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Abstract: Rheumatoid arthritis (RA) is a chronic, incurable, multisystem, inflammatory disease characterized by synovitis and extra- 
articular features. Although several advanced therapies targeting inflammatory mechanisms underlying the disease are available, no 
advanced therapy is universally effective. Therefore, a ceiling of treatment response is currently accepted where no advanced therapy 
is superior to another. The current challenge for medical research is the discovery and integration of predictive markers of drug 
response that can be used to personalize medicine so that the patient is started on “the right drug at the right time”. This review article 
summarizes our current understanding of predicting response to anti-rheumatic drugs in RA, obstacles impeding the development of 
personalized medicine approaches and future research priorities to overcome these barriers. 
Keywords: genetics, omics, biomarkers, machine learning, precision medicine

Introduction
Rheumatoid arthritis (RA) is a chronic multisystem inflammatory disease affecting up to 1% of the adult population.1 The 
disease is characterized by synovitis, which leads to joint erosions and disability, and is associated with a reduced life 
expectancy of 5 years.2 Treatment is based upon a treat-to-target approach, with rapid escalation of therapy when the 
target is not achieved.3 Therapies that target the underlying pathogenic mechanism of disease, such as the TNF inhibitor 
(TNFi) adalimumab, have been available since 2002. Since the introduction of the first biologic disease modifying anti- 
rheumatic drug (bDMARD) targeting TNFα, there has been an exponential growth in the number of targeted RA 
therapies. Despite the incredible technological progress made in drug development in RA, no disease modifying anti- 
rheumatic drug (DMARD) is universally effective and TNFi fail to attain remission in up to 70% of patients.4 Current 
RA management is therefore based on a “trial and error” approach where time on an ineffective medication leads to pain, 
increased healthcare costs and disease progression.5

RA is a heterogenous disease, but its current management assumes that there are common pathogenic pathways that can 
be targeted and treated in all patients. There now exists an armamentarium of drugs targeting different aspects of the immune 
system and, with such a vast choice of treatment, personalized medicine approaches are required to guide therapeutic 
decisions. Rather than a “one size fits all”, personalized medicine is the targeted treatment of disease based on the individual 
characteristics of the patient.6 Personalized medicine recognizes that RA is heterogenous and that patients are individuals 
with a unique biomarker signature that, combined with lifestyle and clinical factors, may be a predictive biomarker for 
treatment response to enable management of patients according to the “right drug, right patient, right time”.7

RA is a disease that is ideal for personalized medicine discovery research. As a common disease that affects 
1% of the population, it is amenable to the recruitment of large cohorts of patients for biomarker discovery 
studies. RA has a heritability of ~60%,8 with >120 single nucleotide polymorphisms (SNPs)9 associated with 
disease susceptibility. Progress in understanding the genetics of RA has improved our knowledge of its hetero-
geneity and the underlying disease mechanisms. For example, HLA is responsible for 18% of the genetic variance 
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of heritability of anti-citrullinated protein antibodies (ACPA)-positive disease but only 2% for ACPA-negative 
disease.10 This greater understanding of the genetic architecture of RA may assist with pharmacogenomic 
biomarker discovery.

It is likely that, rather than one RA biomarker that can predict response, and thus aide personalized medicine 
approaches, a panel of biomarkers exists, with data that is integrated from different sources, eg, genomic, clinical 
and lifestyle, which can predict drug response. The discovery of predictive biomarkers or a biomarker signature of 
a drug response would lead to the use of the most effective therapy, a treatment strategy that is more cost-effective 
compared to time on an ineffective drug. In the future it is hoped that a patient’s unique biomarker signature 
would be measured and the most clinically effective treatment targeting the underlying pathogenesis would be 
started early in the course of the disease to prevent joint damage and disability (Figure 1).

The aim of this review article is to summarize the current understanding of predictors of response to anti-rheumatic 
drugs in RA, obstacles impeding the development of personalized medicine approaches and future research priorities that 
may overcome these barriers.

Clinical Factors Predicting Drug Response
Age
The incidence of RA increases with age, with a peak incidence of 75–84 years.11,12 Older age has been associated with 
a reduced response to combination conventional disease-modifying anti-rheumatic drugs (csDMARDs)13 and TNFis14–17 in 
several studies. One of the largest of the studies was a prospective observational cohort study by Atzeni et al,15 which sought 
to investigate predictors of response to TNFi therapy in established RA patients (n=1300) with at least moderate disease 
activity (DAS-28 >3.2). The study analyzed patients starting TNFis available at the time and showed that, whilst younger age 
was associated with a higher probability of a good EULAR response, its effect was, however, modest (OR=0.98, p=0.002).

Biological Sex
Several observational and clinical trials have consistently demonstrated sex differences that predict drug response, with 
female sex associated with reduced response to combination csDMARDs13 and TNFi.13,15–21 The prospective observa-
tional British Society for Rheumatology Biologics Register analyzed 2879 RA patients commencing etanercept or 

Figure 1 Illustration of how personalized medicine approaches using biomarkers and clinical predictors of treatment outcome can be applied to select a therapeutic target 
with an increased likelihood of response for the individual patient. 
Abbreviations: TNFi, Tumor Necrosis Factor inhibitor; IL-6, Interleukin-6; JAK/STAT, Janus kinase/signal transducer and activator of transcription proteins.
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infliximab and showed that females were 42% less likely to experience EULAR remission by six months compared to 
males (OR=0.58; 95% CI: 0.39–0.87).

Smoking
Smoking is associated with a two-times increase in the risk of developing RA in people who have a 20-pack per year 
history compared with non-smokers.22 Several studies have shown that smokers experience worse outcomes compared to 
non-smokers to methotrexate,23 infliximab19 and combination therapy18 but, interestingly, not rituximab.24 The reason for 
worse clinical outcomes in smokers is not fully understood but smoking is associated with increased levels of pro- 
inflammatory cytokines such as TNFα25 that may, in part, explain why TNFi therapy is less effective in smokers 
compared to non-smokers whilst there appears to be no modifying effect to B-cell depletion therapy.

Disease Activity
High disease activity is associated with poor clinical outcomes, including radiographic progression.26 High baseline 
disease activity is associated with improved response to bDMARDs, including tocilizumab.14,27,28 It has been hypothe-
sized that the improved response in patients with high disease activity is due to the significant degree of biological 
inflammation that is amenable to pro-inflammatory cytokine inhibition.

BMI
Obesity has been shown to worsen clinical outcomes in patients commencing DMARD therapy.18,29 The results of the 
Swedish pharmacotherapy trial (SWEFOT) of early RA patients (n=260) showed that obesity was associated with worse 
disease activity, functional impairment and pain following DMARD therapy at 24 months compared with non-obese 
patients. Additionally, obese patients were five times less likely to be in remission at 24 months (ORadj=5.2; 95% CI: 
1.8–15.2). There are several potential mechanisms underlying poor clinical outcomes in this patient group. Adipose tissue 
is biologically active and obesity is associated with an increase in pro-inflammatory cytokines, including TNFα and IL- 
6,30 as well as an increase in load of weight-bearing joints. Additionally, raised BMI has been associated with reduced 
bDMARD drug levels through reduced absorption and increased drug clearance.31–33 It may be postulated, therefore, that 
switching obese patients to weight-based therapies such as intravenous (IV) TOC to personalize therapy may lead to 
improved disease control. The MUSASHI study by Ogata et al analyzed the efficacy of tocilizumab in patients who 
switched from weight-adjusted IV tocilizumab to subcutaneous tocilizumab and showed that, whilst serum tocilizumab 
levels decreased, clinical remission, measured by DAS(ESR)-28, was maintained for the majority of patients; only 9% 
experienced a recurrence.33 It is not known, however, if this is true for other bDMARDs.

Non-Adherence
Non-adherence is a health behavior that is more common than previously thought, with approximately 1 in 4 patients 
being non-adherent to methotrexate34 and subcutaneous bDMARDs,35 which is associated with poor treatment response. 
Clinicians are often unaware of adherence behavior, which can be associated with psychological factors. Directly 
observed therapy is an intervention whereby a healthcare worker observes medication administration. Whilst typically 
used for patients with tuberculosis,36 several bDMARDs are available as IV preparations that require healthcare worker 
administration and can be a treatment strategy that guarantees therapy has been administered.

Summary of Clinical Prediction Guiding Personalized Medicine Approaches
Overall, clinical characteristics remain a modest predictor of response, at best. There are, however, some consistent 
findings but many are inherent to poor prognostic predictors of RA progression rather than treatment response per se. 
Additionally, it remains unclear if clinical predictors of a particular therapeutic agent would be similar to an alternative 
drug with a different mechanism of action that could help to guide personalized therapy. Further real-world studies are 
required to develop clinical risk prediction tools to individual drugs that can help guide personalized therapy in the 
future.
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Omics
Considerable efforts made to elucidate the molecular pathways that underpin a large spectrum of complex human 
diseases have led to a rapid explosion of various “omics” technologies. These include genomics, epigenomics, tran-
scriptomics, proteomics, metabolomics and other areas. New methodologies have produced unprecedented resolution and 
cost-efficient technologies allowing for the generation of large-scale data. We discuss the current landscape in RA for the 
omics fields and how they have been applied to try and identify indicators of treatment response to pave the way to 
personalized medicine approaches. The most prominent findings from the literature are summarized in Figure 2.

