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Purpose: Sleep structure is crucial in sleep research, characterized by its dynamic nature and temporal progression. Traditional 30- 
second epochs falter in capturing the intricate subtleties of various micro-sleep states. This paper introduces an innovative artificial 
neural network model to generate continuous sleep depth value (SDV), utilizing a novel multi-feature fusion approach with EEG data, 
seamlessly integrating temporal consistency.
Methods: The study involved 50 normal and 100 obstructive sleep apnea–hypopnea syndrome (OSAHS) participants. After 
segmenting the sleep data into 3-second intervals, a diverse array of 38 feature values were meticulously extracted, including 
power, spectrum entropy, frequency band duration and so on. The ensemble random forest model calculated the timing fitness 
value for all the features, from which the top 7 time-correlated features were selected to create detailed sleep sample values ranging 
from 0 to 1. Subsequently, an artificial neural network (ANN) model was trained to delineate sleep continuity details, unravel 
concealed patterns, and far surpassed the traditional 5-stage categorization (W, N1, N2, N3, and REM).
Results: The SDV changes from wakeful stage (mean 0.7021, standard deviation 0.2702) to stage N3 (mean 0.0396, standard 
deviation 0.0969). During the arousal epochs, the SDV increases from the range (0.1 to 0.3) to the range around 0.7, and decreases 
below 0.3. When in the deep sleep (≤0.1), the probability of arousal of normal individuals is less than 10%, while the average arousal 
probability of OSA patients is close to 30%.
Conclusion: A sleep continuity model is proposed based on multi-feature fusion, which generates SDV ranging from 0 to 1 
(representing deep sleep to wakefulness). It can capture the nuances of the traditional five stages and subtle differences in microstates 
of sleep, considered as a complement or even an alternative to traditional sleep analysis.
Keywords: sleep depth value, sleep continuity, EEG features, timing fitness, ANN model

Introduction
At present, polysomnography (PSG), which can evaluate the sleep structure of patients, is the most important evaluation 
method for diagnosing sleep disorders such as narcolepsy and sleep apnea syndrome. PSG involves the simultaneous 
recording of multiple physiological parameters during sleep, including electroencephalography (EEG) to measure brain 
activity, electrooculography (EOG) to track eye movements, and electromyography (EMG) to assess muscle tone. 
Additionally, it monitors respiratory effort and airflow, heart rate, and oxygen saturation levels to detect any disruptions 
in breathing. These signals are crucial for identifying the specific characteristics of sleep disorders and for determining 
the most appropriate treatment strategies. Following the Rechtschaffen and Kales rules (R&K rules), the state of PSG 
data (30 seconds as a period) is described as one of the five sleep stages,1 which are wake (w), non-rapid eye movement 
period (N1, N2, N3) and rapid eye movement period (REM). However, in practice, as an insufficient description of sleep 
processes, also affected by subjective or objective conditions, the main drawback of R&K rules is that the results can lead 
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to a lack of consistency.2 Although the sleep process can be described as one of the five sleep stages, the low temporal 
resolution and insufficient number of stages actually destroys the continuity of the sleep process, resulting in a rough 
sleep structure, which cannot reflect the sleep details when analyzing the data of sleep disorders. In recent years, the 
analysis of polysomnography data mostly focuses on the study of automatic sleep staging as opposed to manual methods, 
aiming to facilitate rapid and precise automated classification. Essentially, there are two primary approaches: the 
conventional machine learning method, which relies on statistical features, and the deep learning approach, grounded 
in various neural network architectures.

In the conventional approach, the foundation of automatic sleep staging lies in the extraction of sleep features and the 
application of diverse classification algorithms, including support vector machines, random forests, and others.3–5 The 
researchers selected features ranging from the time domain, frequency domain, to nonlinear characteristics for automatic 
sleep staging.6 Multiscale entropy, which exhibited significant differences across distinct sleep stages, was selected as 
a key feature.7 In the frequency domain, the power spectrum and power ratio of different frequency feature waves 
obtained through wavelet transform were excellent features.8 In nonlinear features, it was found that measures such as 
correlation dimension, Lyapunov exponents, approximate entropy, and detrended fluctuation analysis were typical 
features.9 In the choice of classifier models, some opted for Random Forest,10 while others used Linear Discriminant 
Analysis (LDA),11 with accuracy rates around 80% to 90%. The research above clearly shows that the cornerstone of 
research in automatic sleep staging lies in the analysis of characteristics derived from sleep data.

