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Abstract: Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming 
proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that 
cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome 
activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling 
pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers 
pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may 
further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also 
indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic 
peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. 
Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further 
leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising 
pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical 
therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms 
of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological 
treatment of DPN. 
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Introduction
The World Health Organization (WHO) states that diabetes mellitus (DM) is growing, especially in low and middle- 
income countries. In contrast, more DM deaths occur in those under 70 age than in high-income countries.1,2 The seventh 
most common cause of mortality worldwide was DM, which affected 422 million people in 2014 and 1.6 million in 2016. 
Current data indicate that the prevalence of DM is anticipated to reach 642 million by 2040.3,4 Type 2 diabetes mellitus 
(T2DM) is mainly characterized by increased chronic inflammation burden.5,6 In addition, diabetic microvascular 
complications including diabetic peripheral neuropathy (DPN) are also characterized by a high inflammatory 
burden.7,8 It is widely believed that DPN is a devastating complication of DM characterized by complex molecular 
pathogenesis.9 DPN is closely related to a variety of clinical symptoms including nerve damage, paraesthesia and sensory 
loss and affects around 50% of adults diagnosed with diabetes.10 However,  effective  therapies lack  specificity  and  are 
not  currently available. Thus, it is necessary to find efficient  approaches against DPN based on the exact molecular 
mechanisms implicated in the pathogenesis. Therefore, effective therapies to alleviate DPN must be developed based 
on the underlying mechanisms. The pathogenesis of DPN is complex, involving chronic inflammation and dysfunction of 
Schwann cells as major contributing factors.11 In addition, environmental and genetic factors including lifestyle factors 
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such as detrimental nutrition, physical inactivity/sedentary lifestyle, obesity or overweight and alcohol and smoking 
consumption, have been proven to increase the risk of DPN and its complications. Numerous investigations indicate that 
hyperglycemia promotes AGEs and ROS overproduction, which further stimulate oxidative stress and chronic inflam-
mation, resulting in a variety of complications.12,13 Current research shows that activation of pyroptosis-mediated cell 
death mediates the advancement of diabetic complications including DPN.14–19

Cell death is typically classified as programmed cell death (PCD) or non-programmed cell death (non-PCD). Specific 
genes encode signals or actions that eliminate functionally dispensable, infected, or possibly malignant cells and 
characterize the types of PCD. The most common forms of PCD are pyroptosis, apoptosis and necroptosis.20 

Pyroptosis is a form of cell death that involves the creation of pores in the cytoplasmic membrane, cellular contraction, 
membrane denaturation and the release of inflammatory molecules.21 Pyroptosis, also called gasdermins (GSDMs)- 
dependent programmed necrosis, is the most recently characterized form of PCD triggered by the disruption of 
extracellular and intracellular homeostasis that deteriorates the innate immunity system.22–24 Emerging evidence indi-
cates that pyroptosis, a form of PCD with hyperinflammation, typically leads to a significant infection and induces the 
progression of multiple diseases.25,26 Numerous studies have shown that excessive pyroptosis activation can lead to the 
progression of several neurological, cardiovascular and inflammatory diseases.27–42 Pyroptosis exacerbates metabolic 
conditions including hyperglycemia by inducing persistent inflammation and insulin-resistant mediators.43–46 Current 
studies indicate that the activation of inflammasome and pyroptosis plays contributory roles in developing diabetes 
complications, particularly in DPN.15,47–55 In addition, pyroptosis-mediated prolonged inflammation induces the devel-
opment of depression, neurodegenerative disorders, ischemic strokes and intracranial hemorrhages and56 promotes 
neuroinflammatory injury and pain and disrupts the regeneration and repair of peripheral nerves.57–59
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In this review, we first covered the underlying molecular mechanisms of pyroptosis and addressed various signaling 
pathways that may activate pyroptosis and their impact on the progression of DPN. This review finally presents an 
overview of prospective therapeutic compounds/drugs for targeting inflammasome and pyroptosis in the treatment and 
management of DPN.