Pharmacogenomics
Pharmacogenomics is the study of genomic variation and drug response.53 The use of pharmacogenomics to personalize 
therapeutic drug decisions offers great potential. Our genetics are fixed from birth and can therefore be measured at any 
time whilst remaining unique, thus offering the potential to truly personalize therapy. Since the human genome was first 
sequenced in 2003 by the Human Genome Project the cost of sequencing has significantly reduced.

Massey et al explored the heritability of TNFi response from a large (n=1752) UK RA patient cohort enrolled on an 
observational cohort study.54 The study showed that change in swollen joint count (SJC) and erythrocyte sedimentation 
rate (ESR) were heritable (restricted maxiumum likelihood [REML] estimates of 0.48 and 0.39, respectively); however, 
the more subjective measures of tender joint count (TJC) and patient global assessment (visual analog scale [VAS]) that 
can be inflated by non-inflammatory conditions55 were not (REML estimates of 0.00 and 0.00, respectively). Following 
the Massey et al study, a two-component DAS-28 was developed which excluded the TJC and VAS and could better 

Figure 2 Summary of potential biomarker candidates for treatment response in RA, as identified in the literature. Rather than an exhaustive review of all previously 
associated predictors of treatment response, this is an overview. References: Genetics: SLC19A1,37–39 IL10,40,41 PDE3A-SLCO1C1,42,43 PDZD2,44,45 PTPRC,46–49 

CD84,50,51 CD69.28,52 References for transcriptomics, proteomics, metabolomics and epigenetics are shown in corresponding tables.
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predict radiographic progression.56 A study by Gilani et al showed that when utilizing the 2C-DAS28 more single 
nucleotide polymorphisms (SNPs) were replicated with TNFi response compared to the 4C-DAS-28.57 These observa-
tions suggest that development of clinical phenotypes that more closely resemble disease activity may aid discovery of 
pharmacogenomic biomarkers, leading to stronger associations that could be investigated as part of a stratified clinical 
trial.

SNP associations with risk of developing severe joint damage or response to B-cell depletion therapy have been 
discovered in key genes that are targets for therapy such as the IL-6R58 and IL-6 genes,59 demonstrating the power of 
pharmacogenomics to identify potential treatment targets. To date, genome-wide association studies (GWAS) have 
identified >30 SNPs associated with TNFi response.40,42,44,46,50,54 One of the strongest effect sizes for being a TNFi non- 
responder was seen in the rs6028945 SNP of the MAFB gene (p=6x10−3; OR: 11.2),40 a transcription factor regulating 
macrophage differentiation.60 However, the target gene for many of the variants discovered through pharmacogenomic 
studies is still uncertain, as DNA folding can lead to associated variants regulating genes far from the SNP identified. 
Understanding the target gene and underlying mechanism of treatment response could pave the way to more personalized 
medicine approaches. Genome editing studies may lead to a greater understanding of how these variants affect gene 
transcription to alter human physiology and drug response.

Whilst various SNP associations with treatment response have been discovered, it is likely that no one SNP will be 
able to predict in the clinic which drug an individual will respond to. Through the integration of multiple predictive 
SNPs, a polygenic risk score providing a weighted single score may, in future, guide clinicians to which drug a patient is 
more likely to respond to.61

Epigenetics
The field of epigenetics explores inheritable changes to the chromatin structure that are not the result of alteration of the 
nucleotide sequence of DNA. These changes occur through several mechanisms, including DNA methylation, histone 
modification and RNA-associated silencing. These chemical covalent and noncovalent modifications to DNA molecules 
and histones are pivotal in influencing gene expression.62

Epigenetic modifications are inheritable, but they are reversible and can be altered by environmental exposure.63 

Potentially, epigenetic markers could be monitored over time to assess efficacy of a treatment or to consider individua-
lized dosing adjustment. We summarize studies that investigate epigenetic predictors of response to treatment in Table 1.

Among epigenetic modifications, DNA methylation is the most thoroughly investigated. This process is the addition 
of a methyl group to cytosine–uanine dinucleotides, referred to as CpGs. Approximately 70–80% of CpGs in the human 
genome are methylated. There are areas in the genome where CpGs tend to occur together in clusters, known as CpG 
islands. Methylation is thought to impact on the interaction between transcription factors and DNA. Therefore, in regions 

Table 1 Summary of Epigenetic Studies Investigating Predictors of Response to Treatment

Authors Epigenetic 
Modification

Sample Size Sample Drug Outcome Main Findings

Nair  
et al 202064

DNA 
methylation

68 Whole blood MTX EULAR response 
at 6 months

2 CpG sites showed methylation changes at 4 weeks 
associated with treatment response

Gosselt  
et al 201965

DNA 
methylation

336 PBMCs MTX EULAR response 
at 3 months

Higher baseline global DNA methylation is associated 
with non-response

Gosselt  
et al 202166

DNA 
methylation

69 PBMCs MTX EULAR response 
at 3 months

No genome-wide significant differences found

Glossop et al 
201767

DNA 
methylation

46 B and 
T lymphocytes

MTX EULAR response 
at 6 months

Baseline methylation levels at 2 sites associated with 
treatment response

Plant  
et al 201668

DNA 
methylation

72 Whole blood ETN EULAR response 
at 3 months

Top 2 DMPs associated with treatment response 
mapped to exon 7 of LRPAP1 gene

(Continued)

Open Access Rheumatology: Research and Reviews 2024:16                                                              https://doi.org/10.2147/OARRR.S372610                                                                                                                                                                                                                       

DovePress                                                                                                                          
93

Dovepress                                                                                                                                                  Sharma and Bluett

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


where there are active genes, CpGs tend to be hypomethylated. However, in those regions where CpGs are hypermethy-
lated, there tends to be a decrease in gene expression.75 DNA methylation has been proposed in several studies to be 
a predictor of treatment response in RA, both prior to treatment and within 1–3 months of treatment, the purpose of 
which would be to allow earlier therapeutic changes.

From research arising from the MAximising Therapeutic Utility in Rheumatoid Arthritis (MATURA) consortium, 
Nair et al 2020 hypothesized that differential methylation patterns could help identify patients recently started on 
methotrexate therapy who would be unlikely to respond to therapy. Two CpG sites (cg21040096 [RPH2AL] and 
cg09894276 [WDR27]) showed methylation changes at 4 weeks and were associated with EULAR response at 6 months 
(p=2.79×10−7 and 3.62×10−7, respectively.64 However, there were no significant associations at baseline. In contrast, 
Glossop et al found a correlation between baseline methylation patterns at cg03018489 and cg14345882 in 
T-lymphocytes and EULAR response at 6 months. These sites were located near the ADAMTSL2 and BTN3A2 
genes. Most patients (93.5%) were commencing methotrexate, however 65.2% were commencing at least one other 
DMARD in addition (sulfasalazine/hydroxychloroquine).67 The associations failed to replicate, however, in another study 
of patients commencing DMARD therapy.66

In a study of 72 patients, Plant et al identified two differentially methylated regions (DMPs) at baseline associated 
with response to etanercept. These mapped to the LRPAP1 gene, and methylation levels correlated with the rs3468 
genotype. This SNP was also associated with EULAR response in 1204 patients treated with TNFi.68

Another category of epigenetic changes are histone modifications. Histone proteins bind to DNA influencing the 
accessibility of gene promotors for transcription factor binding. Modifications include acetylation, methylation, phos-
phorylation and citrullination. These processes intricately regulate gene expression and some are associated with 
chromatin structure.76 Acetylation and methylation are associated with an aggressive phenotype of synovial fibroblasts 
in RA, through increased expression of matrix metalloproteinases (MMP-1, MMP-3, MMP9, MMP-13), which cause 
degradation of proteoglycans and damage to collagen.77–79 However, to date no studies have investigated whether histone 
modifications may predict future treatment response. Indeed, they are not ideal biomarkers in view of current technical 
challenges, thus translational potential is likely limited.77

Table 1 (Continued). 

