) 

gene.26,27 TSC1 is an 8.6 kb transcript, with a total genomic 

extent of 55 kb, consisting of 23 exons, and encoding an 

1164 amino acid, 130 kD protein TSC1 (hamartin).27 TSC2 

is a 5.5 kb transcript, with a total genomic extent of 40 kb, 

 consisting of 41 exons, and encoding an 1807 amino acid, 180 

kD protein TSC2 (tuberin). Approximately 20% of affected 

TSC individuals have an inherited TSC1 or TSC2 mutation, 

while in 80%, TSC results from a sporadic mutation. Over 

1000 unique TSC1 and TSC2 allelic variants have been 

reported due to nonsense, missense, insertion, and deletion 

mutations, involving nearly all exons of TSC1 and TSC2.28–34 

A study examining the differences between patients with 

TSC1 versus TSC2 mutations, found that individuals with 

sporadic TSC1 mutations had an age range, average age, and 

median age that was similar to patients with sporadic TSC2 

mutations.34 However, TSC patients with a sporadic TSC1 

gene mutation had on average milder disease manifestations, 

in particular neurological manifestations, than patients 

with TSC2 mutations of similar age. Germline and somatic 

mutations were more common in TSC2 gene than in TSC1,34 

and a subset of patients did not have any identifiable mutation 

in TSC1 or TSC2 gene. In another study, in a cohort of 362 

patients, 276 had a definite clinical diagnosis of TSC and had 

a mutation detection rate of 85%.31 However, approximately 

15% had no identifiable mutation in either TSC1 or TSC2, 

which could have been due to large deletions, somatic mosa-

icism, or an unidentified locus. When examining the spectrum 

of TSC gene mutations, mutations in TSC2 were 3.4 times 

more common than in TSC1.31 In this study, TSC1 mutations 

and familial TSC2 mutations were associated with less severe 

phenotypes than sporadic TSC2 mutations.31 In a more recent 

study in 325 patients, mutations in either TSC1 or TSC2 genes 

were identified in 72% of de novo and 77% of familial cases, 

but 29% of patients had no mutation identified.35 The current 

estimate is that mutations in TSC1 or TSC2 genes have been 

identified in 70%–90% of TSC patients, however 10%–15% 

have no identified mutation.36

Aside from broad associations, there are few genotype–

phenotype correlations. Prenatal molecular diagnosis using 

amniocentesis and chorionic villus sampling has been shown 

to be accurate in 48/50 fetal cases at risk with TSC due to 

family history or fetal detection of cardiac rhabdomyoma on 

ultrasound, showing promise for early TSC diagnosis.37

While loss of heterozygosity has been reported for 

hamartomas in almost all TSC lesions,38–45 there is no 

 consensus on the mechanism of cortical tuber formation in the 

brain. A recent report implementing single cell sequencing 

of TSC1 and TSC2 in phosphorylated ribosomal protein S6 

(P-S6) immunolabeled GCs showed that tubers contain both 

germline and somatic mutations suggesting a mechanism of 

biallelic gene inactivation.46 In an animal model of TSC that 

is discussed in a subsequent section of this review, a second 

‘hit’ was focally induced on a heterozygous background for 

a Tsc1 mutation and resulted in cellular abnormalities remi-

niscent of tubers,47 providing support for biallelic gene inac-

tivation in tuber formation. However another group reported 

that a second mutational ‘hit’ in TSC1, TSC2, or KRAS is a 

rare event in tubers.48 Thus further investigation will need 

to be conducted to determine the molecular mechanism of 

cortical tuber formation in TSC.

Role of  TSC1 and TSC2 proteins  
in cellular function
TSC1 and TSC2 proteins have been shown to regulate mul-