Biological Features of Pyroptosis
Pyroptosis is mainly derived from the Greek roots “pyro” and “ptosis”, signifying fever and falling, respectively.60,61 

This nomenclature is used to characterize a recently discovered form of programmed cell death (PCD) with inflammatory 
properties. Since 1990, scientists have identified that Shigella flexneri or Salmonella infection eradicates mouse macro-
phages or human monocytes.62 Shigella dysenteriae was reported by Arturo Zychlinsky in 1997 to activate caspase-1 in 
host cells.63 The Arturo Zychlinsky lab discovered in 1999 that restricting caspase-1 suppressed Salmonella-induced cell 
death.64 The research teams of Lawrence H. Boise and Brad Cookson found in 2001 that bacterial infection resulted in 
macrophage death through the activation of Caspase-1-dependent programmed necrosis, a death mechanism distinct from 
apoptosis.65,66 Pyroptosis and apoptosis have common biological characteristics and functions such as DNA fragmenta-
tion and chromatin. Pyroptotic cells show swelling and the formation of bubble-like bulges on their cell membranes prior 
to rupture.67 Apoptosis involves Caspase-3 for membrane blebbing. Pyroptosis features specific cellular characteristics 
that distinguish it from other forms of apoptosis.68–70 Apoptosis is commonly regarded as a non-inflammatory form of 
cell death, while pyroptosis may trigger low-grade inflammation.71 Pyroptosis is induced by extracellular and intracel-
lular signals including bacterial and viral infections, exposure to toxins and specific chemotherapeutic agents/drugs.72–74 

Compared to necrosis, pyroptosis produces cytoplasmic flattening resulting from plasma membrane rupture against 
explosive rupture. Caspase activation or granzyme release induces gasdermin N-terminal oligomerization and pore 
creation (1–2 μm) in plasma membrane, facilitating a mature form of IL-1β/IL-18 (4.5 nm) and caspase-1 (7.5 nm) 
permeability.75 The water infiltrating through pores promotes cell enlargement, osmotic lysis, plasma membrane rupture 
and IL-1β and IL-18 release.25,76 The low molecular weight of 7-amino actinomycin (7-AAD), propidium iodide (PI) and 
ethidium bromide (EtBr) allows pyroptotic cell permeability. In contrast to pyroptotic cells, apoptotic cells maintain the 
integrity of the membrane, eliminating the formation of these dyes.77 Surprisingly comparable to apoptotic cells, Annexin 
V indicates pyroptotic cells and attaches to phosphatidyl serine (PS). Thus, Annexin V cannot distinguish between 
apoptotic and pyroptotic cells. Apoptotic bodies are produced in apoptosis, whereas pyroptotic bodies are produced in 
pyroptosis.78 Pyroptotic bodies are 1–5 µm in diameter, similar to apoptotic bodies.79 However, a novel gasdermin-D 
(GSDMD) protein has been identified and characterized, which is typically in an auto-inhibitory state.80 Following 
caspase splitting, GSDMD produces the N-terminal fragment (GSDMD-NT), which further inflates and ruptures cells. 
Therefore, GSDMD serves as the effector molecule that regulates the execution of pyroptosis-dependent cell death. 
Similar to the GSDMD pore-forming protein, GSDMA, GSDMB, GSDMC, DFNA5/GSDME and DFNB59 induce 
pyroptosis and membrane denaturation.81,82 Recently, Wang and colleagues proved that the mechanism of pyroptosis 
induced by the GSDMD-NT is consistent with the N-terminal domain of GSDME interacting with 4, 5-diphosphate 
phosphatidylinositol [PI (4,5) P2], resulting in the perforation of liposomes and elimination of their phospholipid 
components.74 In an article published in 1994 by Feng Shao and colleagues, pyroptosis was renamed gasdermin family- 
driven programmed necrosis in cells.25 Recently, Chauhan and co-workers also observed that neutrophil elastase (NE) 
hydrolyzed GSDMD and triggered neutrophil pyroptosis.83 Therefore, pyroptosis is another form of regulated cell death 
(RCD) that extensively depends on gasdermin protein family members for creating plasma membrane pores, often (but 
not typically) as a result of inflammatory caspase activation, according to the Nomenclature Committee on Cell Death 
(NCCD) in 2018.21