Authors Epigenetic 
Modification

Sample Size Sample Drug Outcome Main Findings

Sode  
et al 201869

miRNAs 89 Plasma ADA + 
MTX

ACR/EULAR 
remission  
at 3 months and 
12 months

A higher baseline level of miR-27a-3p was associated 
with remission at 12 months

Krintel et al 
201670

miRNAs 180 Whole blood ADA EULAR response 
at 12 months

Combination of low expression of miR-22 and high 
expression of miR-886-3p associated with treatment 
response

Cheng et al 
202071

miRNAs 96 Plasma IFX EULAR response 
at 24 weeks

Higher baseline miR-125a and miR-125b expression 
were associated with treatment response

Duroux-Richard 
et al 201472

miRNAs 32 Blood + 
serum samples

RTX EULAR response 
at 3 months

Higher baseline expression of miR-125b associated 
with treatment response

Liu  
et al 201973

miRNAs Discovery – 19, 
replication - 92

PBMCs ETN EULAR response 
at 24 weeks

High baseline expression of miR-146a-5p associated 
with treatment response and high baseline expression 
let-7a-5p associated with lower odds of treatment 
response

Castro Villegas 
et al 201574

miRNAs Discovery – 10, 
Replication - 85

Serum ADA 
ETN 
IFX

EULAR response 
at 6 months

Increased baseline expression of has-miR-23a-3p and 
has-miR-223-3p associated with lack of treatment 
response

Abbreviations: ADA, adalimumab; ETN, etanercept; EULAR, European Alliance of Associations for Rheumatology; IFX, Infliximab; MTX, methotrexate; miRNA, 
microRNA; PBMCs, peripheral blood mononuclear cells; RTX, rituximab
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MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to messenger RNAs (mRNAs) and therefore 
can suppress gene expression at the post-transcriptional stage. These epigenetic modifications are thought to be integral 
players in the regulation of diverse cellular responses. Immune dysregulation due to expression of specific miRNAs in 
RA has been observed, and some studies have explored whether changes in miRNA profiles can be used to predict 
treatment response.69–74

Most studies evaluating the predictive utility of miRNAs have focused on TNFi. Associations found include miR- 
27a-3p,69 miR-22,70 miR-886-3p,70 miR-125a,71 miR-125b,71 miR-146a-5p,73 let-7a-5p,73 miR-23a-3p,74 and miR-223- 
3p.74 Although further validation is required, there does appear to be some agreement across certain studies, which is 
promising. For example, high levels of miR-146a-5p were associated with EULAR response at 24 weeks to etanercept 
using PBMCs from 92 patients at baseline (OR: 1.508 [1.127, 2.018]; p=0.006).73 Higher levels of miR-146a-5p were 
also found in the serum of patients after 3 months of TNFi.74,80 Interestingly, miR-125b has also been associated with 
response to rituximab.72 Both miRNA-146-5p and miR-125b are thought to be involved in the NK-κB signaling pathway, 
which, through downstream effects, induces cytokines and chemokines such as TNF-α and IL-6 that are key drivers of 
RA inflammation.81,82

In summary, the potential of epigenetic markers as biomarkers of future treatment response may be limited due to 
their relative instability in the face of environmental factors in comparison to other omics fields. However, studies have 
highlighted important potential mechanisms of pathogenesis.

Transcriptomics
Transcriptomics refers to the examination of global gene expression profiles to uncover associations with a diverse array 
of traits. Gene expression is highly dynamic and can provide valuable insights into disease pathways as well as response 
to drug treatments. The total sum of all RNA molecules expressed at any one time in a biological specimen is termed the 
transcriptome. Various techniques are used to investigate differential gene expression and include RNA sequencing 
(RNA-Seq), reverse transcription polymerase chain reaction (RT-PCR) and microarray analysis.

Studies exploring whether transcriptomic biomarkers may predict response to treatment, either at baseline or very 
early in treatment, are outlined in Table 2.

Much of the literature has so far focused on TNFi therapy.83–93

Oswald et al did not find any significant differences in gene expression between responders and non-responders to 
TNFi-treatment at baseline in a cohort of 240 patients.92 However, after 14 weeks of therapy, responders to treatment did 
show changes in multiple gene expression modules whereas, despite exposure to TNFi treatments, the non-responder 
group showed minimal changes across modules. Gene expression modules were mainly related to immunological 
components, for example B cells, T cells, MHC and inflammation, as well as platelets and downregulation of myeloid 
lineage. These findings were consistent across three independent RA cohorts.

Oliver et al used whole blood to assess differential gene expression in good responders (n=50) versus non-responders 
(n=20) to adalimumab therapy.94 They did not identify any significant differential expression between these groups at 
either timepoint. They did however find that, within the good responder group, there were 813 differentially expressed 
transcripts pre-treatment compared to at 3 months; 17 transcripts were validated in a cohort of good responders (n=11). 
The authors suggest that it is possible that transcriptomic signatures may change earlier than at 3 months, which 
potentially could help identify non-responders earlier than in current clinical practice. One of these 17 transcripts was 
CD39 (ENTPD1) expression. The authors observed a higher expression of CD39 pre-treatment compared to post- 
treatment in good responders.94 However, a large study of 2936 patients conducted by Spiliopoulou et al 2019 found 
that a higher genetic score for expression of CD39 on CD4+ T cells was associated with poor response to TNFi, using 
SJC as the outcome measure. This study also found that increased CD40 transcription was associated with good 
response.93

Baseline expression of CD11c was associated with response to adalimumab in a small study using monocytes.86 The 
CD11c protein, also known as integrin, is an established marker for dendritic cells but is also expressed in monocytes and 
macrophages. It is thought to have a role in cell adhesion.86 This association was however not replicated in a subsequent 
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Table 2 Summary of Transcriptomic Studies Investigating Predictors of Response to Treatment

Author Sample 
Size

Sample Drug Outcome Main Findings

TNFi

Lequerré 
et al 200683

33 PBMCs IFX EULAR response at 3 
months response

MTCBP-1, AKAP9, RASGRP3, PTPN12, RSP28, HLA-DPB1, EPS15 downregulated and MRPL22 
upregulated in responders at baseline

Tanino et al 
200984

42 (training), 
26 

(validation)

Whole 
blood

IFX CRP at 14 weeks + 
EULAR response at 14 

weeks

Expression of PSPH, CLGN, C21orf58, TBC1D8, LOC643981, ATP5I, ANKRD55, TMEM141, 
A_32_P1144 were the top ten biomarkers at baseline associated with treatmen response.

Julià et al 

200985

44 Whole 

blood

IFX EULAR response at 14 

weeks

Expression of HLA-DRB3, SH2D1B, GNLY, CAMP, SLC2A3 and IL2RB, MXD4, TLR5 at baseline 

associated with treatmen response.

Stuhlmüller 

et al 201086

7 Monocytes ADA ACR20 response Three gene sets (82, 11, 3) at baseline were predictive of response; CD11c expression was 

reported to have 100% sensitivity and a specificity of 91.7%.

Van Baarsen 

et al 201087

33 Whole 

blood

IFX DAS-28, TJC, HAQ at 

week 16

Patients with an increase in type I IFN response gene expression levels after 4 weeks of 

treatment (OAS1 and LGALS3BP) had poorer response to treatment

Toonen et al 

201288

42 Whole 

blood

IFX (27) ADA (15) EULAR response at 

week 14

Out of 8 previously published gene sets, this study found that the Lequerré et al83 2006 gene set 

showed the best ability to classify responders and non-responders at baseline

Dennis et al 

201489

62 Synovial 

tissue

IFX EULAR response at 

week 16

Higher baseline expression of myeloid gene set

Wright et al 

201590

20 Neutrophils ADA (13) or ETN (5)  

or GOL (2)

DAS28 at 12 weeks High type 1 IFN-related gene expression at baseline associated with good response

Smith et al 

201591

75 Whole 

blood

ADA (25) or ETN (50) EULAR response at 3 

months

CD11c expression at baseline not found to be associated with treatment response

Oswald et al 

201592

240 Whole 

blood

IFX (43) ETN (52) or ADA 

(50) or GOL (80) or CZP 
(14)

EULAR response at 15 

weeks

No significant differences between gene expression between responders and non-responders 

to TNFi at baseline

Spiliopoulou 
et al 201993

2938 (mixed 
cohorts)

Whole 
blood

IFX (792) or ADA (1255) 
or ETN (721) or GOL (17)  

or CZP (34)

SJC at 3–6 months Increased expression of CD39 on CD4 T cells at baseline associated with poor response; 
increased expression of CD40 at baseline associated with good response

Oliver et al 

202194

70 Whole 

blood

ADA EULAR response at 3 

months

No significant difference at baseline between responders and non-responders

Cai et al 

202295

199 (test), 

181 

(validation)

Whole 

blood

IFX ESR and CRP Expression of DERL1 (hub gene) at baseline was increased in non-responders
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TOC

Sanayama 

et al 201496

40 (training), 

20 

(validation)

PBMCs TOC CDAI at 6 months / 

Physicians’ global 

assessment

Higher expression of IFI6, MX2, OASL (type I IFN response genes) and MTG1 at baseline 

associated with response

Teitsma et al 

201797

60 Whole 

blood

MTX (17) or TOC (24) 