tiple cellular processes in both mTOR-dependent and mTOR-

independent mechanisms. TSC1 and TSC2 proteins form a 

heterodimeric complex that serves as an upstream regulator 

of the mTOR pathway. TSC2 acts as a GTPase-activating 

protein towards Ras homolog enriched in brain (Rheb), 

which results in inhibition of mammalian target of rapamy-

cin (mTOR) signaling (Figure 1).49 TSC1 protein stabilizes 

TSC2 by binding to it and prevents its ubiquitination.50,51 

mTOR is an evolutionarily conserved serine/threonine 

kinase that integrates signals from various inputs including 

growth factors, nutrients, energy, and stresses, to regulate 

multiple cellular processes such as growth, transcription, 

translation, and autophagy (Figure 1).50,52,53 mTOR is found 

in two functionally distinct complexes: mTOR complex 1 

(mTORC1), which is comprised of mTOR, raptor (regulatory 

associated protein of mTOR) and PRAS40, and mTORC2, 

which is made up of mTOR, rictor (rapamycin insensitive 

component of mTOR), mSin1, and Protor1/2.54

mTORC1 regulates ribosome biogenesis, transcription, 

translation, and autophagy52 via phosphorylation of several 

downstream effector proteins including S6K1, S6, and 

4E-BP1.55 Loss of function mutations in TSC1 or TSC2 lead to 

aberrant activation of mTORC1 signaling, resulting in increased 

phosphorylation of S6K1, S6, and 4E-BP1.55 Notch signal-

ing is an important regulator of progenitor cell self-renewal, 

proliferation, differentiation, and survival.56 Reduction in 

Notch1/Jagged1 signaling in vivo decreases the number of  
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Figure 1 TSC1-TSC2 signaling pathway. TSC1 and TSC2 proteins form a heterodimeric complex that serves as an inhibitor of mammalian target of rapamycin (mTOR) 
signaling pathway through GTPase Rheb. mTOR forms two distinct complexes with other proteins, among them raptor, specific to mTOR complex 1 (mTORC1) and rictor, 
specific to mTORC2, to regulate different aspects of cellular function, including transcription, translation, proliferation, differentiation, and autophagy. TSC1 and TSC2 
integrate signals from various inputs upstream, among them insulin signaling, energy status, inflammatory, and Wnt/b-catenin signaling, and regulate mTOR pathway activity 
accordingly.
Abbreviations: 4e-BP1, eukaryotic translation initiation factor 4e-binding protein 1; Akt, also known as protein kinase B (PKB); AMPK, 5’-adenosine monophosphate-
activated protein kinase; Cdc42, Cell division control protein 42 homolog; a Rho family GTPase; Grb10, growth factor receptor-bound protein 10; GSK3, Glycogen synthase 
kinase 3; iKKβ, ikappaB kinase beta; iRS1, insulin receptor substrate 1; mTORC1, mTOR (mammalian target of rapamycin) complex 1; mTORC2, mTOR (mammalian 
target of rapamycin) complex 2; Notch, Notch receptor; Notch signaling pathway; p27kip1, cyclin-dependent kinase inhibitor p27; p27 kinase inhibitory protein 1; Pi3K, 
Phophotidylinositol-3-kinase; PKCα, Protein kinase C alpha; Rac1, Ras-related C3 botulinum toxin substrate 1; a Rho family GTPase; Raptor, Regulatory-associated protein 
of mTOR; Rictor, Rapamycin-insensitive component of mTOR; Rho, Rho family GTPase; S6, Ribosomal protein S6; S6K1, Ribosomal protein S6 kinase 1 (p70S6K1); SGK1, 
Serum and glucocorticoid-inducible kinase 1; STAT3, Signal transducer and activator of transcription 3; TBC1D7, TBC1 domain family, member 7; TSC1, Tuberous Sclerosis 
protein 1 (Hamartin); TSC2, Tuberous Sclerosis protein 2 (Tuberin); ULK1/ATG13, Unc-51-like kinase 1; autophagy-related 13 homolog.

