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Purpose: This study aimed to evaluate the feasibility of ultrafast (2 min) cervical spine MRI protocol using a deep learning-assisted 
3D iterative image enhancement (DL-3DIIE) system, compared to a conventional MRI protocol (6 min 14s).
Patients and Methods: Fifty-one patients were recruited and underwent cervical spine MRI using conventional and ultrafast 
protocols. A DL-3DIIE system was applied to the ultrafast protocol to compensate for the spatial resolution and signal-to-noise ratio 
(SNR) of images. Two radiologists independently assessed and graded the quality of images from the dimensions of artifacts, boundary 
sharpness, visibility of lesions and overall image quality. We recorded the presence or absence of different pathologies. Moreover, we 
examined the interchangeability of the two protocols by computing the 95% confidence interval of the individual equivalence index, 
and also evaluated the inter-protocol intra-observer agreement using Cohen’s weighted kappa.
Results: Ultrafast-DL-3DIIE images were significantly better than conventional ones for artifacts and equivalent for other qualitative 
features. The number of cases with different kinds of pathologies was indistinguishable based on the MR images from ultrafast-DL 
-3DIIE and conventional protocols. With the exception of disc degeneration, the 95% confidence interval for the individual 
equivalence index across all variables did not surpass 5%, suggesting that the two protocols are interchangeable. The kappa values 
of these evaluations by the two radiologists ranged from 0.65 to 0.88, indicating good-to-excellent agreement.
Conclusion: The DL-3DIIE system enables 67% spine MRI scan time reduction while obtaining at least equivalent image quality and 
diagnostic results compared to the conventional protocol, suggesting its potential for clinical utility.
Keywords: cervical spine, magnetic resonance imaging, fast imaging, deep learning

Introduction
Magnetic Resonance Imaging (MRI) of the cervical spine non-invasively delivers high-resolution visuals, capturing 
subtle changes in both the spinal cord and surrounding tissues.1,2 It excels in delineating soft tissues such as the spinal 
cord, nerves, and intervertebral discs.1 However, it confronts an inherent trade-off: prolonged acquisition time compro-
mises either spatial resolution or signal-to-noise ratio (SNR), thereby limiting its clinical utility. Time-consuming spine 
MRI increases the likelihood of patient movement, introducing artifacts or blurring into images.3 Moreover, extended 
MRI exams pose challenges for patients, especially those experiencing claustrophobia or difficulties in remaining still. 
Unfortunately, as the primary participants for spinal MRI, seniors or patients with severe spinal disease are more likely to 
be distressed about staying still for long periods, which further raises the opportunity of motion artifacts during exams.

In the past three decades, various acceleration techniques have been introduced in MRI.4–7 Parallel imaging harnesses 
multiple receiver coils to simultaneously collect the MRI data.8 Partial Fourier capitalizes on inherent data redundancy 
due to Hermitian symmetry, collecting only a fraction of the k-space.9 Compressed sensing undersamples the k-space 
leveraging sparsity of images.10 Nowadays, by integrating these acceleration techniques, routine spine MRI has already 
trimmed its total acquisition time to approximately 5 minutes without compromising diagnostic performance.5 However, 
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the footsteps towards faster skeletal imaging should not be ended. Despite the achievement, spine MRI still holds much 
longer acquisition time compared to CT.