MTX+TOC (14)

Sustained drug free 

remission for 24 or 
more weeks

Pathways related to differential gene expression at baseline associated with sustained drug-free 

remission varied according to each arm. MTX: bacterial/biotic stimuli, ph52 and JAK-STAT 
signaling; TOC: White cell migration MTX + TOC (transcription and translation machinery)

ABA

Yokoyama- 

Kokuryo et al 
202098

45 Whole 

blood

ABA EULAR response at 6 

months

Relative expression levels of genes related to type I IFN response (IFIT3, MX1, OAS3) and 

genes related to activation of dendritic cells (BATF2/LAMP3/CD83) were significantly higher in 
responders compared to non-responders at baseline

RTX

Thurlings 

et al 201099

51 PBMCs RTX EULAR response at 24 

weeks

Upregulation of 3 IFN response genes at baseline inversely associated with treatment response 

(Mx-1, double-stranded RNA-activated protein kinase, and IFN-induced protein with 
tetratricopeptide repeats 1)

Raterman 
et al 2012100

14 
(discovery), 

26 

(validation)

Whole 
blood

RTX EULAR response at 
week 24

Low expression of IFN type I response genes at baseline associated with good clinical response

Sellam et al 

2014101

68 PBMCs RTX EULAR response at 

week 24

198 differentially regulated genes between responders and non-responders at baseline; 

upregulated genes including proinflammatory genes that may act on NF-kB complex were 
associated with response; 

upregulated genes linked to type I IFN pathway were associated with future non-response

Mixed cohort studies

Nakamura 

et al 2016102

209 Whole 

blood

IFX (140) or TCZ (38) or 

ABA (31)

Remission (CDAI <2.8) 

at 6 months

Expression measured at baseline: 

IFX: Upregulation of Inflammasome genes were associated non-remission 

TCZ: Upregulation of B cell expressed genes were associated with remission 
ABT: Upregulation of genes associated with RNA elongation, regulation of apoptosis and NK 

specifically expressed genes were associated with non-remission.

Trialle et al 

2021103

50 Synovial 

tissue

MTX/ADA/ABA /RTX/ 

TCZ

EULAR response at 14 

weeks

At baseline, patients with a higher expression of genes involved in T cell activation pathways and 

myeloid activation pathways had a greater degree of downregulation at 16 weeks and were 

more likely to respond to treatment

Abbreviations: ABA, abatacept; ACR, American College of Rheumatology; ADA, adalimumab; CDAI, Clinical Disease Activity Index; CRP, C-reactive protein; DAS28, 28 joint disease activity score; ETN, etanercept; EULAR, European 
Alliance of Associations for Rheumatology; GOL, Golimumab; IFX, infliximab; MTX, methotrexate; PBMCs, peripheral blood mononuclear cells; RTX, rituximab; TOC, tocilizumab
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study of patients commencing adalimumab (n=25) or etanercept (n=50).91 It is possible that this is due to different tissue 
types or use of different outcome measures.

DERL1 is a gene involved in regulation of autophagy. Higher expression of this gene at baseline was associated with non- 
response to infliximab in RA.95 Wright et al suggest that high expression of type I interferon (IFN) response genes at baseline 
is associated with subsequent response to TNF blockade.87,90 Van Baarsen et al evaluated whole blood samples for differential 
gene expression after 4 weeks of exposure to infliximab (IFX) and found that patients with an increase in type I IFN response 
gene expression levels after 4 weeks’ treatment (OAS1 and LGALS3BP) had poorer response to treatment.87 These studies 
suggest that a high baseline expression of IFN I response genes may indicate future response to therapy, and that failure to 
suppress type I IFN response at 4 weeks could provide some support for a change in therapy.87,90

Type I IFN response gene expression may also have a role in prediction of response to tocilizumab. Sanayama et al 
found higher expression of IFI6, MX2 and OASL (type I IFN response genes) at baseline was associated with 6-month 
CDAI improvement.96 There may also be a role of these genes in predicting abatacept response. In a study of 45 
bDMARD-naïve patients, the type I IFN score was significantly higher in patients at baseline who went on to achieve 
a response compared to those who went on to fail to respond. Furthermore, IFN scores decreased by 15% (p <0.0005) in 
responders after exposure to abatacept at 6 months, but not in those who did not respond.98 Interestingly, in this study, 
expression levels of genes related to activation of dendritic cells (BATF2/LAMP3/CD83) showed significant differences 
between responders and non-responders at baseline. Conversely, to TNFi, tocilizumab and abatacept, upregulation of 3 
IFN response genes was associated with poor treatment response to rituximab across multiple studies.99–101

Teitsma et al analyzed data from 60 patients treated with tocilizumab from the U-Act-early study to identify clusters of 
differentially expressed genes associated with sustained drug-free remission. Pathways correlating with achieving sustained 
drug-free remission varied according to arm: in the tocilizumab arm, important pathways were related to white cell migration; 
in the combined methotrexate/tocilizumab arm, modules identified were related to transcription and translation machinery.97

Triaille et al sought to compare transcriptomic effects of abatacept to other commonly used disease modifying agents, 
namely, tocilizumab, rituximab, methotrexate and adalimumab. Using synovial tissue of 50 RA patients taken at baseline, they 
identified that patients who had a higher expression of genes involved in T cell and myeloid activation pathways were more 
likely to respond to treatment. This suggests that common downstream pathways are affected by drugs despite different modes 
of action.103 Another study investigated the transcriptomic profile of patients who had failed to respond to methotrexate 
therapy and were started on tocilizumab, abatacept or infliximab instead. This study did show that different signatures across 
different treatments were associated with remission. Using gene set enrichment analysis, they found upregulation of genes 
involved in inflammasome in poor responders to infliximab. Conversely, B cell expressed genes were associated with response 
to tocilizumab. Finally, NK cell expressed genes were associated with non-response to abatacept.102

In the largest biopsy-driven trials to date, the R4RA and STRAP trials sought to combine information related to gene 
expression and histomorphology using synovial biopsies of participants with RA.104,105 The R4RA trial, in a cohort of 
inadequate responders to TNFi, demonstrated the superiority of tocilizumab compared to rituximab in participants 
classified as having low or absent B cell lineage expression signatures.105 The objective of the recent STRAP 
(Stratification of Biological Therapies by Pathobiology in Biologic-Naive Patients With Rheumatoid Arthritis) trial 
was to determine whether etanercept or tocilizumab (grouped together) were superior to rituximab in biologic-naïve 
patients with a B cell-poor synovial pathotype at 16 weeks. However, this trial failed to meet its primary endpoint, 
suggesting that a dichotomic classification of patients into B cell poor or B cell rich may be insufficient for stratification 
in biologic-naïve patients. However, the trial did demonstrate lower response rates to rituximab in those with a pauci- 
immune phenotype and increased radiographic progression in participants who were classified as B cell rich.104

In summary, many transcriptomic biomarkers of treatment response have been suggested in RA. The IFN pathway in 
particular shows promise in differentiating patients who may respond better to TNFi/CTLA-4/IL-6 inhibition compared 
to B cell inhibition; however, it remains to be seen whether this will add predictive value in practice. Evaluating patterns 
of gene expression in synovial tissue also shows promise, as suggested by clinical trials. The advent of spatial 
transcriptomics to gain a further in-depth understanding of gene expression at the level of single cells may increase 
the predictive value of these approaches in future.
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Proteomics
The proteome is the tapestry of proteins in a cell or tissue for which the human genome provides the blueprint. The 
proteome has inherent added layers of complexity due to variable abundance, post-translational modifications and 
interactions between individual proteins and molecules. Proteins may be dysregulated in diseases such as RA and 
often the efficacy of a drug is related to binding with these proteins. As proteins are not predictable based on genetic 
sequences alone, the advent of proteomic technology provides an exciting opportunity for personalized medicine. This 
may be through discovery of dynamic biomarkers of disease activity and of treatment response, both general and drug 
specific. Proteomic methodology can be broadly placed in one of two methodologies: mass spectrometry or immunoas-
says. Immunoassays involve the use of antibodies to bind specific target proteins. Conversely, mass spectrometry, 
conversely through electron ionization, exploits the difference in mass/charge of different proteins to separate and 
analyze samples to identify proteins.106

We summarize studies investigating whether measurement of proteins at baseline can predict response to treatment in 
Tables 3 and 4. In discussions of proteomic biomarkers to personalize treatment of RA, one must discuss the role of 
autoantibodies. Rheumatoid factor (RF) and cyclic citrullinated peptide antibodies (anti-CCP) are used by clinicians in 
routine practice to aid diagnosis.107 Several studies have found an association between anti-CCP/RF and treatment 
response, including TNFi, abatacept, IL-6 inhibitors and JAK inhibitors.108–111 The largest study was a registry study of 
2583 patients in 2021, which used drug retention as a surrogate measure of treatment response. This found that 
seropositivity was positively associated with treatment response to rituximab and abatacept, but no association was 
seen with TNFi.109 This was in contrast to Julia et al, who found that the presence of both RF and CCP was associated 
with treatment response to TNFi at three months.108 Treatment response to tofacitinib and sarilumab has also been 
associated with seropositivity.110,111 Overall, it does appear that seropositive patients have improved EULAR responses 
after rituximab therapy compared to seronegative patients. This factor may be taken into consideration when making 
treatment decisions.112