proliferating cells in postnatal subventricular zone.57 A recent 

study showed that mTOR regulates differentiation through 

STAT3-p63-Jagged1-Notch pathway in TSC fibroblast, 

LAM, and mouse kidney tumor cells.58 A recent phospho-

proteome analysis suggested that mTORC1 may actually 

modulate phosphorylation of several hundred proteins thus 

positioning TSC1:TSC2:mTOR as a pivotal signaling node 

in many types of undifferentiated and differentiated cells.59,60 

Rapamycin is a macrolide antibiotic that is a highly specific 

mTORC1 inhibitor, functioning through FKBP12.61,62

Much less is known about mTORC2 signaling and func-

tion, but its effectors include Akt, serum and glucocorticoid-

inducible kinase 1 (SGK1), and PKCα.63,64 mTORC2 has 

been shown to regulate actin cytoskeletal organization and 

hyperactivated mTORC2 signaling results in altered cell 

motility in endothelial cells and glioma cell lines,65,66 although 

the mechanisms are unknown. mTORC2 is relatively insensi-

tive to immediate direct inhibition by rapamycin;53 however, 

long-term treatment in mammalian cells can prevent de 

novo mTORC2 assembly.67 Small molecule inhibitor Torin1 

has been shown to inhibit both mTORC1 and mTORC2 

signaling.68 While TSC1-TSC2 complex serves an inhibi-

tory role on mTORC1 signaling, some studies have reported 

opposite effects on mTORC2, and showed that TSC1-TSC2 

is required for its proper activation. A study in renal AMLs 

and Tsc2+/- mouse kidney tumors has reported that while 

mTORC1 biomarkers are increased in TSC tissues, mTORC2 

effectors are attenuated.69–71 However, further investigation 
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needs to be conducted to understand mTORC2 signaling 

dysregulation in TSC.

Tsc1 protein has been found to interact with the 

ezrin-radixin-moesin family of actin-binding proteins.72 

Another binding partner of TSC1, known as TBC1 domain 

family, member 7 (TBC1D7), may play pivotal roles in 

regulating the GAP activity effects exerted on Rheb. TSC1 

stabilizes TBC1D7, and overexpression of TSC1 results in 

increased levels of TBC1D7 and its knockdown in reduced 

levels of TBC1D7.73 Knockdown of TBC1D7 using siRNA 

resulted in inhibition of cell growth in lung cancer cells, 

whereas transplantation of COS-7 cells overexpressing 

TBC1D7 into BALB/cAJcl-nu/nu mice resulted in tumor 

development.73 Thus future investigation needs to be con-

ducted into the role of TBC1D7 in regulation of mTOR 

pathway and TSC pathogenesis. Tsc2 has been shown to 

directly bind to p27kip1 and regulates its cellular localiza-

tion and stability by preventing degradation by SCF-type E3 

ubiquitin ligase complex.74–79 p27kip1 is a cyclin-dependent 

kinase inhibitor of G
1
 cell cycle progression and regulates 

proliferation. Akt phosphorylates Tsc2 on Ser939 and 

Thr1462, and thus controls its nuclear and cytoplasmic 

localization.74 In G
0
 arrested cells, Akt is downregulated and 

majority of Tsc2 is localized to the nucleus, however, when 

the cells re-enter cell cycle, Akt is upregulated, Tsc2 is phos-

phorylated, and in turn is primarily found in the cytoplasm.74 

Interestingly, S6K1 is found in both the nucleus and cyto-

plasm, but when it is phosphorylated (Thr389) by mTORC1, 

it becomes predominantly localized in the nucleus.80 This 

shows that phosphorylation events in the mTOR signaling 

pathway affect protein cellular localization.

Tsc1 knockout (KO) or Tsc2 shRNA knockdown in hip-

pocampal pyramidal neurons results in enlarged cell somas 

and altered dendritic spine morphology that were dependent 

on cofilin Ser3 phosphorylation.81 These findings implicated 

regulation of actin cytoskeletal dynamics as the underly-

ing molecular mechanism for aberrant neuronal structural 

changes following loss of either Tsc1 or Tsc2.81 A recent study 

utilizing scratch-induced polarization “wound healing” assay 

in Tsc2-/- fibroblasts demonstrated that Tsc2 has a critical 

role in cell spreading, polarity, and migration by regulating 

Cdc42 and Rac1 GTPase activation.82 Rapamycin treatment 

rescued the cell polarization defect in Tsc2-/- fibroblasts and 

increased the activation of Cdc42 and Rac1, thus demonstrat-

ing mTORC1-dependence.82 mTORC2 has been shown to 

regulate the actin cytoskeleton and its deactivation by rictor 

shRNA knockdown leads to stress fiber formation and delo-

calized paxillin (an adapter protein present at the junction 

between actin cytoskeleton and plasma membrane) staining, 

which is phenotypically similar to Tsc2-/- HeLa cells.83 

Further studies will need to be conducted in order to deter-

mine whether regulation of cell migration by Tsc1-Tsc2 is 

through mTORC1 or mTORC2 signaling pathways.

Animal models of tuberous sclerosis 
complex
Animal models have provided invaluable insight into 

TSC disease pathogenesis and cellular pathophysiology. 