Molecular Mechanisms of Pyroptosis
Classical and non-classical inflammasome pathways, apoptotic caspases-dependent and granzymes-dependent pathways 
have been recognized as the primary signaling pathways that induce pyroptosis-dependent cell death.79 Gasdermin 
proteins are the end mediators in these signaling pathways and are required to be cleaved by precursor caspases or 
granzymes.84 Caspases are classified into inflammatory and apoptotic bodies, depending on their specific role and 
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function.85 Caspases-1/4/5/11 are inflammatory caspases that trigger pyroptosis, inhibit the proliferation of pathogens and 
regulate the maturation and secretion of a variety of pro-inflammatory factors.86 Activation of inflammatory caspases 
serves as the primary defense mechanism against infectious pathogens. Inflammasome is a multiprotein complex that 
initiates Caspase-1 activity downstream of the cell membrane.87–90 The activation of inflammatory Caspase-4/5/11 does 
not require a molecular complex and has been demonstrated to bind LPS directly.91 Apoptotic caspases primarily initiate 
and regulate the cellular mechanisms of apoptosis. Current investigations have shown the ability of proteases to cleave 
gasdermins, which results in triggering pyroptosis-driven cell death.92

Classical Signaling Pathways
Classical pyroptotic cell death can be triggered by the formation of inflammasomes, leading to the cleavage of GSDMD and 
extensive release of pro-inflammatory factors including IL-1β and IL-18.93,94 Inflammasomes are multi-molecular com-
plexes that stimulate the adaptive immune response and protect the host against microbial infections.95–99 Inflammasomes 
can cause non-microbial diseases. Many studies indicate that inflammasomes and their cytokines are essential in oncogen-
esis including proliferation, metastasis and invasion.100–103 Activated cytosolic PRRs recognize pathogen- and danger- 
associated molecular patterns (PAMPs and DAMPs) to form the inflammasome.104,105 The activation of PRRs further 
triggers the downstream signaling pathways, leading to the production of type I interferons and the release of several pro- 
inflammatory cytokines. PRRs interact with pro-caspase-1 and ASC to produce inflammasomes upon cellular stimulation 
by signal molecules including bacteria and viruses.106–108 Nucleotide-binding oligomerization domain-like receptors 
(NLRs including NLRP1, NLRP3 and NLRC4), absent in melanoma 2 (AIM2) and pyrin are the most common 
PRRs.109,110 The N-terminal pyrin domain (PYD), nucleotide-binding oligomerization domain (NOD), LRR and CARD 
are components of NLRP1.111 The PYD is essential for interacting with the ASC protein. NOD activates the signal by 
regulating the generation of ATP. LRR identifies and auto-inhibits ligands. CARD proteins then participate in the 
recruitment of pro-caspase-1. The anthrax fatal toxin, muramyl dipeptide and Toxoplasma gondii elements may trigger 
the activation of NLRP1.112 NLRP3 includes N-terminal PYD, NOD and LRR without CRAD. Multiple factors including 
bacteria, viruses, fungi, uric acid, ROS, ATP and intrinsic damage signals activate the NLRP3 inflammasome axis.113,114 

Extracellular ATP triggers the release of IL-1β and activation of Caspase-1 through the stimulation of the P2X7 receptor, 
which further increases the efflux of K+ ions.115 The NLRC4 protein has an N-terminal caspase activation and recruitment 
domain (CARD), a central nucleotide-binding domain (NBD) and a C-terminal LRR domain. Flagellin and proteins of the 
type III endocrine system elicit a response from NLRC4.116 PYD and HIN-200 domains in AIM2 may recognize bacteria- 
or virus-derived double-stranded nucleotides.117 Pyrin protein comprises a PYD domain, two B-box domains and 
a C-terminal SPRY/PRY region. Pyrin mainly specifies bacterial toxins or effectors that inactivate host Rho guanosine 
triphosphatases.118 PRRs recruit pro-caspase-1 directly or indirectly through ASC to form Caspase-1-dependent inflamma-
some, which self-cleaves to stimulate Caspase-1. Active Caspase-1 splits IL-1β and IL-18 precursors, releasing GSDMD- 
NT protein for pore creation and inducing inflammation and pyroptosis (Figure 1).107 The host protects against pathogens 
by regulating classical inflammasome-mediated pyroptosis in immune cells.