Table 3 Summary of Proteomic (Autoantibody) Studies Investigating Predictors of Response to Treatment

Authors Sample 
Size

Drug Outcome Main Findings

Halvorsen 
et al 2008113

40 ADA/ETN/IFX Radiographic progression 
and ΔDAS-28 at 12 months

Expression oa anti-PAD4 was associated with greater radiographic progression and non- 
response to treatment

Ferraccioli 
et al 2012114

138 RTX EULAR response at 6 
months

IgG-RF positivity at baseline was associated with response; 
low BAFF (<1011 pg/mL) was associated with response

De Moel 
et al 2018115

399 MTX + 
prednisolone

ΔDAS-28 at 4 months Breadth of autoantibody profile at baseline (anti-CCP(IgG/IgM/IgA)/ RF (IgM/IgA)/ citrullinated 
AMPAs/ acetylated AMPAs) was associated with greater reduction in DAS-28

Darrah et al 
2019116

282 MTX + SSZ  
+ HCQ or MTX  
+ ETN

ΔDAS-28 over 48 weeks Baseline anti-PAD4 was level associated with greater reduction in disease activity

Lourido et al 
2020117

185 IFX EULAR response at 6 
months

Anti-CENPF was associated with response

Courvoisier 
et al 2021109

27,583 TNFi/RTX/TOC/ 
ABA

Drug retention Seropositivity (Rf and or anti-CCP positivity at baseline) was associated with higher likelihood 
of drug retention for TOC, ABA and RTX but not TNFi

Julia et al 
2021108

80 ADA/CEZ/ETN/ 
GOL

ΔDAS-28 at 3 months Baseline RF/anti-CCP interaction was associated with better response; 
baseline anti-CarP/anti-PAD 4 interaction was associated with worse response

Kumar et al 
2021118

60 ABA ΔDAS-28 at 6 months Anti-CarP was associated with response

Abbreviations: ABA, abatacept; ADA, adalimumab; CRP, C-reactive protein; CEZ, certolizumab; ΔDAS28, change in 28 joint disease activity score; ETN, etanercept; 
EULAR, European Alliance of Associations for Rheumatology; GOL, golimumab; HCQ, hydroxychloroquine; IFX, infliximab; MTX, methotrexate; PBMCs, peripheral blood 
mononuclear cells; RTX, rituximab; SSZ, sulfasalazine; TNFi, TNF inhibitors; TOC, tocilizumab; BAFF, B cell-activated factor; Anti-CarP, antibodies to carbamylated protein; 
Anti-CCP, antibodies to cyclic citrullinated peptide; anti-CENPF, antibodies to Centromere protein F; Anti-PAD4, antibodies to peptidyl arginine deiminase 4; RF, rheumatoid 
factor.
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Table 4 Summary of Proteomic (Non-Autoantibody) Studies Investigating Predictors of Response to Treatment

Authors Sample 
Size

Study 
Type

Drug Outcome Main Findings

Fabre et al 

2008119

33 PBA ETN Classed as responders if 3 out of 4 criteria achieved (a 

change of DAS28 ≥1·2, an improvement of 20% of patient 

assessment disease activity, of CRP or ESR) at 3 months

Higher baseline levels of EGF and MCP-1 in future responders

Trocmé 

et al 
2009120

60 SELDI-TOF 

-MS

IFX Non-response: ACR 20 negative at week 30 

Response: ACR 70 positive at week 30

High baseline levels of PF4/CXCL4 associated with non-response; 

high baseline levels of apolipoprotein A-I associated with response

Hueber 
et al 

2009121

93 (3 
independent 

cohorts)

Antigen 
Microarray/ 

cytokine 

multiplex

ETN Non -response:<ACR20 at 3 months 
Response: >ACR50 at 3 months

24-biomarker signature at baseline associated with response (GM- 
CSF, IL-6, fibromodulin, clusterin, ApoE, H2B/e, clusterin, HSP58, IL- 

1α, COMP, acetyl-calpastatin, biglycan, osteoglycin, serine protease- 

11, IL-1β, eotaxin, IP-10, FGF-2, MCP-1, IL-12p70, fibrinogen, FibA, 
IL-12p40, IL-15)

Fabre et al 
2009122

46 PBA RTX Classed as responders if 3 out of 4 criteria achieved (a 
change of DAS28 ≥1·2, an improvement of 20% of patient 

assessment disease activity, of CRP of ESR) at 3 months

No association of baseline profile with response

Dennis 

et al 

201489

198 (ADA), 

198 (TOC)

ELISA ADA or 

TOC

ACR50 response at 24 weeks High levels of sICAM3 and low levels of CXCL13 at baseline are 

associated with response to ADA; 

conversely, low levels of sICAM3 and high levels of CXCL13 at 
baseline are associated with response to TOC

Hirata 

et al 

2015123

ADA (49), 

TOC (50), 

TOF (27)

ELISA ADA (49), TOC  

(50), TOF (27)

DAS28-ESR remission at 1 year Baseline 14-3-3n level was associated with remission in the TOC 

group, but not associated in the ADA, MTX or TOF groups

Uno et al 

2015124

43 

48 
40

MBBA ETN  

(biologic naïve) n=43 
TOC (biologic naïve) 

N=48 

TOC  
(non-biologic naïve) 

N=40

Remission (DAS28 <2.3) at week 16 Baseline levels of IL-9, TNFα and VEGF (in combination) were 

associated with response to ETN (direction not shown) 
Baseline levels of IL-6, IP-10 and TNFRII was associated with 

response to TOC (biologic -naïve group; direction not shown) 

Baseline levels of IL-6 and IL-8, IP-10 waere associated with response 
to TOC (biologic-naïve group; direction not shown) 

High baseline level of sgp130 was associated with response to TOC 

(both biologic naïve and non-naïve groups).
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Obry et al 
2015125

22 Nano LC- 
MS/ELISA

ETN EULAR response at 6 months High baseline levels of ceruloplasmin, CO7, inter-alpha-trypsin 
inhibitor heavy chain 1, plasminogen, PROS, protein S100A9 and 

zinc-alpha2-glycoprotein were associated with future response

Han BK 

et al 

2016126

29 ELISA ADA/ETN EULAR response at 14 weeks Baseline CXCL10 and CXCL13 levels were positively associated 

with response

Folkerson 

et al 
2016127

185 ELISA TNFi (IFX/ADA/ETN/ 

GOL/CEZ)

ΔDAS28 ≥1.2 at 3 months High levels of sICAM3 and low levels of CXCL13 at baseline were 

associated with response to TNFi

Rinaudo- 
Gaujous 

et al 

2019128

79 ELISA IFX EULAR response at 6 months Higher baseline MMP3 levels were associated with future response

Chen et al 

2019129

8 iTRAQ IFX + MTX + LEF EULAR response at 14 weeks Higher levels of B7Z7M2, A0A087WZR4 Q53FL1, P08254, G3V2V8 

at baseline were associated with response* 
Q6MZX9, B3KP77, P0DJI9, P0DJI8, P02787 were downregulated in 

the responder group* 

*Top 5 only

Ling et al 

2020130

MTX (136) 

ADA (150)