Early studies in Drosophila showed that inactivating muta-

tions in dTsc1 and dTsc2 causes indistinguishable phenotypes 

with deregulation of various processes, including increased 

cell size and enhanced cell proliferation.84–87 These findings 

led to the identification of the link between dTsc1, dTsc2, 

and insulin growth factor signaling, and ultimately to the 

role of mTOR in TSC. Since then, the Eker rat, which has 

a  spontaneous mutation in the Tsc2 gene (an insertion that 

results in production of abnormal larger protein), has been 

described as an autosomal dominant hereditary TSC animal 

model with predispositions to renal adenoma and carci-

noma.88,89 Eker rats develop kidney cystadenoma lesions by 

4 months, and pituitary adenomas, uterine leiomyomas, and 

leiomyosarcomas, and splenic hemangiosarcomas between 

14 months and 2 years.90,91 Loss of heterozygosity is seen in 

the majority of these tumors and established Tsc2 as a tumor 

suppressor gene.

More recently, transgenic strategies in mice have resulted 

in the generation of several different Tsc1 and Tsc2 KO 

models (see Table 2 for details). Tsc1 or Tsc2 KO (Tsc1-/-, 

Tsc2-/-) results in embryonic lethality. Specifically, Tsc1-/- 

mice die at E9.5–13.5 and have developmental delay, liver 

hypoplasia, neural tube closure defects, and poor abdominal 

organ development.92–94 Tsc2-/- mice die earlier than Tsc1-/- 

(between E9.5–12.5) and also have developmental delay, 

neural tube closure defects, exencephaly, liver hypoplasia, 

poor development of abdominal organs, and thickened 

myocardia.95–98

Heterozygote Tsc1+/- and Tsc2+/- mice develop bilateral 

renal cystadenomas, liver hemangiomas, lung adenomas 

and extremity angiosarcomas by 15 months of age and 

lesion development is milder in Tsc1+/- mice compared 

to Tsc2+/- mice92–98 (see Table 2; for a detailed review 

see Kwiatkowski, 201099). Rapamycin and other related 

mTORC1 inhibitors have been shown to be effective in 

blocking tumor development in Tsc1+/- and Tsc2+/- mouse 

models, similar to the results seen in the Eker rat model.100–102 

Furthermore, rapamycin treatment resulted in a decrease in 
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Table 2 TSC mouse models

Gene Knockout condition Phenotype

Tsc1 Neo insertion and deletion of exons 6–892 KO: embryonic lethal (e10.5–11.5) due to neural tube closure 
defects, exencephaly, abnormal morphology of myocardial cells, 
developmental delay, liver hypoplasia
HET: kidney cysts and cystadenomas, liver hemangiomas, tail 
hemangioma, uterine leiomyoma/leiomyosarcoma

Deletion of exons 17–1893 KO: embryonic lethal (e9–13.5) due to liver hypoplasia; 
developmental delay of approximately 1 embryonic day compared 
to littermates, poor development of abdominal organs, enlarged 
heart which was shifted inferiorly, pericardial effusions, circulatory 
failure due to anemia
HET: bilateral kidney cystadenomas, liver hemangiomas (females: 
higher % affected, higher average grade; compared to males), 
forepaw angiosarcoma; premature death (higher in females than 
in males)

Neo cassette insertion and deletion of exons 6–894,110 KO: embryonic lethal (e10.5–12.5), developmental delay, 
exencephaly, abnormal vacuolation of myocardial cells
HET: kidney lesions (cysts, cystadenomas, solid carcinomas), 
metastatic renal cell carcinomas, liver hemangiomas, premature 
death; severity of phenotype was dependent on genetic 
background; impaired hippocampal-dependent learning and 
impaired social behavior

Conditional GFAP-Cre (target: astrocytes), exons 17–18105 cKO: megalencephaly, epilepsy, astrocytic proliferation, aberrant 
hippocampal neuronal organization, premature death

Conditional Synapsin1-Cre (target: neurons), exons 17–18103 cKO: spontaneous seizures (10%), neuropathological 
abnormalities (ectopic, enlarged, aberrant neurons), reduced 
myelination, delayed developmental beginning

Conditional Synapsin1-Cre (target: neurons), exons 17–18104 cKO: bicuculline-induced epileptiform discharges, 
hyperexcitability, tonic spasms leading to death

Conditional Nestin-Cre (target: neural progenitors), exons 17–18114 cKO: structural abnormalities resembling features of SeNs and 
SeGAs in the lateral ventricle