Non-Classical Signaling Pathways
Human Caspase-4/5 (mouse ortholog Caspase-11) is not associated with the downstream sensory complexes in the non- 
classical pyroptotic signaling pathway. Human Caspase-4/5 (mouse orthologs Caspase-11) can be triggered by attaching 
directly to intracellular LPS via the N-terminal CARD in the non-classical pyroptotic signaling pathway, which excludes 
upstream sensory complexes.119 In contrast to dendritic cells, macrophages are sensitive to the oxidized phospholipid 
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC, a TLR4 agonist), which inhibits the non-classical 
inflammasome.120 Caspase-4/5/11 may also split GSDMD into GSDMD-NT, which further polymerizes and creates 
pores on the cytoplasmic membrane region.90,121 The NLRP3/Caspase-1 pathway is required for the maturation and 
secretion of IL-1/IL-18, while Caspase-4/5/11 cannot cleave pro-IL-1/pro-IL-18.122,123 In addition, Caspase-4/5/11 splits 
GSDMD pore-forming protein, effluxing K+ and triggering NLRP3 inflammasome activation and pyroptosis.124,125 Yang 
et al revealed that pannexin-1 is another essential protein that stimulates Caspase-11-dependent non-classical pyroptotic 
cell death.124 LPS stimulates Caspase-11 to cleave and alter Pannexin-1, releasing cellular ATP and initiating pyroptosis 
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through the activation of the P2X7 receptor.126 Interestingly, pannexin-1-deficient murine BMDMs may also induce K+ 
efflux and NLRP3 inflammasome-driven Caspase-1 activation with P2X7 independence, as reported in 2011.127 

Furthermore, eradicating pannexin-1 in mice protects against endotoxin shock, indicating that specific potassium (K+) 
ion channels regulate the non-classical NLRP3 inflammasome pathway.124 The activation of the Caspase-11 pathway 
stimulates the NLRP3 inflammasome in non-classical pyroptotic signaling.128

Alternative Signaling Pathways
Gasdermin proteins exhibit a high degree of structural conservation within their family. All gasdermins, excluding 
DFNB59, incorporate C-terminal and N-terminal domains and the N-terminus results in the activation of pyroptosis.84 

Researchers have found that chemotherapeutic drugs can significantly induce Caspase-3-mediated cleavage of GSDME 
with elevated GSDME expression, resulting in the generation of N-GSDME termini in tumor cells.74,129 Apoptosis- 
mediated caspases Yersinia infection in mouse macrophages have been shown to impede TGF-β-activated kinase 1 
(TAK1) and trigger Caspase-8-driven GSDMD cleavage.130,131 Caspases-3/8 were believed to be incapable of generating 
gasdermin to induce pyroptosis. Further research found that Yersinia infection releases YopJ, which restricts TAK1 and 
triggers Caspase-8-mediated GSDMD cleavage in mouse macrophages.132 these findings contribute to the progress and 
expanding knowledge of pyroptosis-regulated cell death. Surprisingly, PD-L1 modulates TNF-induced apoptosis into 
pyroptosis in breast cancer cells.133 In hypoxia, p-Stat3 enhances PD-L1 nuclear translocation and GSDMC transcription. 