Compared with the traditional approach, the deep learning methods of staging do not require strict feature extraction 
but highly affected by the design of neural network structure and the computing ability of the computer.12–14 It could 
achieve an accuracy rate of 84.5% using neural networks.15 The researchers employed Multilayer Perceptron (MLP) 
neural networks for automatic sleep staging,16 reaching an accuracy rate of 74.7%. A one-dimensional convolutional 
network for sleep staging was proposed,17 achieving an accuracy rate of 87%. Recurrent Neural Networks (RNNs) for 
sleep staging could reach accuracy rate of 87.2%.18 A new network for sleep staging called Deepsleepnet,19 which 
utilized two convolutional neural networks to extract time-frequency features from EEG data, combined with Long 
Short-Term Memory (LSTM) networks to extract associations between different sleep stages, reached an accuracy rate of 
82.0%. Some researchers developed a deep learning model based on images for automatic sleep staging, using Class 
Activation Maps to visualize key reasoning areas,20 with an accuracy rate exceeding 80%, while others employed 
a multimodal architecture with residual units to address the vanishing problem in deep learning,21 achieving 
a classification accuracy rate of 87.34% and an F1-score of 87.42%. For sleep staging based on deep learning, the 
requirements for feature extraction are not high; however, overall, the staging accuracy results do not significantly 
outperform machine learning algorithms based on feature selection.

Given the continuous and intricate nature of the sleep process, some researchers pointed out that relying solely on 30- 
second epochs to categorize it into five distinct stages could pose certain challenges in achieving accurate sleep staging.22 

For instance, a 30-second interval classified as wakefulness might encompass brief sleep episodes of less than 15 
seconds. Once the threshold of 15 seconds is surpassed, the stage is then categorized as sleep. Conversely, in intervals 
designated as sleep, it was specified that any periods of wakefulness lasting less than 15 seconds were overlooked.23 

Additionally, the background EEG activity within the same sleep stage can exhibit significant visual differences across 
various periods and among different patients. Some researchers mentioned that aside from sporadic spindles or 
K-complexes, the EEG activity in N2 may closely resemble that of N1.24

Currently, these studies aim to investigate the fundamental mechanisms of sleep; however, the clinical significance of 
these gradual changes in the EEG remains unclear. Therefore, a measure of sleep continuity is highly beneficial for 
examining the intricate sleep process. For instance, patients with equivalent N2 sleep durations may exhibit substantial 
differences in their average sleep depth as revealed through continuity measure analysis. At present, few researchers employ 
continuous quantities to characterize the sleep/wake state. An EEG analysis technique has been introduced that employs 
a 10th-order autoregressive (AR) model to fit the EEG signal on a second-by-second basis using the Burg algorithm, which 
estimates AR model coefficients through the least squares method. The resulting 10 AR coefficients constitute the feature 
vector, which is then utilized to train a multilayer perceptron (MLP) model. The model’s output is a three-dimensional vector 
that represents the probabilities associated with wakefulness, REM sleep, and deep sleep.25 However, the paper in question 
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did not address the suitability of the 10 AR coefficients as features and did not consolidate the three probabilities into 
a unified sleep probability value, which could more accurately reflect the cohesive nature of the sleep process. In a separate 
study, the primary objective was to detect and quantify sleep arousals by measuring or quantifying sleep depth. This was 
achieved predominantly through autoregressive (AR) power spectral density (PSD) estimation to obtain the time-frequency 
map of the EEG signal during sleep arousals. The classification performance of potential standard signals was evaluated 
under various criteria using ROC curve analysis. The findings suggested that the sum of the absolute powers in the alpha and 
beta bands, as indicated by AUC analysis, served as a reliable continuous marker for sleep depth.26 Nevertheless, this paper 
did not examine multiple features during the sleep process, and the AR PSD, while a valid feature extraction method, was not 
the sole approach. The paper acknowledges that sleep arousal is a complex phenomenon that may not be entirely defined by 
changes in the EEG signal’s spectral characteristics. Although ROC and AUC, based on statistical methods, can serve as 
markers for sleep depth, they do not inherently form a continuous model from sample data values but rather offer a data- 
driven analytical approach. Additionally, some researchers have developed a ratio-based index termed the odds ratio product 
(ORP), designed to assess the likelihood of wakefulness based on the power values of four distinct waveforms: delta, theta, 
alpha, and beta. This method segments the statistical samples of these four features into 10 intervals, creating 10,000 unique 
combinations, each with a distinct ID. Consequently, every 3-second EEG segment is assigned a specific ID, and the ratio of 
wakefulness to sleepiness under that ID is computed and scaled to a range between 0 and 2.5, thereby reflecting the 
continuous state of sleep.27 While this approach allows for a more refined categorization of sleep states compared to the 
traditional 5-category sleep staging, it essentially provides a discrete empirical statistical samples value rather than a true 
continuous measure. Furthermore, the paper does not justify the choice of the four waveform power spectrum features, 
resulting in a shortfall in the analysis of the selected features.