Recently, deep learning (DL) assisted image optimization has brought fresh possibilities in medical imaging, 
especially for MRI.11 The critical idea of DL approaches is to exploit the empirical information of structures and 
patterns from previously acquired images. In addition to image quality improvement, a common strategy is to speed up 
sequences with fewer acquisitions while recovering quality to clinically acceptable standards, using this empirical 
information.11 Different technical branches have been established, including DL-based reconstruction and post- 
processing. The former is currently popular, including algorithms provided by several MR vendors.12–15 However, 
reconstruction relies on the utilization of raw k-space data. Therefore, retrospective use of previous images is almost 
impossible. Also, it is hard to imagine inter-vendor universality for these approaches due to commercial reasons. In 
contrast, DL-based post-processing approaches are free from these drawbacks. Denoising techniques excel in estimating 
noise from true signal.16 Image sharpening estimates the boundaries of anatomy or lesions, quite useful in spine MRI 
where tiny structures and air-filler cavities exist.17 DL super-resolution, compared to zero-filling or bi-spline interpola-
tions, performs better by training from the low- and high-resolution MRI dictionaries.18 Applications of these raw-data- 
free methods in musculoskeletal MRI are emerging.19 Importantly, these image enhancement approaches are independent 
of the existing acceleration techniques like parallel imaging and compressed sensing, and could in principle integrate 
with them.20 Strategies of ultrafast acquisition for spine imaging under 2 minutes, with the cooperation of DL 
reconstruction, have already emerged.20,21 However, research on ultrafast skeletal MRI strategies using post- 
processing DL methods is still rare to our knowledge.

In this study, we proposed a set of ultrafast cervical spine MRI protocols utilizing a deep learning-assisted 3D 
iterative image enhancement (DL-3DIIE) system to achieve a total acquisition time of 2 min. To explore whether these 
protocols reserve the feasibility for diagnosis in outpatient physical examination, we compared them with the conven-
tional protocol set accelerated by parallel imaging, which is in routine usage of clinical practice.

Materials and Methods
Participants
The prospective study was approved by the local ethics committee of West China Hospital and written informed consent 
was obtained for all patients. All procedures performed in studies involving human participants were in accordance with 
the 1975 Declaration of Helsinki, as revised in 2013. Sixty participants who felt discomfort in the spine or surrounding 
muscles were consecutively recruited from the physical examination center of our hospital for spine MRI examination 
between September 2022 and July 2023. Participants were excluded if: 1) no complete cervical spine MRI scan; 2) the 
presence of metallic hardware and excessive motion artifacts seen on MRI scans rendering images non-diagnostic. 
Finally, 51 patients were included in our study. For each participant, we collected a range of data that included 
demographic and clinical information, patient history, and MRI data.

Image Acquisition
Cervical spine MRI examinations were conducted using a 1.5 T MRI scanner (Avanto, Siemens Healthineers, 
Erlangen, Germany) equipped with a 32-element phased-array surface spine coil. All patients underwent conventional 
and ultrafast protocols, and both protocols included three sequences: sagittal T1-weighted (T1WI) and T2-weighted 
(T2WI), and axial T2-weighted images. The overall strategy of our ultrafast protocols is (1) reduce the number of 
averages to shorten the acquisition time at the cost of reduced SNR; (2) reduce the in-plane resolution to increase the 
SNR as well as shorten acquisition time; (3) compensate for the reduced SNR and blurred edges by applying patch- 
based iterative denoising and machine-learning super-resolution; (4) All other parameters, including thickness and 
parallel imaging accelerating factor, were kept still if possible. As a result, the total acquisition time of the ultrafast 
protocol was reduced to 2 min, while that of the conventional protocol was 6 min 14s. The detailed MRI protocols are 
presented in Table 1.
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Deep Learning-Based Image Enhancement
The DL-3DIIE system works on an external workstation (iQMR, Medic Vision Imaging Solutions, Tirat Carmel, Israel) 
which is FDA-approved. It includes only post-processing procedures, without k-space data involved. The original MR 
images from the scanner are transmitted to the workstation for the following procedures:

(1) Initialization: The images first underwent an inverse-Fourier transformation. An initial denoising was performed 
using a k-space filter, aimed to improve the stability of the further steps.22

(2) DL Super-Resolution: A zero-filling by 1.75 was performed to obtain pseudo high-resolution images. After that, 
a pre-trained deep learning model using convolutional neural networks (CNN)-based filtering was utilized for the 
super-resolution. It was trained using more than 30,000 multi-vendor MRI sequences including 400,000 2D 
human images. The input data for training was low-resolution images down-sampled by a designed k-space filter, 
while the ground truth for training was the unfiltered high-resolution images.