Figure 1 Cellular and molecular mechanisms of pyroptosis-related signaling pathways. Pyroptotic signaling pathways are mainly activated by the stimulation of damage- 
associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs), leading to the activation of a variety of inflammasome signals. The activated 
inflammasome proteins further activate the Caspase-1 signaling pathway. Then, activated Caspase-1 splits GSDMD protein molecules to produce GSDMD N-fragment and 
plasma membrane pores, resulting in pyroptosis-dependent cell death. Furthermore, the Caspase-1 pathway triggers the formation and maturation of IL-1β and IL-18 
inflammatory factors. In addition, LPS binds to Caspase-4/5/11 precursor, which further activates pyroptosis-regulated cell death through the formation of GSDMD- 
dependent pores in the cytoplasmic region. Caspase-3/GSDME can also induce pyroptosis-mediated cell death. Furthermore, mitochondrial and death receptors can trigger 
the Caspase-3 pathway. The activated Caspase-3 splits GSDME to produce GSDME N-fragment, which further creates plasma membrane pores, cell contraction and rupture, 
resulting in pyroptosis-mediated cell death.
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LPS commonly triggers pyroptosis by activating the Caspase-4/5/11 signaling pathways.134 Researchers have discovered 
that macrophages activated by LPS undergo Caspase-8-mediated pyroptosis.133 TNF-α activation induces the stimulation 
of Caspase-8 to lyse GSDMC, generate N-GSDMC and create membrane pores, leading to pyroptosis.133 Nuclear PD-L1, 
Caspase-8 and GSDMC are required for TNF-induced pyroptosis in macrophages. Furthermore, antibiotics and che-
motherapeutics can significantly promote pyroptotic death of breast cancer cells through the activation of the Caspase-8/ 
GSDMC signaling axis.133 The regulation of the NLRP3/Caspase-1-dependent pyroptotic signaling axis involves 
Caspase-6, which facilitates the interaction between receptor-interacting serine/threonine protein kinase 3 and Z-DNA 
protein 1.135 However, the specific roles and functions of the other caspases involved in pyroptosis must be further 
investigated.

It was reported in 2020 that CAR T cells release GzmB, which activates the Caspase-3 signaling pathway in target 
cells.136 Subsequently, the pyroptotic mechanism was mediated by Caspase-3 and GSDME, resulting in extensive 
pyroptosis. Recent findings show that GzmB directly cleaves GSDME molecules and triggers pyroptosis, promoting 
the anti-tumor immune response and restricting tumor formation.137 It was subsequently demonstrated that Cytotoxic 
T lymphocytes (CTLs) and natural killer cells (NK) eliminated GSDMB-positive cells through the activation of 
pyroptosis. The fatal effects were triggered by the cleavage of GSDMB at the Lys229/Lys244 site by GzmA, which is 
derived from lymphocytes. Some tissues, especially the epithelium of the digestive tract and tumors express high levels 
of GSDMB.138 The work by Zhou et al presented novel findings indicating that gasdermin may undergo hydrolysis by 
GzmA at a place other than aspartic acid, resulting in the creation of cytoplasmic pores.139 These findings challenge the 
prevailing notion that Caspases can only initiate pyroptosis.

Role of Pyroptosis-Related Signaling Pathways in the Progression of DPN
DPN is a prevalent and devastating complication of DM.140–142 Extracellular matrix protein accumulation, excessive 
inflammation, axonal deterioration and unmyelinated fiber degeneration result in sensory conduction delays and long- 
term nerve injury in patients with DPN.143 Multiple studies have indicated that the activation of pyroptosis and 
inflammasome are closely implicated in the pathogenesis and development of DPN.144–146 GSDMD is a recently 
discovered pore-forming protein belonging to the NLRP3 inflammasome family.76,147–150 Mastrocola et al found that 
the activation of the Caspase-1 pathway requires the cleavage of GSDMDC1 in the inflammasome complex.151 Recently, 
Sun and colleagues performed Western blot assay to detect the protein expression level of GSDMDC1 in SN tissue under 
chronic hyperglycemia conditions.144 It was found that the diabetic group exhibited elevated GSDMDC1 protein 
expression compared to the standard control group. More importantly, the authors indicated that GSDMD-dependent 
pyroptosis plays a progressive role in DPN. Thus, GSDMD-dependent pyroptosis induces peripheral neuropathy and 
nerve damage, leading to the development of DPN. GSDMD could be a pathophysiological biomarker for detecting the 
progression of DPN. However, further studies are extensively required to explore the contributory roles and functions of 
GSDMD-dependent pyroptosis in the pathogenesis and progression of DPN.