Among the various methods for collecting, organizing, and studying continuous representations of sleep process, 
many researchers have conducted more in-depth studies building on the foundation of ORP method. The product ratio 
method was employed to compute results as a basis for interpreting studies using novel sleep EEG biomarkers, aiding in 
the differentiation between insomnia and OSA.28 Meanwhile, it also applied to obtain information on sleep disorders that 
traditional indicators could not capture.29 The sleep structure types were generated to identify patients adversely affected 
by OSA and predicted patients whose sleep would improve with CPAP treatment.30 At the same time, it was employed in 
sleep scoring to accurately estimate the scorer’s ability in sleep staging, and reduce inter-rater disagreement.31 The 
product ratio method was also utilized to appraise the intervention-related alterations in non-REM sleep depth.32 Some 
researchers employed the product ratio method and discovered a novel association between sleep depth EEG biomarkers 
and adolescent sleep apnea.33 It was used to identify the correlation between slow wave activity in children and 
adolescents and the internalization of product ratio indicators.34 However, all the research above has been customary 
to employ waveform power values as variables in the computation of a continuous index used for evaluating sleep depth. 
Nevertheless, compared to many other sleep characteristics, whether the timing fitness of power value features is most 
appropriate for the sleep depth index remains an area that requires more comprehensive investigation.

In this paper, we first generate the sample values of continuous sleep depth based on the fusion of multiple features, 
which is an empirical value that makes no a priori assumptions about what constitutes awake or sleeping EEG patterns. 
Next, we train artificial neural networks using this measure samples to produce a Sleep Depth Value (SDV) and evaluate 
its effectiveness. The paper demonstrates that (a) the SDV accurately predicts when a patient is awake, asleep, or in an 
ambiguous state; (b) from the statistical samples, it is evident from the awake to N1 and N3 stages, both the mean and 
standard deviation of the sleep sample values and SDV progressively decrease; (c) in the same R&K stage, the scale of 
SDV is highly variable within and between epochs and patients; and (d) the pattern of change in the SDV aligns with the 
occurrence of arousals, making it useful for their detection.

Methods
Data Processing Procedure
The datasets were provided by the Department of Respiratory Sciences of Binzhou Medical College, including 50 groups 
of normal and 100 groups of obstructive sleep apnea–hypopnea syndrome (OSAHS), which were collected and generated 
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by the Computerics E multi-channel sleep instrument. The total duration was around 1400 hours, including 3 EEG 
pathways, 2 EOG pathways, 1 EMG pathway, and other pathway signals such as electrocardiogram (ECG) and blood 
oxygen saturation detection. Signals were captured at a sampling rate of 256 Hz. An accomplished polysomnographic 
(PSG) technologist reevaluated the recordings, meticulously scoring each 30-second interval for sleep stages, arousals, 
and respiratory activities in compliance with the American Academy of Sleep Medicine’s standards.

The algorithm was developed by Matlab R2018b with machine learning toolbox. The computer used for processing contained 
CPU i7-8700, 32G RAM, 2T HDD and so on. Figure 1 presents the flow diagram, which is composed of three distinct parts:

Figure 1 (A–C) Flow chart of the algorithm.
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In part A, the pre-processing of EDF data, which includes the manual labeling of sleep stages and arousal 
information, is completed. This part encompasses feature extraction, standardization, and the computation of the 
Wake/Asleep ratio;

In part B, calculating and ranking the features by the time sequence fitness firstly; Then calculating, shuffling and 
combining the awake/(awake + sleep) ratio as the sleep depth sample values based on the features with high timing 
fitness scores;

In part C, based on all annotated data, we derive a comprehensive training candidate data set through multi-feature 
fusion and subsequently construct and evaluate an Artificial Neural Network model, which is capable of estimating the 
sleep depth value (SDV) for any PSG record independent of manual sleep staging and arousal labeling. The model’s 
efficacy is systematically validated.

Multi-Feature Selection
For the EEG signal, given its weak nature and the presence of substantial background noise, it is easy to be interfered 
from sources such as facial muscle and eye movement activities. As a non-stationary stochastic signal, feature extraction 
poses a significant challenge. Consequently, following the AASM-recommended filtering criteria for each channel 
(bandwidth standard of the EEG signal band-pass filter set between 0.3 and 35Hz), a Butterworth filter with 
a passband frequency of 0.3 to 35Hz has been implemented for filtration purposes.

In this paper, we selected a total of 38 time and frequency features, which are as follows, numbered from F1 to F38, 
in which F1 is average energy in the frequency domain, F2 to F5 are relative energy of alpha, beta, theta, and delta 
waves, F6 to F9 are absolute energy of alpha, beta, theta, and delta waves, F10 to F16 are ratios of band energies: delta/ 
alpha, delta/beta, delta/theta, theta/alpha, theta/beta, alpha/beta, (delta + theta)/(alpha + beta), F17 to F21 are mean, root 
mean square, variance, skewness and kurtosis, F22 to F25 are duration of alpha, beta, theta, and delta bands (Short-time 
Fourier transform threshold settings: delta = 50μV, theta = 25μV, alpha = 25μV, beta = 25μV), F26 is spectral entropy, 
F27 to F30 are local mean difference values of alpha, beta, theta, and delta waves, F31 to F34 are local entropy of alpha, 
beta, theta, and delta waves, F35 to F38 are maximum amplitude values of alpha, beta, theta, and delta bands.