Conditional Nestin-Cre (target: neural progenitors), exons 17–18115 cKO: enlarged brains, early lethality due to hypoglycemia, poor 
mother-pup interaction

Conditional Emx1-Cre (target: neural progenitors of the forebrain), 
exons 17–18106

cKO: enlarged brain size, enlarged cells, decreased myelination, 
premature death

Focal deletion of exons 17–18 in brain on background of Tsc1fl/mut 47 Focal brain KO: ectopic cytomegalic and multinucleated 
neurons, lower seizure threshold

Tsc2 eker rat; spontaneous insertion mutation88–91,116–118 
(d)

Predisposition to kidney cystadenomas and renal cell carcinomas, 
pituitary adenoma, uterine leiomyomas, leiomyosarcomas, splenic 
hemangiosarcomas, some brain lesions

Neo cassette insertion into exon 295 
(d)

KO: embryonic lethal (e9.5–12.5) due to liver hypoplasia; 
exencephaly, developmental delay of 1–2 embryonic days 
compared to littermate, poor development of abdominal organs, 
heart shifted inferiorly, pericardial effusions, circulatory failure due 
to anemia
HET: kidney tumors (renal cysts and adenomas), renal cell 
carcinoma, liver hemangiomas, lung adenomas, and foot, tail, lip 
angiosarcomas; deficits in hippocampal-dependent learning

Neo cassette insertion into exon 2 and deletion of exons 2–596 
(d)

KO: embryonic lethal (e9–12.5) due to neural tube closure 
defects, exencephaly, abnormal thickened myocardia
HET: multiple renal cell carcinomas, liver hemangiomas

Neo cassette insertion into exon 1, deletion of exons 2–497 
(d)

KO: embryonic lethal (e9.5–17); neural tube closure defects, 
developmental delay
HET: kidney cysts and tumors

Deletion of exon 3 (hypomorphic allele, del3)98 KO: embryonic lethal (e9.5–13.5; longer survival compared 
to previous Tsc2 KO models95,96), developmental delay, liver 
hypoplasia, poor/deficient hematopoiesis, hemorrhage in multiple 
sites (heart, liver)

(Continued)
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Table 2 (Continued)

Gene Knockout condition Phenotype

HET: kidney cysts and cystadenomas; phenotype less severe than 
that of previous Tsc2 KO models95,96

Conditional insulin2-Cre (target: pancreatic β-cells), exons 3–4119 cKO: hypoglycemia and hyperinsulinemia (age 4–28 weeks); 
hyperglycemia and hypoinsulinemia (after age 40 weeks)

Conditional hGFAP-Cre (target: radial glial progenitor cells),  
exons 2–4 97,107

cKO: megalencephaly, cellular cytomegaly, cortical and 
hippocampal lamination defects, astrocytosis, abnormal 
myelination, premature death

Conditional GFAP-Cre (target: astrocytes), exons 2–4108 cKO: megalencephaly, hippocampal neuronal disorganization, 
astrocytic proliferation, premature death (phenotype more severe 
than Tsc1 GFAP-Cre cKO120)

Dominant negative transgene (delta RG)109,121 fibrovascular collagenoma in dermis, subpial external granule cells 
in cerebellum; deficits in social behavior and rotarod learning

Abbreviations: cKO, conditional knockout; HeT, heterozygous; KO, knockout; SeGA, subependymal giant cell astrocytoma; SeN, subependymal nodule; TSC, tuberous 
sclerosis complex.

the size of renal and pituitary tumors and improved survival, 

however, evidence of drug resistance was reported in a small 

percentage of lesions after long-term therapy.101

Several conditional knockout (cKO) TSC mouse models 

were generated subsequently. Neuronal Tsc1 cKO in mice 

(Tsc1fl/fl; Synapsin1-Cre) results in spontaneous seizures 

in 10% of mice, ectopic, enlarged, and aberrant neurons, 

reduced myelination,103 hyperexcitability and tonic spasms 

leading to premature death.104 Mice with Tsc1 cKO in astro-

cytes (Tsc1fl/fl; GFAP-Cre) have megalencephaly, epilepsy, 

increased astrocytic proliferation, aberrant hippocampal 

organization, and die prematurely.105 Tsc1 cKO in the fore-

brain (Tsc1fl/fl; Emx1-Cre) results in enlarged brain size and 

cytomegalic cells within the cerebral cortex, and the mice die 

by postnatal day 25.106 Recently, a new model of focal Tsc1 

KO in a subpopulation of progenitor cells on a heterozygous 

Tsc1 background was described and the mice show aberrant 

lamination of the cerebral cortex, cytomegalic multinucleated 

neurons in the intermediate zone (similar to subcortical white 

matter in humans), and lower seizure threshold, providing 

support for biallelic gene inactivation in the brain.47

Radial glia-specific Tsc2 cKO mice (Tsc2fl/ko; hGFAP-Cre) 