Inflammasomes are complexes comprising a sensor protein, an adaptor protein and an effector protein pro-caspase 
-1.95,152 Inflammasomes are categorized into two families such as the nucleotide-binding domain, leucine-rich repeat- 
containing proteins (NLRs) and the absence in melanoma 2 (AIM2)-like receptors (ALRs).153 The activation of pro- 
caspase-1 results in the creation of cleaved-caspase-1, which cleaves pro-IL-1β into IL-1β, causing abnormal pain.154 

NLRP3 is a key molecule within the inflammasome, which can be activated by thioredoxin-interacting protein (TXNIP) 
and has attracted much attention in the field of pain.155–157 Upregulation of NLRP3 inflammasome in the sciatic nerve 
and dorsal root ganglion (DRG) is reportedly implicated in the pathogenesis and progression of DPN.158 However, the 
epigenetic regulatory mechanisms underlying the modulation of NLRP3-dependent pyroptosis remain to be elucidated.

TXNIP is a multifunctional protein commonly called Vitamin D3 enhancing protein 1 or protein 2.159,160 Growing 
evidence indicates that TXNIP regulates cell proliferation, apoptosis, glucose and lipid metabolism.159–162 In addition, 
TXNIP regulates oxidative stress in the TRX system.163 Elevated oxidative stress decreases the activity of TRX and 
promotes the expression and activation of TXNIP. Zhou et al observed the relationship between the NLRP3 and 
TXNIP.164 ROS triggered TXNIP to dissociate from TRX and attach to the NLRP3 protein. TXNIP facilitates NLRP3 
inflammasome activation and IL-1β generation in T2DM progression.165 P2RX7 is a purinergic type 2 receptor, which 
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regulates ligand-gated ion channels in the membrane region. High levels of millimolar ATP further activate the P2RX7 
receptor during pathological conditions. Inflammasome activation is triggered by P2RX7 stimulation that facilitates 
membrane K+ efflux. Activation of P2RX7 by ATP leads to a prolonged elevation in intracellular Ca2+, resulting in the 
assembly of the inflammasome and subsequent activation of Caspase-1 signaling.166 Excessive P2RX7 and NLRP3 
inflammasome activation promote IL-1β release in depression and diabetic complications including DPN.167 Mustofa 
et al discovered that IL-1β maturation and release are required to stimulate P2RX7 in LPS-primed mouse Schwann 
cells.168 Caspase-1 splits GSDMD into the N-terminal proteolytic fragment (GSDMD-NT), creating cell membrane pores 
and inducing cell death by producing pro-inflammatory cytokines including IL-1β and IL-18 that trigger an extensive 
inflammatory reaction. Caspase-1 pathway activation promotes GSDMD cleavage, GSDMD-NT production and IL-1β 
release, leading to pyroptosis in high glucose-stimulated Schwann cells.19 Rogers et al discovered that Caspase-3 
effectively triggered apoptosis and cleaved GSDME, resulting in the generation of N-terminal fragments (N-GSDME) 
and the initiation of pyroptosis.169 Wang et al found that Caspase-3 cleavage formed N-GSDME, which interacted with 4, 
5-diphosphate phosphatidylinositol (PI[4,5]P2) and perforated liposomes to release their contents.74,170 GSDME cleavage 
generates N-GSDME, which leads to the creation of membrane pores and pyroptosis. Moreover, GSDME-NT induces the 
permeabilization of the mitochondrial membrane, resulting in apoptosis through the mitochondrial intrinsic signaling 
pathways. Recent evidence explores that Caspase-3-dependent apoptosis can turn into pyroptosis-regulated cell death by 
cleaving the GSDME protein molecule.171 The GSDME-dependent pyroptosis signaling pathway is implicated in 
a variety of physiological and pathological processes.18,172–178 Li and colleagues have reported that GSDME- 
dependent pyroptosis contributes to inducing renal cell death and prolonged inflammation in diabetic neuropathy.52 