In this study, we employed a random forest model with all 38 features to evaluate the temporal consistency between 
input features and manually annotated sleep stages. The model’s construction process, which involves the random 
selection of features from multiple decision trees, places significant emphasis on the number of segmentation points 
a feature can provide as a key measure of its classification accuracy. A higher number of segmentation points indicate 
greater significance for the feature. Throughout the training process, we meticulously documented various metrics, 
including the total number of feature splits and total information gain, with an average calculated over multiple iterations 
to quantify the temporal consistency of the features. Notably, Features 6 through 9, representing the power value 
characteristics of alpha, beta, theta, and delta waves, exhibited pronounced temporal characteristics, with the beta 
wave feature being particularly notable for its high timing fitness. After thorough analysis and scoring, we identified 
Feature 7 (Absolute energy of beta waves), Feature 14 (The ratio of energy bands for theta to beta), Feature 18 (Root 
mean square of the signal), Feature 23 (Duration of the beta band with a short-time Fourier transform threshold setting of 
25μV), Feature 26 (Spectral entropy), Feature 32 (Local entropy of beta), and Feature 33 (Local entropy of theta) as 
having a high temporal fit, making them particularly relevant for the temporal consistency analysis of sleep stages. These 
findings are illustrated in Figure 2, which provides an analytical chart focusing on the temporal consistency of the 38 
features, highlighting the estimations of these specific features.

Calculation of SDV Sample Values
First, during data processing, each 3-second period is marked as wakefulness or sleep; specifically, phase W and the 
period contain arousal are categorized as wakefulness, while all other stages are considered sleep; second, to analyze 
sleep data with multiple features, we begin with selecting the basic waveform energy value feature as the foundation for 
statistical distribution, which are divided into 10 equal sample intervals, and formed a variety of energy combination 
values for the four fundamental waveforms: alpha, beta, theta, and delta; third, for each waveform power combination 
value, we count the number of occurrences corresponding to wakefulness and sleep, and then calculate the ratio of 
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wakefulness to the sum of sleep and wakefulness, which serves as the baseline value for sleep depth; Fourth, after 
building on this baseline value, the temporal consistency of multiple features is considered and the top N features (in this 
case, temporarily set at 7) are selected to compute a ranked combination based on the characteristic values of these 
N features. Each combination will comprise several baseline sleep depth values; fifth, to obtain a representative SDV 
sample value after feature fusion for an N-feature combination, we weigh each feature by its temporal consistency degree 
and calculate the weighted average. This approach ensures that features with higher temporal consistency contribute 
more significantly to the final sleep depth estimation.

Table 1 is the statistical result of the SDV sample values of all the data, including the average numbers of 3-second 
period, percentages of total, the mean and standard deviation of SDV sample values in each sleep stages. In Table 1, as 
sleep stages change from Awake to N3, the mean value of the SDV samples decreases from 0.7 to 0.03, and the variance 
drops from approximately 0.27 to around 0.09. This indicates that the closer to the awake state, the greater the fluctuation 

Figure 2 Multi-feature selection based on timing fitness.

Table 1 Statistical Results of the Sleep Depth Sample Values

Sleep Stages Mean of # 3s  
Epochs/Patient

Std of # 3s  
Epochs/Patient

Percentage  
in Total (%)

Mean of SDV Std of SDV

Awake 2397 1645 24.87 0.7021 0.2702

N1 803 672 8.33 0.2353 0.2709

N2 3380 1067 35.07 0.1202 0.1907

N3 1664 486 17.27 0.0396 0.0969

REM 1393 567 14.46 0.1847 0.2043

Notes: Results expressed as arithmetic mean and standard deviations. “Mean and Std of # 3s epochs/patient” and “Percentage in 
Total” are calculated based on the manual labeled data. “Mean and Std of SDV” are calculated based on sleep depth sample values. 
Abbreviations: # 3s epochs/patient, Number of 3s epochs per patient; SDV, Sleep Depth Value; Std, Standard Deviation.

https://doi.org/10.2147/NSS.S463897                                                                                                                                                                                                                                  

DovePress                                                                                                                                                        

Nature and Science of Sleep 2024:16 774

Cui et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


in sleep depth, whereas proximity to deep sleep is associated with less variability. Moreover, during the REM stage, both 
the mean and variance of the Sleep Depth Value (SDV) samples increase in comparison to those in the N3 stage, 
indicating that arousals contribute to fluctuations in the sleep process, which aligns with observations from real-world 
sleep patterns.