MBBA Response to MTX at 6 

months/ADA at 3 
months

EULAR response at 6 months (MTX or 3 months (ADA)) Expression of HNRNPA1 and DNAJB1 was associated with 

response; 
in anti-CCP negative subgroup, citrullinated vimentin and CPSF6 was 

associated with non-response

Zhao et al 

2020131

60 ELISA TNFi EULAR response at 12 weeks Baseline levels of CXCL13 and sICAM1 were positively associated 

with response

Ling et al 

2023132

180 SWATH- 

MS

ETN Remission (DAS28 < 2.6) at 3 months Lower baseline levels of TCPH (Q99832) were associated with 

future remission

ΔDAS-28 at 3 months Higher baseline levels of EHD1 (Q9H4M9) and TCPH (Q99832) 

were associated with DAS-28 score

hsCRP measured using ELISA at 6 months. Lower baseline levels of SELENOP (P49908) and higher baseline 

levels of MAP2K3 (P46734) and CLTC (Q00610) were associated 

with hsCRP level

Abbreviations: ABA, abatacept; ADA, adalimumab; CRP, C-reactive protein; CEZ, certolizumab; ΔDAS28, change in 28 joint disease activity score; ELISA, enzyme-linked immunosorbent assay; ESR, erythrocyte sedimentation rate; 
ETN, etanercept; EULAR, European Alliance of Associations for Rheumatology; LEF, leflunomide; GOL, golimumab; IFX, infliximab; MTX, methotrexate; iTRAQ, isobaric tagging for relative and absolute quantification; LC-MS, liquid 
nano-chromatography-mass spectrometry; MBBA, multiplex bead-based assay; PBA, protein biochip array; PBMCs, peripheral blood mononuclear cells; RTX, rituximab; SELDI-TOF-MS, Surface-Enhanced Laser Desorption/Ionization 
Time-Of-Flight Mass Spectrometry; SWATH-MS, Sequential Window Acquisition of all Theoretical Mass Spectra; TNFi, TNF inhibitors; TOC, tocilizumab; TOF, tofacitinib; ApoE, apolipoprotein E; CO7, complement C7; COMP, cartilage 
oligomeric matrix protein; CXCL13, C-X-C motif chemokine ligand 13; DNAJB1, DnaJ homolog subfamily B member 1; EGF, epidermal growth factor; FGF-2, fibroblast growth factor 23; FibA, alpha subunit of fibrinogen; GMCSF, 
granulocyte macrophage colony stimulating factor; H2B/e, histone H2B type-E; HNRNPA1, heterogenous nuclear ribonucleoprotein A1; HSP38, heat shock protein 38; IP-10, interferon gamma-induced protein 1, also known as CXCL10 
(C-X-C motif chemokine ligand 10); MCP-1, monocyte chemoattractant protein-1; MMP3, matrix metallopeptidase 3; PF4, platelet factor 4, also known as CXCL4, C-X-C motif chemokine ligand 4; PROS, vitamin K-dependent protein S; 
sICAM3, soluble intercellular adhesion molecule-3; TNFRII, tumor necrosis factor receptor II; VEGF, vascular endothelial growth factor.
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Using a multiplex bead-based assay approach, Ling et al found other citrullinated autoantibodies to be associated with 
treatment response to methotrexate/adalimumab in ACPA-negative patients.130 In this study, antibodies to citrullinated vimentin 
and CPSF6 were both found to be negatively associated with response to treatment, whilst antibodies to HNRNPA1 and 
DNAJB1 were positively associated. However, this added nothing over and beyond commercial CCP2 testing.130

Dennis et al found differentiating proteomic markers of treatment response to tocilizumab and adalimumab. High 
levels of sICAM3 and low levels of CXCL13 at baseline were associated with response to ADA. Conversely, low levels 
of sICAM3 and high levels of CXCL13 at baseline were associated with response to TOC.89 Folkerson et al replicated 
findings for adalimumab in a cohort of 185 patients on various TNFis.127

Obry et al found an association of 7 proteins with treatment response to etanercept/methotrexate therapy, whereby two 
of these proteins, PROS (vitamin K–dependent protein S) and CHIP (E3 ubiquitin-protein ligase carboxyl terminus of 
heat shock cognate 70-interacting protein), in combination demonstrated high sensitivity (88.9%) and high specificity 
(100%).125 A more recent, much larger study used sequential window acquisition of all theoretical fragment ion spectra 
mass spectrometry (SWATH-MS) in a study of 180 patients on etanercept therapy and identified proteins associated with 
treatment response.132 Lower baseline levels of TCPH (Q99832) were associated with future remission and higher 
baseline levels of EHD1 (Q9H4M9) and TCPH (Q99832) were associated with DAS-28 score. In addition, lower 
baseline levels of SELENOP (P49908) and higher baseline levels of MAP2K3 (P46734) and CLTC (Q00610) were 
associated with hsCRP level at 6 months. Notably, however, this study failed to replicate proteomic biomarkers found to 
be associated with response to etanercept in other cohorts.

Although proteomic studies have clearly found a wealth of potential biomarkers that may help to tailor treatment in 
RA, lack of validation in large cohorts is a frequent occurrence.

Metabolomics
Metabolomics refers to the quantitative measurement of all small molecular weight metabolites present in a biological 
specimen. Metabolites can be thought of as the end products formed as a consequence of the interplay between DNA, 
transcription factors and proteins.133 The two most common methods used to conduct metabolomic research are mass 
spectrometry (MS) and nuclear magnetic resonance (NMR).133 A variety of different biological specimens can be used, 
such as blood products, urine and synovial fluid.133 Numerous studies have investigated the metabolic profiles of RA 
patients to identify metabolites associated with pathogenesis, disease severity, efficacy and a small number have looked 
specifically at extra-articular manifestations. We focus here on attempts to use metabolomic profiles to predict response 
to treatment, as summarized in Table 5.

The majority of these studies focus on TNFi.136–139 The largest of these studies, by Cuppen et al, enrolled 231 
patients with RA commencing a TNFi and used LC-MS to evaluate metabolomic profiles of serum samples. Higher 
baseline levels of lysine and sn1-LPC (15:0), and lower levels of sn1-LPC (18:3-ω3/ω6) and ethanolamine, contributed to 
a model to predict treatment response with a high degree of accuracy (AUC-ROC=0.841) and outperformed a model 
using clinical predictors alone (p=0.01). The model showed particular utility in identification of patients unlikely to 
respond (NRI=0.23).139 Kapoor et al had also previously found low levels of ethanolamine to be associated with response 
to TNFi (infliximab/etanercept)136 but Priori et al found the opposite result for lysine.138 In addition to these amino acids, 
Kapoor et al and Priori et al both found that higher baseline levels of glutamine are associated with response to 
TNFi.136,138 Low levels of taurine have been associated with treatment response to methotrexate134 and TNFi.137

Some studies have explored prediction of response to non-TNFi therapies.134,135,137,140,141,143 Sweeney et al found 
that metabolite profiles related to pathways involving glycerophospholipid, amino acid and energy metabolism can 
distinguish responders and non-responders to rituximab.143 In this study, low levels of tyrosine and phenylalanine were 
associated with treatment response whereas high levels of these amino acids have been associated with response to 
tocilizumab.140 Low levels of choline were also associated with response to rituximab and TNFi.138,143

Some studies have suggested differences in baseline predictors of treatment response between different modes of 
action. Takashi et al found that three amino acid metabolites (citric acid, quinic acid and 3-aminobutyric acid) were 
associated with response to abatacept. These were different metabolites compared to the TNFi arm of the study.137 

Findings by Teitsma et al found that metabolic profiles of early RA patients were associated with sustained drug-free 
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Table 5 Summary of Metabolomic Studies Investigating Predictors of Response to Treatment

Paper Sample 
Size

Sample 
Type

Technique Drug Outcome Main Findings

Gosselt et al 
2020134

82 Plasma LC-MS MTX EULAR response 
at 3 months

Higher concentrations of 1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate 
at baseline were associated with treatment response; 

lower concentrations of homocysteine, taurine, adenosine triphosphate, guanosine diphosphate and uric 

acid at baseline were associated with treatment response

Medcalf et al 

2022135

20 Plasma LC-MS MTX EULAR response 

at 16 weeks

Lower concentrations of N-methylisoleucine, nornicotine and 2.3-dihydroxybutanoic acid at baseline 

were associated with treatment response

Kapoor et al 

2013136

16 Urine 1H-NMR TNFi (IFX/ 

ETN)

EULAR response 

at 12 months

Higher concentrations of histamine, glutamine, thymine, creatinine, xanthurenic acid, phenylacetic acid 

and xanthine were associated with treatment response; 
lower concentrations of ethanolamine, phosphocreatine and p-hydroxyphenylpyruvic acid were 

associated with treatment response

Takahashi 

et al 2019137

26 Serum CE-MS TNFi (ADA/ 

CEZ/GOL/IFX/ 

ETN)

EULAR-CRP 

response at 12 

weeks

Higher concentration of betonicine at baseline was associated with response to TNFi 

Lower concentrations of Glycerol 3-phosphate, N-acetyl-L-alanine, hexanoic acid and taurine at baseline 

were associated with response to TNFi.

17 ABA Higher concentrations of citric acid and quinic acid at baseline were associated with response to ABA; 
lower concentration of 3-aminobutyric acid at baseline was associated with response to ABA

Priori et al 
2015138

27 Serum 1H-NMR ETN EULAR response 
at 6 months

Higher concentrations of N-acetylglycoprotein, glutamine, methionine, pyroglutamine and glucose at 
baseline were associated with treatment response; lower concentrations of lactate, arginine, lysine, 

acetate, sarcosine, aspartate, choline at baseline and formate were associated with treatment response

Cuppen 

et al 2016139

231 Serum LC-MS TNFi (ADA/ 

IFX/ETN/GOL/ 

CEZ)

EULAR response 

at 3 months

Higher concentrations of lysine and sn1-LPC (15:0) at baseline were associated with 
treatment response; 
Llower concentrations of sn1-LPC (18:3-ω3/ω6) and ethanolamine at baseline were associated 
with treatment response

Murillo- 
Saich et al 

2021140

40 Plasma 1H-NMR TOC EULAR response 
at 6 and 12 

months

Higher concentrations of isobutyrate, 3-hydroxybutyrate, lysine, phenylalanine, 3G3PC, tryptophan and 
tyrosine at baseline were associated with treatment response

(Continued)
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Table 5 (Continued). 