have many of the TSC features, including megalencephaly, 

cellular cytomegaly, and cortical lamination defects.107 Tsc2 

cKO in astrocytes (Tsc2fl/fl; GFAP-Cre) results in a more 

severe epilepsy phenotype than Tsc1 cKO (Tsc1fl/fl; GFAP-

Cre), with an earlier onset and higher seizure frequency that 

were correlated with higher mTORC1 activation.108 These 

findings support the theory that mutations in Tsc2 gene 

result in a more severe phenotype than mutations in Tsc1. 

Another Tsc2 animal model that expresses a dominant nega-

tive Tsc2 transgene shows mild but statistically significant 

impairments in social behavior and rotarod motor learning, 

recapitulating some of the behavioral abnormalities observed 

in TSC patients.109 The dominant negative Tsc2 is able to bind 

Tsc1, but the mutation affects its GAP domain and rabaptin-5 

binding motif.109

Tsc1+/- neurons with a single deleted copy of Tsc1 

exhibit morphological changes characteristic of Tsc1- and 

Tsc2-deficient neurons, suggesting that haploinsufficiency 

rather than a complete lack of either Tsc gene could con-

tribute to certain aspects of TSC neuropathogenesis.81 While 

heterozygote Tsc1+/- and Tsc2+/- mice do not exhibit gross 

brain abnormalities, they have cognitive and social behavior 

deficits and impaired hippocampus-dependent learning.109–111 

Tsc2+/- mice have also been shown to have aberrant retino-

geniculate projections with EphA receptor-dependent axon 

guidance in the visual system.112 This suggests that while 

there may be no gross apparent brain architectural changes 

due to Tsc1 or Tsc2 haploinsufficiency, there could be altera-

tions in network circuitry.

Rapamycin treatment has been shown to be effective 

in brain abnormalities in TSC mouse models. Rapamycin 

treatment started prior to the onset of seizures prevented 

the development of epilepsy in Tsc1 cKO mice (Tsc1fl/fl; 

GFAP-Cre) and improved survival.113 If the treatment was 

stopped, however, the neurologic phenotype subsequently 

developed with a delay of several weeks, including the 

histopathologic abnormalities and epilepsy.113 When treat-

ment was started after epilepsy onset, rapamycin reduced 

the seizure frequency, thus supporting mTOR’s role in early 

and late epileptogenesis, but its effects were not as robust as 

when rapamycin was begun early.113 Rapamycin treatment in 

heterozygous Tsc2+/- mice reversed the learning abnormali-

ties, thus demonstrating its potential in treatment of cognitive 

deficits in TSC.111
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Recently, in a model of Tsc1 cKO in the postnatal sub-

ventricular zone using a tamoxifen-inducible Nestin-CreERT2 

mouse line, tamoxifen was administered at postnatal day 7 or 

1 month, resulting in enlarged brains at 3 and 6–7 months, but 

had no body weight differences.114 Furthermore, Tsc1-Nestin 

cKO mice had hydrocephalus, an enlarged hippocampus, and 

small nodular structures and tumors were present near the 

 interventricular foramen, reminiscent of SENs and SEGAs 

seen in TSC patients.114 Most cells in these tumors had 

enlarged somas and stained positive for mature neuronal mark-

ers MAP2 and NeuN or astrocytic markers S100β and GFAP, 

but were low in Ki67 and did not exhibit  multinucleation.114 

Another model of Tsc1 Nestin-Cre cKO exhibited normal 

body weight and organ development, but an enlarged head, 

and the mice died within 24 hours after birth with lethality 

being most likely due to malnutrition, hypoglycemia, and 

hypothermia.115 The mutant brains grossly showed normal 

brain architecture, but the cerebral cortex was especially 

enlarged.115 Single rapamycin dose (1 mg/kg) was adminis-

tered subcutaneously to the pregnant dam between embryonic 

days E15–17, and significantly increased the survival of the 

mutant mice up to postnatal day 20.115 This study strengthens 

the potential of early rapamycin therapy in TSC.