Table 1 shows the statistical results of sleep depth sample values. However, for different EEG data sets, the results 
will differ. Figure 3 is the sequence diagram of SDV sample values after multi-feature fusion finally generated from 
specific EEG data. In Figure 3, (a) is the manually calibrated sleep staging map, and (b) is the generated SDV sample 
value map for every 3 seconds. It can be seen from the above figure that the sample value of sleep depth calculated 
according to 3 seconds can basically reflect the continuity of the sleep process. From phase W to phase N3, it is 
a continuously changing process. In phase N3 and phase N2, it can be seen that the sleep depth values are convex, which 
can reflect the change of sleep depth during sleep. Even in the same sleep period, the sleep depth values are different. If 
we only consider the sleep stages, we cannot see the changes in sleep during a certain sleep period.

From a statistical perspective, we combine the manually marked sleep staging results and sleep depth sample values 
after multi-feature fusion. The distribution of sample values in different sleep stages is counted, and the results are shown 
in Figure 4. The x-axis is mapped to the various sleep stages, namely Wake (W), N1, N2, N3, and REM, whereas the 
y-axis depicts the corresponding values for sleep depth, scaled from 0 to 1. Within this spectrum, a value of 0 signifies 
the deepest sleep, and a value of 1 denotes the state of complete wakefulness. It can be seen from the figure that the 
distribution range of sample values of sleep depth in phase W is 0.7–1, with an average above 0.8, 0.1–0.4 in phase N1, 
with an average of about 0.3, 0–0.2 in phase N2, with an average of about 0.12, 0–0.08 in phase N3, with an average of 
under 0.05, 0.15–0.3 in phase REM, with an average of about 0.2. The statistical results from a single data set differ from 
those of multiple data sets in Table 1 particularly in terms of mean and variance. It is also evident that there are some 
outliers in different sleep stages, which are directly related to the individuals being tested. Therefore, it is necessary to 
establish an accurate SDV prediction model based on the statistical sleep depth samples.

Figure 3 Comparison between sleep depth samples and sleep stages. (a) is the manually calibrated sleep staging map, with the horizontal axis representing time points (a 
point every 3 seconds), and the vertical axis representing sleep stages; (b) is the SDV sample values map for every 3 seconds.
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Development of the ANN Model
From the above discussion, it is evident that statistical sample values of sleep depth are generated based on feature values 
with strong time correlation. The relationship between the results under multiple feature fusion and the features 
themselves is very complex and not linear. Therefore, establishing a joint distribution model for multiple random 
variables from a mathematical perspective is extremely challenging. In this paper, we opt to construct and train an 
artificial neural network model to predict sleep depth values (SDV).

Utilizing the SDV sample values, a selection of multiple features with high temporal coherence is treated as random 
variables. An Artificial Neural Network (ANN) is constructed, where the feature values serve as inputs and the 
corresponding SDV samples serve as outputs for model training. The architecture comprises seven neurons in the 
input layer, corresponding to the chosen features, two hidden layers each with six neurons, and an output layer with 
a single neuron representing the SDV value ranging from 0 to 1. The training parameters are set with a maximum 
iteration count of 1000, a target error of 10−5, a learning rate of 0.01, and a momentum coefficient of 0.9. As depicted in 
Figure 5, the error distribution for training data, validation data, and test data is confined between −0.0392 and 0.0432, 
suggesting the efficacy of the proposed model.

Results
The result of sleep depth values (SDV) based on multi-feature fusion from the ANN model is validated mainly in the 
following three aspects:

Verification of ANN Model
Figure 6 illustrates a comparison between the sleep depth values predicted by the ANN model and those that are 
manually staged. The figure reveals that the predictions generated by the sleep depth model more accurately reflect the 
changes in sleep continuity compared to the manually labeled data. Notably, even within stable sleep stages, there are 
fluctuations in the predicted sleep depth values, aligning with the natural fluctuations observed in the sleep process.

Figure 4 Statistical result of sleep depth samples.
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Figure 7 enlarges the details of the part between 500 and 3500 seconds in Figure 6. The progression of the overall 
sleep process is clearly delineated, transitioning from Awake through N1 and N2 stages, ultimately reaching deep N3 
sleep as depicted by the sleep depth values. Initially, during the Awake stage, the SDV (Sleep Depth Value) gradually 

Figure 5 Error histogram of ANN model.

Figure 6 Prediction result of ANN model. (a) is the manually calibrated sleep staging map, with the horizontal axis representing time points (a point every 1 seconds), and 
the vertical axis representing sleep stages; (b) is the sleep depth values predicted by the ANN model.
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descends from approximately 0.8 to around 0.6. Between 2000 and 2500 seconds, despite the SDV momentarily dipping 
below 0.6, it experiences an upward trend, while the sleep stage remains labeled as Awake. This suggests that even 
within the wakeful state, there are varying intensities of sleepiness. At around 2500 seconds, a sharp decline in SDV 
signifies the onset of N1 sleep. However, the subsequent rise in SDV between 2500 and 2600 seconds does not surpass 
0.45, indicating a stabilization within the N1 phase. Around 2600 seconds, the SDV plunges further to 0.2, indicative of 
entry into the N2 stage, yet at roughly 2700 seconds, it ascends to 0.4, causing a temporary reversion from N2 back to 
N1. Following this fluctuation, the SDV swiftly decreases and stabilizes beneath 0.1, transitioning from N1 back to N2 
before advancing into N3 sleep. This analysis reveals that the model’s predictions concerning sleep depth values offer 
a more nuanced perspective of sleep compared to conventional sleep staging, uncovering significant variances in sleep 
depth even within identical stages.