(3) Iterative Enhancement: This step takes advantage of the self-similarity of the image. A 3D patch decomposition 
was applied with both the patch features and noise estimation updated in each iteration, similar to other classic 
patch-based self-similarity learning approaches.23 This image enhancement method was developed from the non- 
local means method,24 and was previously applied in brain MRI and low-dose CT studies.25,26

(4) Convergence: Ideally, the separated real MR image should be smooth, while the noise map should follow 
Gaussian distribution or at least with degraded structural details.24,27 Therefore, convergence criteria including 
patch similarity and noise variation were applied.

In summary, the DL-3DIIE system incorporates both a conventional patch-based method and a deep learning method. 
The whole procedure took approximately 20 seconds for each MR sequence. All the images are stored and analyzed in 
DICOM format.

Image Quality Assessment
The human eye is the golden standard for medical imaging quality. A bi-reader randomized, blinded assessment was taken to 
compare image quality. Two radiologists (HY and BJ with 8 and 6 years of experience in musculoskeletal radiology, respectively) 
independently reviewed all the images. The example of sagittal T1WI and T2WI, and axial T2WI obtained from conventional, 
ultrafast and ultrafast-DL-3DIIE protocols are shown in Figure 1. The conventional and ultrafast-DL-3DIIE images were 
evaluated separately and the order of cases in each evaluation was randomized. The observers, who were blinded to the clinical 
information and protocol type, assessed and graded the quality of images from the dimensions of artifacts, boundary sharpness, 

Table 1 Acquisition Parameters and Scan Times for Conventional and Ultrafast Protocols

Sequence Conventional Ultrafast Conventional Ultrafast Conventional Ultrafast

Sagittal T1WI (TSE) Sagittal T2WI FS (TSE-FS) Axial T2WI (GRE-FS)

TR/TE (ms) 440/11 440/11 2700/78 2700/78 447/21 383/18

Flip angle (°) 150 150 150 150 30 30
Field of view (mm) 240 x 240 240 x 240 240 x 240 240 x 240 180 x 180 180 x 180

Matrix size 384 x 268 256 x 180 384 x 308 256 x 205 384 x 308 256 x 205

Slice thickness (mm) 3.0 3.0 3.0 3.0 3.0 3.0
Echo train length 3 3 18 18 1 1

Number of averages 4 2 2 1 2 1

Acceleration factor 2 2 2 2 2 2
Scan time (min:s) 2:22 0:47 1:24 0:27 2:28 0:46

Total scan time (min:s) Conventional: 6:14 Ultrafast: 2:00

Abbreviations: FS, fat suppression; GRE, gradient recalled echo; TE, echo time; TR, repetition time; TSE, turbo spin echo; WI, weighted image.
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visibility of lesions and overall image quality, using a 5-point Likert scale (range: 1 = “worst” to 5 = “best”). Moreover, the SNRs 
of different regions, cord/cerebrospinal fluid (CSF) contrast and structural similarity index (SSIM) were calculated by each 
observer. Four circular regions of interest (ROIs) with a diameter of 3 mm were located in the spinal cord, CSF, vertebral body 
and intervertebral discs, respectively. The SSIM calculation was employed to assess for absolute errors (anatomic or pathologic 
data loss or aberration).

Diagnostic Assessment
After judging the image quality, the diagnostic assessment was carried out at the individual level. Based on strategies 
from previous studies.28–35 the radiologists independently recorded the presence or absence of pathologies of each 
participant, including central canal stenosis, foraminal stenosis, endplate degeneration, disc degeneration, and disc 
herniation. At this step, images of all three sequences (sagittal T1WI and T2WI, and axial T2WI) could be viewed by 
the radiologists. After assessing all the cases, the radiologists would discuss the cases with distinct records, and finally 
reach a consensus.