In summary, TSC animal models have taught us a lot 

about TSC pathophysiology in certain organ systems. 

The existing TSC animal models have, however, failed to 

recapitulate all lesions seen in TSC human patients. For 

example, cortical tubers and LAM lesions have not been 

completely modeled in animal models. Further investiga-

tion and better TSC animal models will be pivotal in the 

understanding of the disease mechanisms leading to TSC 

pathogenesis.

Clinical management strategies for TSC
Up until 2007, treatment of TSC was largely symptomatic 

and not specific for the cell signaling pathways activated 

in TSC. Thus, anti-epileptic drugs and epilepsy surgery 

remain the mainstays of epilepsy therapy. Embolization or 

surgery is used for renal lesions, and oxygen supplementa-

tion can provide symptomatic relief for LAM. However, 

an initial clinical trial assessed the efficacy of sirolimus in 

reducing the volume of renal AMLs and showed improv-

ing pulmonary function tests in LAM.122 A pivotal find-

ing of this trial was that while AMLs did in fact show 

diminished volume after 12 months of rapamycin treat-

ment, in the ensuing 12 months during which rapamycin 

was discontinued, there was re-growth of AMLs in many 

patients.122 Phase II clinical trials with sirolimus showed 

that patients treated for 52 weeks had regression of kidney 

AMLs, SEGAs, and liver AMLs.123 Most recently, the 

mTOR inhibitor everolimus showed efficacy in reducing 

SEGA volume after 6 months of treatment.124  Furthermore, 

there was modest reduction in  seizure frequency in nine 

out of sixteen TSC patients with seizures, but seizure  

frequency did not change in six individuals, and worsened 

in one patient.124 These studies provided clear evidence that 

modulation of the mTOR pathway in TSC could benefit 

some patients and thus opened the conceptual door for 

syndrome specific therapy in TSC. Everolimus is the first 

mTOR inhibitor that has been FDA approved for treatment 

of SEGAs associated with TSC.125 Recently, there has also 

been a case report of regression of cardiac rhabdomyoma in 

a TSC patient 13 months after everolimus treatment.126 While 

cardiac rhabdomyomas have been shown to regress naturally, 

the time course in this specific patient who was diagnosed 

in utero and had no significant changes for the next 5 years, 

suggests that everolimus treatment might have played a role 

in the regression and near resolution of the rhabdomyoma.126 

These results support the role of mTOR involvement in 

TSC pathogenesis and demonstrate the potential of mTOR 

inhibitors as therapeutic treatments. However, a clear and 

overarching clinical challenge associated with the use of 

mTOR inhibitors is the need for continued therapy to prevent 

recurrence of lesion growth. The modest or non-effect of 

everolimus on epilepsy necessitates further investigation 

into the role of mTOR in epileptogenesis in TSC.

Conclusion
In summary, human and animal studies have provided 

insight into many features of TSC pathogenesis, but certain 

challenges remain. TSC is a multisystem disorder, with 

distinct organ-specific manifestations. The Eker rat and 

Tsc1 and Tsc2 cKO mouse models have been instrumental 

in defining certain aspects of TSC pathogenesis, but have 

failed to fully recapitulate all features seen in TSC patients. 

Specifically, animal models of TSC have provided valuable 

insight into mTOR signaling as a target pathway and pro-

vided a pivotal platform to test mTOR inhibitors for renal 

and neurological features. These preclinical studies dem-

onstrated that mTOR inhibition with rapamycin resulted in 

better outcomes when begun early, suggesting that mTOR 

inhibitors be considered as preventative therapies. These 

studies have further guided clinical trials for the use of 

mTOR inhibitors in TSC patients and have been shown 
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to be effective for renal and liver AMLs, LAM, SEGAs, 

cardiac rhabodmyomas, and possibly, epilepsy. However, 

the partial efficacy and symptom recrudescence following 

cessation of treatment merits further investigation into the 

TSC pathogenesis. Since mTOR signaling has multiple 

feedback loops, it would be important to examine the down-

stream targets of mTOR and whether its inhibition results 

in activation of compensatory mechanisms that could lead 

to a more severe phenotype. Future genetic studies and new 

animal models that recapitulate TSC features more closely 

will provide invaluable insights into TSC pathogenesis in 

different organ systems.
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