Verification Based on Machine Learning
The SDV outcomes derived from the ANN model based on the multi-feature fusion serve as the input layer, while the 
manually labeled sleep stage data constitute the output layer. The machine learning algorithm is trained using a 10-fold 
cross-validation approach (with 90% allocated for training and 10% for testing) to validate its efficacy. Given that the 
classification labels are W, N1, N2, N3, and REM, and there is a considerable disparity in the quantity of data across 
different classes, leading to an imbalance, the enhanced MSMOTE algorithm is employed for oversampling to create 
a balanced dataset for model training. Then, this paper initially applies KNN, Random Forest and SVM classifier to 
classify the data segmented into 3-second intervals, followed by a refinement of the results using the Hidden Markov 
Model (HMM). It is found that these three classification models derived from three-second intervals exhibit numerous 
burrs. This is attributable to the brevity of the three-second epochs. One 30-second epoch can be labeled with one sleep 
stage, while the ten 3-second periods it contains may have different sleep stages. These three classification models also 
fail to encapsulate the transitional relationships between consecutive time periods. Therefore, for comparison with the 
manual sleep staging based on 30-second epochs, this paper aggregated every ten 3-second outcomes to produce a 30- 
second staging result. Then, the sleep staging results are processed using the Hidden Markov Model (HMM), which is 

Figure 7 Details of prediction result. (a) is the details between 500–3500 seconds of manually sleep staging result; (b) is the details between 500–3500 seconds of sleep 
depth values predicted by the ANN model.
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capable of handling data with time-series characteristics. The HMM takes the sleep states (Awake, N1, N2, N3, and 
REM) and the observed data (polysomnograms) as training data, learning the transition patterns between different sleep 
states and the distribution of the observed data under each state, ensuring that the results align with the temporal 
sequence properties of sleep staging. The results of the validation process are depicted in Figure 8, with the SVM model 
serving as an illustrative example. The first diagram represents the manually annotated sleep stage, the second displays 
the SVM-classified stages based on three-second epochs, and the third presents the outcome following HMM refinement 
of the SVM results.

In Table 2, the average accuracy and standard deviation of the classification results for different sleep stages by 
different algorithms are, respectively, summarized, along with the overall average accuracy and overall standard 
deviation. From the perspective of different sleep stages, the accuracy rate for the Awake stage is high overall, and 
slightly improves after HMM correction; the determination of the N1 stage has the lowest accuracy rate, which 
significantly improves after HMM correction but is still the lowest compared to other stages, not exceeding 50%. 
However, since the N1 stage does not occupy a high proportion of the sleep process, its impact on the final accuracy is 
not significant; the mean and std of accuracy results of N2 are both higher than N3 stages; the REM stage is distinguished 
with the aid of eye movement signals, and the accuracy rate can reach 89% after HMM correction. It can be seen from 
Table 2 that using only KNN, Random Forest, and SVM algorithms, the total accuracy rate does not exceed 81%, and the 
accuracy can be improved by about 10% after correction with the HMM algorithm; on the whole, the accuracy rate is 
highest after correction with the SVM combined with the HMM algorithm, reaching 90.07%. This indicates that due to 
the characteristic of SDV values that can reflect the details of the sleep process, simple classification algorithms can 
achieve effective automatic sleep staging.

Verification Based on the Arousal Recognition
During N1, N2, N3, or REM sleep stages, if there is a sudden alteration in EEG frequency—including alpha, theta, or any 
EEG wave with a frequency exceeding 16Hz (excluding spindle waves) with a duration surpassing 3 seconds, and this 
shift occurs after at least 10 seconds of stable sleep, it can be manually identified as an arousal. If it happens during the 

Figure 8 Sleep staging result based on SDV. (a) is the manually calibrated sleep staging map, with the horizontal axis representing time points (a point every 3 seconds), and 
the vertical axis representing sleep stages; (b) is the SVM-classified stages result based on 3-second epochs; (c) is the result of SVM refined by HMM model.
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REM phase, there should also be a concomitant increase in the amplitude of submental electromyography that persists for 
no less than 1 second. In this paper, the sleep depth values of several sets of data at the artificially marked arousal points 
are computed. The arousal segment encompasses the 3-second period of the arousal duration itself, along with the initial 
12 seconds and the final 3 seconds, totaling 18 seconds in duration.