Paper Sample 
Size

Sample 
Type

Technique Drug Outcome Main Findings

Teitsma et al 
2018141

19 TOC + MTX Sustained drug- 
free remission

Higher concentrations of 9,12,13-TriHOM, 9,10,13-TriHOM, L-methionine-sulfoxide at baseline were 
associated with sustained drug-free remission; 

lower concentrations of histamine, Spha c18:0, LPA c20:3, PA c18:1 and 8.9-DiHETrE at baseline were 

associated with sustained drug-free remission

24 TOC Higher concentrations of prostaglandin E2, L-pipecolic acid, 8.9-DiHETrE, 5.6-DiHETrE, 8-iso- 

prostaglandin-E2 and 20-carboxy-leukotriene-B4 at baseline were associated with sustained drug-free 
remission

17 MTX Higher concentrations of L-lysine and L-proline at baseline were associated with sustained drug-free 
remission

Dudka et al 
2021142

25 Plasma 1H NMR 
LC-MS

TNFI (ETN/ 
ADA/CEZ) or 

TOC

EULAR response 
at 3 months

Using the 1H NMR platform, concentrations of glucose, mannose, GlycA (N-acetylneuraminic 
acid), glycA (N-acetylglucosamine/galactosamine) and glycerophosphocholine at baseline were associated 

with treatment response; 

using the LC-MS platform, higher concentration of theobromine at baseline was associated with 
treatment response; lower concentrations of decanoylcarnitine, 5-hydroxyhexanoate, γ-glutamyl-leucine, 

pyroglutamylvaline and prolylhydroxyproline at baseline were associated with treatment response

Sweeney 

et al 2016143

23 Serum 1H NMR RTX ACR20 at 6 

months

Lower concentrations of phenylalanine, 2-hydroxyvalerate, succinate, choline, glycine, acetoacetate, and 

tyrosine at baseline were associated with treatment response

Note: Only those metabolites that were associated across both analytic approaches used in these studies are shown here. 
Abbreviations: LC-MS, liquid chromatography-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; 
ABA, abatacept; ADA, adalimumab; CRP, C-reactive protein; CEZ, certolizumab; ΔDAS28, change in 28 joint disease activity score; ETN, etanercept; EULAR, European Alliance of Associations for Rheumatology; GOL, golimumab; IFX, 
infliximab; MTX, methotrexate; RTX, rituximab; TNFi, TNF inhibitors; TOC, tocilizumab.
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remission. Profiles predictive of response were different in the tocilizumab group, the methotrexate group and the 
tocilizumab and methotrexate combination group.141

Distinct metabolite patterns that may be predictive of treatment response are starting to emerge. Amino acids (eg, 
lysine, glutamine, tyrosine, phenylalanine) and lipid-related compounds (eg, sn1-LPC, ethanolamine, choline) stand out 
as potential predictors; however, further validation is required.

Therapeutic Drug Monitoring
A wide variability in serum concentrations of biopharmaceutical drugs exists. Therapeutic drug monitoring is the 
measurement of drug concentration with the aim of personalizing dosing and therefore optimizing drug efficacy and/or 
to reducing the risk of adverse effects by maintaining drug concentrations within the therapeutic window.144 Several 
studies suggest that the higher drug levels in advanced therapies are associated with clinical efficacy in the case of 
adalimumab,31,145 infliximab,146–148 etanercept149 and tocilizumab.150,151

Anti-drug antibodies (ADAs) have garnered much attention in recent years. Patients sometimes develop these 
ADAs in response to biologic medications which may contribute to diminished drug concentration through drug 
neutralization or enhanced drug elimination.152 It is noted that ADAs are largely not detected for etanercept.153 The 
prevalence estimates have been suggested to be up to 67% for infliximab and adalimumab.154 The association between 
ADAs and low drug levels for particular drugs is well established for TNFi: adalimumab153,155 and 
infliximab.153,154,156,157 It has also been found for IL-6 receptor inhibitors: tocilizumab and sarilumab158,159 and, 
most recently, rituximab.160

The presence of ADAs has been associated with reduced clinical efficacy for adalimumab31,145,154,155,157,161–163 and 
infliximab.147,154,157,163 However, this association has appeared to be less clear for tocilizumab,164,165 

sarilumab,158,164,166 abatacept154 and rituximab.154,167 The prospective ABIRISK study aimed to determine whether 
ADAs were associated with therapeutic response in RA for TNFi, tocilizumab and rituximab. It confirmed a high 
prevalence of ADAs for those on TNFi therapy (26/68, 38.2%), tocilizumab (10/50, 20%) and rituximab (15/30, 50%). 
The study found a significant association between presence of ADAs and clinical response for all drugs combined, but 
it lacked power to detect a difference for each drug class. The biggest difference in response rates was noted in the TNFi 
group, but results for all drug classes do appear to show the same pattern of results.168

Another potential use of measurement of ADAs stems from the hypothesis that, if non-response is caused by 
immunogenicity, this will inform whether a second TNFi agent will be effective. This theory was tested in a cohort of 
292 patients treated with etanercept, 70% of whom had been previously TNFi naïve and the remainder were TNFi 
inadequate responders (adalimumab or infliximab). Patients who switched from previous TNFi therapy with ADAs were 
significantly less likely to respond compared to those without ADAs and those who were naïve to TNFi.169

A limited number of prospective studies have assessed the use of therapeutic drug monitoring in RA. A study titled 
INGEBIO recruited a population with different rheumatic diseases, of which 63/169 (37%) had a diagnosis of RA. All 
patients had been treated with adalimumab and were clinically stable for at least 6 months. ADAs and drug levels were 
tested in each patient every 2–3 months but only the test results of the intervention group were revealed to clinicians. The 
risk of flare was reduced in the intervention group compared to the control group (IRR: 0.7252; 95% CI: 0.4997–1.0578), 
but this did not reach statistical significance.170 A similar, more recent, study, NOR-DRUM, evaluated the use of 
therapeutic drug monitoring of patients commencing infliximab in a mixed population of 411 patients with different 
autoimmune conditions in Norway. Of these patients, 84 had a diagnosis of RA. Although the therapeutic drug 
monitoring group had fewer infusion reactions compared to the control group, there was no significant difference in 
remission rates between groups.171

Currently, the NICE recommendations (2019) state that there is insufficient evidence to advocate the routine use of 
therapeutic drug monitoring of TNFi (drug serum levels and ADAs) in RA.172 More recently, EULAR published points- 
to-consider for therapeutic drug monitoring in inflammatory rheumatic diseases.173 It also did not recommend the routine 
use of proactive TDM in the management of inflammatory rheumatic diseases and highlighted the lack of an identified 
optimal range of most drugs. However, it also identified some specific situations in which measurement of drug levels/ 
ADAs may be considered. These are as follows:
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1. Measurement of drug levels early during treatment with infliximab/adalimumab to guide predictions of future 
efficacy.

2. Measurement of drug levels and ADAs may help to understand the mechanisms underlying non-response and 
therefore help guide future treatment.

3. In cases of non-severe hypersensitivity reaction to infusions, measurement of ADAs may help guide decisions to 
continue treatment.

4. Measurement of drug levels in cases where tapering is being considered.

It appears clear that there does seem to be a role for at least reactive therapeutic drug monitoring. The caveat to all of 
these points is that further clinical trials and knowledge of the optimum biopharmaceutical therapeutic range and cost- 
effectiveness are needed to fully appreciate how therapeutic drug monitoring may be used to personalize care in RA in 
a cost-effective manner.173

Machine Learning
Artificial intelligence (AI) is the capability of a machine to perform functions and tasks one would associate with human 
cognition.174 In the current technological climate, AI is being increasingly explored and adopted in many fields, including 
in precision medicine. Machine learning (ML) is thought of as a branch of AI, in which machines can identify patterns 
and draw inferences of relationships between variables, but without explicit instructions. This process contrasts from 
traditional hypothesis-driven data analysis approaches.175

The use of various machine-learning approaches, both supervised and unsupervised, has been explored in RA. The 
exponential rise of data, particularly highly dimensional omics data, has led to the problem of predictors outnumbering 
observations, a phenomenon referred to as “the curse of dimensionality”.176 How we best integrate all this information to 
inform prediction of treatment response is a considerable challenge.