Figure 1 The example of sagittal T1-weighted (T1WI) and T2-weighted (T2WI), and axial T2-weighted images, obtained from conventional, ultrafast and ultrafast-DL-3DIIE 
protocols.

https://doi.org/10.2147/JMDH.S465002                                                                                                                                                                                                                                

DovePress                                                                                                                                         

Journal of Multidisciplinary Healthcare 2024:17 2502

Yao et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Statistical Analysis
The interchangeability of the two protocols was confirmed to assess whether a new imaging protocol can replace an 
existing one by ensuring that the agreement rate, when one observer uses the new technique, is not significantly 
lower than when both observers use the existing technique.36,37 We calculated the intra-protocol inter-observer 
agreement rate (both observers assessed the conventional protocol images) and the inter-protocol inter-observer 
agreement rate (one observer evaluated the conventional protocol images, while the other observer evaluated the 
ultrafast protocol images) for each variable. The individual equivalence index was obtained by subtracting the inter- 
protocol inter-observer agreement rate from the intra-protocol inter-observer agreement rate. Furthermore, we 
computed the 95% confidence interval (95% CI) using bootstrapping methods with 1000 repetitions. The inter-
changeability of the two protocols was established when the 95% CI of the individual equivalence index was less 
than 5%.

Cohen’s weighted kappa was used to evaluate inter-protocol intra-observer agreements of the two observers for all 
variables from the three cervical spine MRI sequences. We also assessed the intra-protocol inter-reader agreement (both 
readers evaluated the conventional protocol images) and inter-protocol inter-reader agreement. The kappa value was 
interpreted as follows: less than 0.20, poor agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61– 
0.80, good agreement; and 0.81–1.00, excellent agreement. Additionally, two-tailed t-tests or chi-squared tests were 
performed to assess the statistical significance of the differences for all variables from the ultrafast and conventional 
protocols. Power analysis was conducted using the scripts of sampsizepwr in Matlab (MathWorks, Natick, 
Massachusetts, USA) to calculate the power for the sample size in this study. All the statistical analyses were performed 
using MATLAB (MathWorks, Natick, Massachusetts, USA). The threshold for statistical significance was set at p < 0.05, 
using Bonferroni correction for multiple comparisons.

Results
Participant Characteristics
After enrollment and exclusion, we finally included 51 participants (31 men and 20 women; age, 51.7 ± 12.5 years; age 
range, 30–80 years) in this study. Among the cohort, 49 (96.1%) were diagnosed as single or multiple pathologies in the 
cervical spine, after the integration of image evaluation results by the two radiologists. The counts of each pathology 
were: central canal stenosis (9, 17.6%), foraminal stenosis (8, 15.7%), endplate degeneration (4, 7.8%), disc degeneration 
(47, 92.2%), disc herniation (45, 88.2%) and other pathologies (17, 33.3%).

Comparison of Qualitative Assessment
Artifacts were significantly reduced in ultrafast-DL-3DIIE images (including sagittal T1WI and T2WI, and axial T2WI) 
compared with conventional ones (p = 0.021, after Bonferroni correction). Boundary sharpness, visibility of lesions and 
overall image quality were not significantly different between the three kinds of images from the two protocols (all 
p values > 0.1, after Bonferroni correction). Inter-observer agreements (Cohen’s weighted kappa) between the two 
observers in the artifacts, boundary sharpness, visibility of lesions and overall image quality were all good: 0.65, 0.77, 
0.72, and 0.73, respectively (Table 2).