First of all, the alteration in sleep depth at the point of arousal should conform to a pattern that progresses from the 
lower SDV of sleep states, to the elevated values indicative of an arousal state, and subsequently back to the reduced 
values associated with sleep states. In this paper, 100 instances of manually marked arousal signals are randomly chosen 
for comparison with 100 signals captured during non-wake periods in N1, N2, N3, and REM phases to contrast the 
varying patterns of SDV changes. This comparative analysis is depicted in Figure 9. The pattern of sleep depth value 
changes during arousal generally aligns with the anticipated judgment criteria. The mean value of the sleep depth during 
arousal can exceed 0.7, and there is a gradual increase in sleep depth values from 0.1 to 0.3 within the 10 seconds 
preceding an arousal, which is a continuous process of change and increment that reflects the described continuity of 
sleep depth variation. Post-awakening, the sleep depth values progressively descend below 0.3, with the period of sleep 
depth values remaining above 0.3 lasting approximately 6 seconds.

Secondly, 100 arousal signals and 100 non-arousal sleep signals, each with a duration of 18 seconds, are randomly 
chosen. The respective average sleep depth values from the previously mentioned segment (illustrated in Figure 9) are 
utilized as benchmark templates for wakefulness and non-wakefulness states, respectively. Simultaneously, an additional 
randomized selection is executed without replacement from the available data to compile a validation dataset composed 
of 100 arousal signals and 100 non-arousal sleep signals. Then, the correlation between each 18-second signal in the 
validation dataset and the sleep depth value templates for wakefulness and non-wakefulness is calculated by utilizing the 
Pearson correlation coefficient as a measure of similarity. This coefficient is scaled from −1 to 1, where −1 denotes 
a negative correlation, 1 signifies a positive correlation, and 0 represents an absence of correlation. Subsequently, an 
SVM classification model is then trained using these signal sleep depth values in a 5-fold cross-validation scheme to 
verify the accuracy in discerning whether signals indicate arousal. The detailed results are exhibited in Figure 10, which 

Table 2 Accuracy Results of Sleep Stage Classification

Sleep Stages 
Algorithm

Awake  
Accuracy

N1  
Accuracy

N2  
Accuracy

N3  
Accuracy

REM  
Accuracy

Total  
Accuracy

KNN (mean) 85.66% 17.10% 70.44% 63.02% 60.11% 67.01%

KNN (std) 0.0751 0.1031 0.136 0.2231 0.1596 0.0614

Random Forest (mean) 91.02% 25.09% 76.87% 63.69% 62.97% 71.79%

Random Forest (std) 0.0811 0.0732 0.106 0.2091 0.1329 0.057

SVM (mean) 95.63% 20.30% 87.82% 78.74% 73.29% 80.47%

SVM (std) 0.0751 0.0908 0.1302 0.236 0.1825 0.0696

KNN+HMM (mean) 90.30% 34.06% 78.69% 79.19% 78.12% 77.87%

KNN+HMM (std) 0.0795 0.2017 0.1866 0.2542 0.1912 0.0822

Random Forest+HMM (mean) 91.16% 40.47% 85.50% 79.07% 82.07% 81.55%

Random Forest+HMM (std) 0.0892 0.2433 0.1682 0.2588 0.1772 0.0925

SVM+HMM (mean) 98.12% 39.01% 95.26% 93.33% 89.12% 90.07%

SVM+HMM (std) 0.076 0.158 0.1793 0.2558 0.2008 0.0805

Notes: Results expressed as accuracy between the ground truth and the sleep stages prediction generated by K-Nearest Neighbors, 
Random Forest, and Support Vector Machine. The Hidden Markov Model method is used to improve the result from these three 
algorithms. 
Abbreviations: KNN, K-Nearest Neighbors; SVM, Support Vector Machine; HMM, Hidden Markov Model.
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illustrates the correlation between signals and non-wakefulness templates on the abscissa, contrasted with the ordinate 
showing the correlation between signals and wakefulness templates. The blue circles denote the 100 arousal signals, 
while the red dots represent the 100 non-arousal signals. The delineation is provided by the classification line derived 

Figure 9 Statistical result of SDV in arousal period.

Figure 10 Arousal detection based on SDV pattern recognition.
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from the support vector machine employing a Gaussian kernel. Employing a 5-fold cross-validation method yields an 
average accuracy rate for arousal determination of 87.21%. This indicates that the sleep depth value effectively mirrors 
key elements of the sleep process and exhibits a robust capacity for identifying arousal signals.

Furthermore, as illustrated in Figure 2, which depicts the timing fitness of sleep stages, this paper selects two features 
that are the most prominent: the duration of the frequency band for beta waves (feature number 23) and the local entropy 
for theta waves (feature number 33). Since the range of values for each feature is not uniform, standardization is 
performed to map to the range with a mean of 0 and a standard deviation of 1. The comparison of two feature value 
patterns during arousal and non-arousal sleep states is presented in Figure 11. The feature of duration of the frequency 
band for beta waves (feature number 23) is positively correlated with the arousal template, whereas the local entropy for 
theta waves (feature number 33) is negatively correlated. Both features are largely unrelated to the non-arousal signal.