A large Swedish study of 5475 patients sought to use a combination of four different machine-learning approaches 
using clinical data only to create a model predicting persistence of methotrexate therapy at one year. However, despite its 
large sample size and the wealth of clinical data available, only moderate predictive performance (AUC: 0.67, LASSO 
model) was reached, with only a marginal gain above traditional hypothesis-based models.177 Miyoshi et al used artificial 
neural networks to develop a model using clinical covariates alone to predict response to infliximab and reported 92% 
accuracy. It contained nine variables: ESR/TJC, albumin, monocyte count, red blood cell number, methotrexate dosage, 
HbA1c, history of bDMARD use and prednisolone dosage.178 Koo et al analyzed clinical data of 1204 patients treated 
with various biologics (adalimumab, golimumab, infliximab, abatacept and tocilizumab) and used several machine- 
learning methods to develop models predicting future remission for each drug type. Interestingly, there were differences 
in relative importance of clinical features for each drug type. Model accuracy ranged from 52.8% to 72.9% and AUROC 
ranged from 0.512 to 0.694.179 These studies emphasize that clinical data alone is not sufficient to personalize treatment.

There have been some attempts to integrate omics data with clinical data, to try to improve model performance. 
Gosselt et al, using data from the Dutch REACH cohort, developed models to predict response to methotrexate at 3 
months using 3 ML methods (LASSO, random forest and XGboost). The selected features included known clinical 
predictors of treatment response (RF and ACPA status, baseline DAS-28 components) combined with genetic predictors: 
SNPs in ATP-binding cassette (ABC) transporter genes and erythrocyte folate. Of the four developed models, LASSO 
performed best (AUC: 0.76) in predicting lack of response to methotrexate.180 Lim et al aimed to tackle the issue of the 
high dimensionality of genetics data through identification of likely functional coding haplotypes, to develop a model to 
predict response to methotrexate. They used supervised machine-learning approaches (neural networks, SVM, logistic 
regression, elastic nets, random forest and boosted trees). The final model consisted of 100 features, 95 of which were 
genetic (AUC: 0.828, sensitivity=0.6875, specificity=0.8684). Non-genetic selected features were platelet count, hemo-
globin levels, duration of morning stiffness and anti-CCP positivity.181

Plant et al also demonstrated the superiority of a model containing both biological and clinical data over that of a model 
containing clinical covariates alone. They used whole blood samples of patients initiating methotrexate at baseline and at 4 
weeks and found that genes involved in the type I interferon signaling pathway were differentially expressed in patients with 
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insufficient response to treatment at baseline and at 4 weeks post-treatment. The model which included gene expression data 
achieved an AUC of 0.78±0.11 compared to the model with clinical data alone (AUC: 0.63±0.06).182

There have also been attempts to combine clinical and biological features to predict response to bDMARDs, namely, 
TNFi. Guan et al used a Gaussian process regression model trained on a large sample size of 1892 patients and demonstrated 
improved accuracy of prediction of response to TNFi (adalimumab/etanercept/infliximab) when genetic predictors were 
added to demographic and clinical data. This model could correctly classify 78% of responder patients. The contribution of 
SNP biomarkers, however, was relatively small in comparison to clinical predictors used, particularly baseline DAS28, 
which showed the greatest association with future treatment response.183 Similarly, Luque-Tévar et al demonstrated the 
superiority of prediction to TNFi using both clinical data and molecular data, namely, serum inflammatory profile, oxidative 
stress markers and NETosis-derived biomolecules. Distinct clinical and molecular profiles were identified through LASSO 
regression/ridge regression, and integration in a mixed model showed an AUC of 0.91.184

The integration of various levels of omics data poses an even greater challenge due to the complexity of underlying 
pathways, co-correlation of covariates and highly dimensional data. Youssef et al conducted a study involving 39 female 
RA patients who had previously had an inadequate response to methotrexate. The authors analyzed transcriptomics, 
proteomics and cell phenotypes data generated from PBMCs collected before treatment with TNFi and at 3 months. 
Various supervised machine-learning models were developed to attempt prediction of non-response. Of all models 
developed, the linear model based on transcriptomic data at baseline displayed the best ability to predict response to 
treatment, and this was with a higher degree of accuracy compared to models based on clinical data alone.185 Tao et al 
used a combination of transcriptomic signatures from monocytes, CD4+ T cells and PBMCs and DNA methylation 
profiling from PBMCs to develop models predictive of treatment response to TNFi (adalimumab and etanercept). Similar 
to Youssef et al, highest overall accuracy (84.7%) was found for the model based on DEGs of PBMCs.186

Tasaki et al sought to use a multi-omics approach to molecular signatures associated with long-term remission. They 
incorporated transcriptomics, proteomics and immunophenotype data, as well as clinical information to explore the effect of 
drug treatments (methotrexate, infliximab and tocilizumab) at the molecular level. Interestingly, all three drugs had a similar 
effect at the immune cell-type level; however, they found that treatment with biologic therapies significantly normalized the 
molecular signature at all three levels towards that of healthy controls. However, a residual signature remained.187

Jung et al used a naïve Bayes classifier to investigate predictors of treatment response based on synovial tissue 
pathotypes. This unsupervised machine-learning approach yielded three RA subtypes based on gene expression data from 
the synovial tissues of 180 patients. The first two groups (C1 and C2) showed enrichment of fibroblasts and tissue 
proliferative signaling pathways whereas C3 showed greater activation of immune cells and proinflammatory signaling 
pathways. These groups showed differences in clinical characteristics and treatment responses to triple DMARDs and 
infliximab; those in C3, however, were most likely to respond to both treatments.188

Despite much progress in the application of machine-learning approaches to predict RA treatment response, there 
remain hurdles to overcome before they can be implemented in clinical practice. As has been a theme for many omics 
fields, there is a lack of external validation. There are differences in cohort study designs, including different platforms 
for omics data, differences in method and timing of measurement of treatment outcomes and clinical data available. 
Indeed, one can see that many of the studies report moderate to excellent predictive abilities of models used; however, 
this may be partly a consequence of “overfitting”. This is a phenomenon observed when machine-learning algorithms are 
constructed, and statistical models developed fit exactly to training data, but is rendered inaccurate for new data. This is 
more likely to occur in models of greater complexity.189 Furthermore, consideration of ethical issues that could 
potentially be associated with the advent of artificial intelligence/machine-learning approaches are important to consider. 
For example, in some machine-learning algorithms the inner workings of the models may be unclear. This is commonly 
referred to as the “black box” concept.189 This poses a problem for applications in treatment decision making, as it is 
paramount that we understand the basis of how such impactful conclusions are reached.

Despite these barriers, with collaboration between large consortia, as well as between data scientists, biologists and 
rheumatologists, machine-learning methods have shown great promise, and it is hoped further progress will be made in 
years to come in terms of implementing them in clinical practice.

Open Access Rheumatology: Research and Reviews 2024:16                                                              https://doi.org/10.2147/OARRR.S372610                                                                                                                                                                                                                       

DovePress                                                                                                                         
107

Dovepress                                                                                                                                                  Sharma and Bluett

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Future of Personalized Medicine in Rheumatoid Arthritis
Over recent years, advancement of methodologies and substantial investment has led to an explosion of promising 
potential biomarkers for treatment response in RA. Furthermore, underlying mechanisms of disease and potential disease 
endotypes are beginning to emerge. However, most potential markers lack validation in independent cohorts and their 
utility over and beyond clinical predictors and/or seropositivity is unclear. This lack of replication is driven by 
a combination of factors. A key problem is the preferred outcome measure. Although TJC and VAS capture important 
information about the impact of the disease on the patient, they likely do not have the same biomarkers as SJC and 
inflammation. Another confounding factor is non-adherence. Non-adherence correlates with non-response to treatment 
and therefore non-adherence can result in patient misclassification as non-responders and severely reduce study power.35 

Furthermore, use of different points and other unmeasured confounders may contribute to lack of replication. Lastly, few 
studies directly compare different drugs, which makes it difficult to ascertain whether a biomarker is prognostic or truly 
theragnostic. Most studies, to date, have focused on TNFi therapy, perhaps due to TNFi being the first advanced therapy 
available. Therefore, despite considerable progress, although the customization of therapy for individuals with RA is on 
the horizon it remains an elusive goal. To overcome these obstacles, development of outcome measures that more closely 
resemble the underlying biological process of synovitis is required. It is likely that no one biomarker will predict 
response and future studies should aim to integrate the available data and explore if the developed models are more 
predictive than clinical predictors alone. Machine learning has demonstrated its ability to integrate large amounts of data; 
however, further development of machine-learning techniques is required to prevent over-fitting.

Conclusion
In conclusion, research to date has revealed several promising predictive biomarkers that may pave the way to 
personalized medicine approaches in rheumatoid arthritis. Further work is required to validate and integrate these 
biomarkers to create a predictive biomarker panel. To personalize therapy, future biomarker studies should look to 
compare responders to different targeted therapies to identify unique treatment-associated biomarkers.
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