Comparison of Quantitative Assessment
The assessment results of SNRs and cord/CSF contrast noise ratio (CNR) are shown in Table 3. They all showed 
significant improvement for ultrafast-DL-3DIIE images, compared to the corresponding ultrafast and conventional 
ones (all p values > 0.05, after Bonferroni correction). Based on current sample size of 51 participants, the powers of 
the significant group differences for both qualitative and quantitative assessment were all larger than 0.80. 
Moreover, the quantitative assessment of image similarity using the SSIM was 0.95 ± 0.06 for ultrafast vs ultrafast- 
DL-3DIIE, which supported the absence of substantial anatomic aberration by deep learning processing of the 
source images.

Journal of Multidisciplinary Healthcare 2024:17                                                                                 https://doi.org/10.2147/JMDH.S465002                                                                                                                                                                                                                       

DovePress                                                                                                                       
2503

Dovepress                                                                                                                                                              Yao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Diagnostic Performance
The number of cases with different pathologies reported by the two observers is presented in Table 4. The pathologies 
included central canal stenosis (representative case: Figure 2a and b), foraminal stenosis (representative case: Figure 2c 
and d), endplate degeneration, disc degeneration (representative case: Figure 3a and b), disc herniation (representative 
case: Figure 3c and d) and others (hyperintense cord lesion, retro-odontoid pseudotumor, spinal lipoma, vertebral fracture 
and vertebral hypointense lesion). The diagnostic results were significantly indistinguishable based on the MR images 
from ultrafast-DL-3DIIE and conventional protocols (all p values > 0.05, after Bonferroni correction). Table 4 also shows 
the kappa values for the inter-protocol intra-observer agreement, intra-protocol (conventional vs conventional) inter- 
observer agreement, and inter-protocol inter-observer agreement. The inter-protocol intra-observer agreement (kappa 

Table 2 Qualitative Assessment and Comparison

Score (1–5) P-value Inter-Observer Agreement

Conventional Ultrafast-DL-3DIIE Ultrafast Conventional vs  
Ultrafast-DL-3DIIE

Avoidance of Artifacts 2.8 ± 0.6 3.2 ± 0.8 3.0 ± 0.7 0.021* 0.68 (0.62–0.74)
Boundary sharpness 3.8 ± 0.9 3.5 ± 0.7 2.5 ± 0.6 0.12 0.77 (0.73–0.81)

Visibility of lesions 3.8 ± 0.8 3.6 ± 0.7 2.8 ± 0.5 0.44 0.72 (0.69–0.75)

Overall image quality 3.5 ± 0.8 3.4 ± 0.6 2.5 ± 0.5 > 0.90 0.73 (0.68–0.78)

Notes: Cohen’s weighted kappa values (95% confidence interval) for inter-observer agreement are shown. The p values were calculated with two-tailed t-tests, after 
Bonferroni correction for multiple comparisons. The symbol (*) indicates being significant. 
Abbreviation: DL-3DIIE, deep learning-assisted 3D iterative image enhancement.

Table 3 Quantitative Assessment and Comparison

Measurement P-value

Conventional Ultrafast-DL-3DIIE Ultrafast Conventional vs  
Ultrafast-DL-3DIIE

Sagittal T1-weighted image

SNR (spinal cord) 61.2 ± 21.3 115.4 ± 40.5 58.2 ± 20.1 < 0.001

SNR (CSF) 29.9 ± 9.8 53.4 ± 16.5 32.4 ± 9.3 < 0.001
SNR (vertebrae) 107.3 ± 36.7 200.4 ± 68.7 101.5 ± 39.2 < 0.001

SNR (disc) 61.9 ± 17.3 118.8 ± 39.4 63.2 ± 18.1 < 0.001

Cord/CSF CNR 31.3 ± 8.7 62.0 ± 25.1 25.8 ± 9.4 < 0.001

Sagittal T2-weighted image

SNR (spinal cord) 70.3 ± 25.8 164.6 ± 65.5 73.1 ± 22.4 < 0.001

SNR (CSF) 160.7 ± 56.4 405.4 ± 143.8 152.7 ± 50.5 < 0.001

SNR (vertebrae) 37.8 ± 12.9 91.5 ± 38.7 35.2 ± 11.9 < 0.001
SNR (disc) 41.2 ± 13.4 105.1 ± 39.5 39.1 ± 12.4 < 0.001