At the same time, this paper contrasts the likelihood of arousal during sleep between individuals with normal sleep 
patterns and patients with obstructive sleep apnea (OSA) in Figure 12. When the sleep depth value falls below 0.1 
(indicating a state of deep sleep), the likelihood of arousal during sleep in individuals with normal sleep patterns is 
relatively low, exhibiting an average probability of less than 10%. Conversely, the mean arousal probability in OSA 
patients approximates 30%, aligning with the clinical observation that these patients frequently experience arousals and 
microarousals during sleep, which disrupts the normal sleep architecture and significantly diminishes sleep efficiency. 
Furthermore, regardless of normal sleep data or OSA sleep data, there is a pervasive trend: as the sleep depth value 
ascends (ranging from 0 to 1, indicating the transition from deep sleep to light sleep and then to wakefulness), the 
probability of arousal/wakefulness progressively increases.

Discussion
This paper establishes an artificial neural network model based on the sample values generated by the fusion of 
multiple sleep features. This model produces continuous sleep depth values (SDVs) ranging from 0 to 1, according to 

Figure 11 Comparison between two features in arousal period. (a) is the correlation between the frequency band for beta waves (feature number 23) and the arousal 
template; (b) is the correlation between the local entropy for theta waves (feature number 33) and the arousal template.
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the multi-feature values at different time points during sleep. In doing so, we utilized a comprehensive set of features, 
including time-domain attributes, frequency-domain elements, and other relevant characteristics. The resulting sleep 
depth values generated by the model are capable of measuring the continuous variations in sleep depth and reflecting 
various aspects of sleep quality, such as the arousal/wakefulness index, the distribution of durations across different 
sleep stages, and overall sleep efficiency. During the development and validation of this model, it was found that the 
method of this paper has the following advantages:

1. Continuous Measurement: Unlike traditional sleep staging methods, which categorize sleep into discrete stages, 
this ANN model provides a continuous scale of sleep depth values (SDV) ranging from 0 (deep sleep) to 1 
(wakefulness). Specifically, SDVs from 0 to 0.3 are associated with sleep, those ranging from 0.3 to 0.6 denote 
periods of unstable sleep, and values from 0.6 to 1 are indicative of wakefulness. This nuanced scale affords 
a more refined and granular insight into the dynamics of sleep state transitions and the subtleties of sleep patterns.

2. High Accuracy: The model demonstrates high accuracy in distinguishing between different sleep states, particu-
larly in identifying wakefulness and deep sleep, which is crucial for applications where precise sleep state 
identification is necessary.

3. Accurate Arousal Measurement: The SDV is closely associated with the arousal/wakefulness index, making it 
a reliable indicator for predicting the transition between sleep states and the stability of sleep.

4. Flexible Model Application: The ANN model can be easily adapted to new data, enhancing its versatility. It can 
also function without additional training data, providing immediate sleep depth values that can streamline the 
process of sleep staging.

5. Potential for Real-Time Monitoring: With the ANN model, there is the possibility of real-time monitoring of sleep 
patterns, which could be particularly useful in clinical settings for assessing alertness levels or managing sedation 
during medical procedures.

Figure 12 Arousal & awake probability between normal and OSA. (a) represents the probability of experiencing arousal during sleep for individuals with normal sleep 
patterns; (b) denotes the likelihood of arousal events occurring during sleep in individuals diagnosed with obstructive sleep apnea (OSA).
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Its disadvantages are:
Dependence on Technical Factors: The quality of the SDV calculation can be influenced by the data acquisition 

system and the algorithms used for signal processing, which may introduce variability or bias into the results.
Limitations in Application Process include:

1. Individual Differences: Although the Sleep Depth Value (SDV) demonstrates a strong correlation with sleep depth 
and arousability, there may be significant variability in SDV values among different individuals, which could 
affect the model’s ability to generalize across a diverse population. Further research may be needed to establish 
a normal range for SDV values.

2. Differentiation Between REM and NREM Sleep: Accurately differentiating between REM and NREM sleep 
stages may require additional data, such as electrooculogram (EOG) electrode readings, which are not considered 
within the scope of the current model.

3. Adaptability to Specific Applications: While the model shows promise in a controlled laboratory environment, its 
effectiveness in real-world applications, such as home monitoring or the treatment of sleep disorders, has yet to be 
fully determined and may require further validation.

Conclusion
This paper presents a pioneering design and calculation of the temporal fit of multiple features, forming statistical 
sample values of sleep depth based on feature values. It innovatively proposes and trains an artificial neural 
network model that can produce continuous sleep depth values ranging from 0 to 1 at any given moment (non- 
discrete values) and has validated the effectiveness of the model through various forms of verification. This model 
of sleep continuity can capture the nuances of the traditional five-stage classification method (W, N1, N2, N3, and 
REM) and subtle differences in microstates of sleep, considered as a complement or even an alternative to 
traditional sleep analysis. However, further research is needed to integrate it with other clinical outcomes.
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