Cord/CSF CNR 90.4 ± 31.2 240.8 ± 88.3 89.6 ± 33.2 < 0.001

Axial T2-weighted image

SNR (spinal cord) 84.1 ± 31.8 174.2 ± 61.0 82.2 ± 30.1 < 0.001
SNR (CSF) 125.2 ± 46.9 259.3 ± 78.2 132.4 ± 39.3 < 0.001

SNR (vertebrae) 30.5 ± 11.4 57.1 ± 19.8 29.3 ± 9.2 < 0.001

SNR (disc) 71.8 ± 21.5 156.2 ± 49.5 63.2 ± 18.1 < 0.001
Cord/CSF CNR 41.1 ± 15.7 85.1 ± 28.5 50.2 ± 17.7 < 0.001

Note: The p values were calculated with two-tailed t-tests, after Bonferroni correction for multiple comparisons. 
Abbreviations: CNR, contrast noise ratio; CSF, cerebrospinal fluid; DL-3DIIE, deep learning-assisted 3D iterative image 
enhancement; SNR, signal-to-noise ratio.
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values [95% CI]) between the observers in the evaluation of pathologies was good-to-excellent for ultrafast-DL-3DIIE 
and conventional images: 0.85 [0.81–0.89], 0.87 [0.85–0.89], 0.67 [0.61–0.73], 0.65 [0.60–0.70], 0.88 [0.85–0.91], 0.82 
[0.78–0.86], respectively.

Table 5 exhibited the intra-protocol (conventional vs conventional) inter-observer and inter-protocol inter-observer 
agreement rates. It also showed the 95% CIs for the individual equivalence indices. For central canal stenosis, foraminal 
stenosis, endplate degeneration, disc herniation, and other pathologies, the highest upper bound of the 95% CI was within 
5%, suggesting that the two protocols can be used interchangeably. However, the upper bound for disc degeneration was 
slightly higher at 5.45%.

Discussion
In summary, our study investigated both the image quality and diagnostic parity of our ultrafast cervical spine MRI 
protocols, which harnesses the DL-3DIIE system, against the traditional approach. Generally, the ultrafast-DL-3DIIE 

Table 4 Integrated Results of Diagnostic Performance by Two Observers

Count of Cases  
(With/Without)

P-value 
Conventional vs 

Ultrafast-DL-3DIIE

Inter-Protocol 
Intra-Observer 

Agreement

Intra-Protocol 
Inter-Observer 

Agreement

Inter-Protocol 
Inter-Observer 

Agreement
Conventional Ultrafast- 

DL-3DIIE

Central canal 

stenosis

9/42 10/41 > 0.90 0.85 (0.81–0.89) 0.73 (0.69–0.77) 0.72 (0.68–0.76)

Foraminal stenosis 8/43 9/42 > 0.90 0.87 (0.85–0.89) 0.75 (0.72–0.78) 0.73 (0.70–0.76)
Endplate 

degeneration

4/47 8/43 0.36 0.67 (0.61–0.73) 0.54 (0.49–0.59) 0.51 (0.47–0.55)

Disc degeneration 47/4 41/10 0.15 0.65 (0.60–0.70) 0.51 (0.44–0.58) 0.50 (0.45–0.55)
Disc herniation 45/6 43/8 0.77 0.88 (0.85–0.91) 0.78 (0.74–0.82) 0.75 (0.72–0.78)

Other pathologies 17/34 14/37 0.67 0.82 (0.78–0.86) 0.68 (0.63–0.73) 0.66 (0.63–0.69)

Notes: Other pathologies included hyperintense cord lesion, retro-odontoid pseudotumor, spinal lipoma, vertebral fracture and vertebral hypointense lesion. Cohen’s 
weighted kappa values (95% confidence interval) for agreement evaluation are shown. The p values were calculated with chi-squared tests. 
Abbreviation: DL-3DIIE, deep learning-assisted 3D iterative image enhancement.

Figure 2 Sagittal T2-weighted images of a participant with central canal stenosis (C3-7 levels, Orange ellipses), were obtained from both conventional (a) and ultrafast-DL 
-3DIIE (b) protocols. And sagittal T2-weighted images of a participant with foraminal stenosis (C5-6 level, Orange arrows), obtained from both conventional (c) and 
ultrafast-DL-3DIIE (d) protocols.
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images met the performance of conventional MRI. The prevalence of various pathologies detected was comparable 
between the ultrafast-DL-3DIIE and standard protocols. This equivalence was further reinforced by strong inter-protocol 
intra-observer concordance across all evaluated features. These findings suggest that our ultrafast cervical spine MRI 
protocol with deep learning-based image post-processing algorithm stands as a viable, time-efficient alternative for rapid 
scanning in routine physical examinations.

Our study demonstrates a strategy that achieves a substantial two-thirds reduction in scan time without utilizing raw 
data. Previously, ultrafast skeletal protocols based on DL reconstruction claimed to slash 77~85% scan time with 
diagnostic equivalence.20,21 Our strategy reduces scan duration by 67% maintaining diagnostic ability with the help of 
the DL-3DIIE system. Please note, that despite the similar resolution, the conventional protocols in the previous 
studies20,21 present a significantly longer duration than ours (187–193 vs 125 seconds per sequence). Also, the large 
reduced acquisition time has contributors of compressed sensing and enlarged slice thickness, which is controlled in our 

Figure 3 Sagittal T2-weighted images of a participant with disc degeneration (C3-4, C4-5 and C5-6 discs, Orange ellipses), were obtained from both conventional (a) and 
ultrafast-DL-3DIIE (b) protocols. And sagittal T2-weighted images of a participant with disc herniation (C5-6 disc, Orange arrows), obtained from both conventional (c) and 
ultrafast-DL-3DIIE (d) protocols.

Table 5 Interchangeability Results for Two Protocols

Inter-Observer  
Agreement Rate

95% CI of the Individual  
Equivalence Index (%)

Central canal stenosis Intra-protocol 52.9% −2.93 to 1.13

Inter-protocol 53.9%

Foraminal stenosis Intra-protocol 60.8% −1.67 to 3.34
Inter-protocol 58.8%

Endplate degeneration Intra-protocol 78.4% −5.33 to 1.76

Inter-protocol 79.4%
Disc degeneration Intra-protocol 92.1% −2.11 to 5.45

Inter-protocol 91.1%

Disc herniation Intra-protocol 76.5% −2.42 to 4.41
Inter-protocol 74.5%

Other pathologies Intra-protocol 82.4% −3.51 to 4.78

Inter-protocol 81.4%

Note: Other pathologies included hyperintense cord lesion, retro-odontoid pseudotumor, spinal lipoma, 
vertebral fracture and vertebral hypointense lesion. 
Abbreviation: CI, confidence interval.
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study. In our strategy, the original ultrafast protocol maintains a high tissue SNR, providing a foundation for subsequent 
super-resolution and patch decomposition. This yields a crisp delineation of spinal components, including the spinal cord, 
CSF, vertebral bodies, and discs. Additionally, we noted an improved score in artifact reduction, likely due to reduced 
patient movement within the shortened scan durations. As expected, spine examination participants in our cohort were 
middle-aged or elderly people (average age 51.7±12.5), almost all suffering from musculoskeletal discomfort. The 
occurrence of motion artifacts does decrease compared to the routine 6-minute scan, as an expected advantage for such 
a strategy. Notably, the inferior score for the original ultrafast images might relate to increased Gibbs ringing from larger 
voxel sizes, which was effectively mitigated by the super-resolution.

Common pathology observed in spine MRI exams includes herniation, stenosis and degeneration. The former two are 
geometric changes while the last is contrast alteration. In this study, outpatients from a physical examination center turned out 
to be diagnosed with varied mild pathologies like central canal stenosis, foraminal stenosis, and disc issues. These conditions, 
often detectable by structural or contrast changes, are amenable to our acceleration approach. However, endplate degenera-
tion seems to be an easily missed pathology for a single reader on the ultrafast protocol. Similar reports were found in the 
literature.21 This might be explained by the magnified truncation artifacts parallel to the vertebral endplate in sagittal spine 
MRI due to fewer phase encoding steps. Minor anomalies, such as those at nerve rootlets requiring higher resolution, eluded 
our reduced-resolution protocol. Despite this, nerve rootlet assessment is not standard and is better served by higher-field 
MRI.38 Comparatively, while the accelerated images slightly lose detail, the overall case detection rate aligns closely with the 
conventional protocol, underpinned by strong inter-protocol intra-observer concordance. To gain clinical endorsement, 
accelerated MRI must pass both participant and lesion-based tests for non-inferiority and uphold diagnostic accuracy. 
Leveraging a pathology grading system, Yasaka et al39 reported deep learning’s contribution to a notable rise in inter- 
observer consistency for spinal canal and neuroforaminal stenosis evaluation, even with fewer acquisitions. Kashiwagi et al21 

also confirmed the ultrafast protocol with DL reconstruction as a viable substitute for the traditional protocol, barring some 
nuances in endplate degeneration assessment. Our findings, alongside previous research, underscore the promise of DL in 
expediting standard spine MRI workflows without significant diagnostic trade-offs.

Our investigation offers new inspiration for ultrafast musculoskeletal MRI, by serially using conventional non-local 
means of denoising and DL super-resolution. Similar studies mainly concentrate on DL reconstruction12–15,20,21 instead 
of DL post-processing, yet the latter holds inherent advantages of scanner-neutrality, flexibility, and capability for 
retrospective data leveraging. A workflow integrating post-processing techniques, both DL-based and conventional, is 
free to construct and optimize without any vendor or scanner restriction. In fact, the 3D iterative imaging enhancement 
applied in this study has been utilized in previous brain MRI and even CT studies without the DL module.25,26 On the 
other hand, the advantage of discerning anatomical features through extensive training on large datasets is still reserved 
in DL post-processing techniques.40 Such approaches are increasingly reported to show the ability to surpass traditional 
image enhancement approaches, which typically sacrifice structural clarity for noise reduction.41 In this study, the 3DIIE 
algorithm contains patch-based self-similarity learning. This might be especially suitable for musculoskeletal MRI, where 
boundary delineation of components is of major clinical value. However, how effective could this approach be applied to 
other systems apart from the spine needs further validation.

We acknowledge the limitations of our research, particularly the small, specialized cohort and the use of a singular 1.5 
T MRI scanner from one vendor, which may affect the broad-based application of our findings. Future research should 
broaden the scope with larger, varied cohorts and incorporate multi-vendor validation to fully ascertain the effectiveness 
and versatility of the ultrafast spine MRI protocol with the DL-3DIIE system. Furthermore, the implications of the DL- 
3DIIE system on diagnostic accuracy remain undefined, necessitating future comparative studies. These studies should 
aim to clarify the system’s diagnostic impact across a wider array of spinal pathologies in a routine clinical setting.

Conclusion
Our investigation offers initial proof that the ultrafast cervical spine MRI protocol incorporating the DL-3DIIE system 
matches or surpasses the conventional protocol in qualitative, quantitative, and diagnostic outcomes. This supports the 
potential of the ultrafast approach for standard cervical spine MRI examinations.
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