The actual function and molecular mechanism of GSDME-dependent pyroptosis in neuropathic pain during DPN have 
remained unknown. Therefore, further studies are highly required to explore the pathophysiological roles of apoptosis- 
driven pyroptosis in DPN. However, SH-3 and WW domains interact with NLRP3 inflammasome.72 The NLRP3 
inflammasome comprises three proteins: ASC, NLRP3 and pro-caspase-1. The NLRP3 inflammasome activates pro- 
Caspase-1, which further facilitates the generation of pro-inflammatory cytokines IL-1β and IL-18 and triggers 
pyroptosis.179

Inflammation exceeds the capacity of the hosts to combat pathogens effectively and hyperglycemia frequently results 
in sterile inflammation, which occurs with viral or bacterial pathogens. Recent studies indicate that inflammation 
significantly affects metabolic and hemodynamic dysfunction associated with diabetes.180,181 The activation of NLRP3 
inflammasome further aggravates this perturbation, consistent with mounting evidence that OS induces prolonged 
inflammation.182–184 Metabolic disorders such as obesity induce the activation of NLRP3 by creating high amounts of 
glucose, palmitate and ceramide, which activate Caspase-1 and cause the cleavage of IL-1β molecules.185,186 

Inflammatory reactions such as IL-1β release from the NLRP3 inflammasome, lead to the advancement of neuropathic 
pain. Therefore, NLRP3 inflammasome-mediated pyroptosis and inflammation induce the progression of DPN. 
A growing body of research suggests that decreasing the NLRP3 inflammasome provides a promising therapeutic 
approach for the treatment and management of DPN and pain.157,187,188

P2X4 regulates endogenous DAMPs and stimulates NLRP3 inflammasome, which promotes the production and 
secretion of several pro-inflammatory cytokines including IL-1β and IL-18. P2X4 receptors and downstream inflamma-
tory cytokines trigger neuropathic pain in gliocytes. Interestingly, Kang and co-workers revealed that elevated P2X4 and 
NLRP3 expression further induces the progression of diabetic neuropathic pain in rat models.187 NF-κB pathway 
modulates cell proliferation and differentiation, morphogenesis, apoptosis and inflammasome activation, thereby trigger-
ing inflammation via enhancing the release of several cytokines, chemokines and adhesion molecules.189 Several stimuli 
trigger NF-κB and plays a regulatory role in the inflammatory response, stress response, pyroptosis and apoptosis. NF-kB 
/NLRP3 inflammasome activation is a key factor in the development of DM.2 The correlation between NLRP3 
inflammasome activation and pyroptosis in DPN, which offered a theoretical foundation for regulating pyroptosis and 
exerting a protective effect by inhibiting the NF-κB/NLRP3 signaling axis. NLRP3 inflammasomes have been pro-
foundly attributed to the pathogenic mechanisms that induce T2DM and its related complications.49 Ding et al revealed 
that NLRP3 inflammasome modulates endoplasmic reticulum stress, which regulates glucose tolerance, insulin resis-
tance, inflammation and apoptosis in adipose tissue in DM.190 It seems that the activation of NLRP3 inflammasome leads 
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to the maturation and the release of pro-inflammatory mediator IL-1β in the sciatic nerve of diabetic rats. Furthermore, 
blood biochemistry demonstrates an increase in K+ and a decrease in Ca2+ in the plasma. The change in K+ concentration 
is considered an essential factor in NLRP3 inflammasome activation, because K+ efflux alone can potentiate IL-1β 
maturation.191,192 The trends indicate a reduction in the Tnfr and CX3CR1 expression, although the effects were not 
significant in the sciatic nerve, probably due to the interindividual variability. Therefore, NLRP3-dependent pyroptosis 
and inflammation are a key player in inducing the progression of diabetic complications including DPN.

NF-κB is a key regulator of HDAC2, which is implicated in triggering neuropathic pain.193 Furthermore, HDAC2 
significantly affects dorsal horn development after peripheral nerve injury.194 Previous research has revealed that miR- 
183 mediates CCI-induced neuropathic pain.195 Further microarray study indicated that miR-183 activates the TXNIP/ 
NLRP3 inflammasome axis in peripheral nerve injury, further triggering neuropathic pain. The upregulation of the 
NLRP3 inflammasome has been reported to further aggravate neuropathic pain.188 Mechanistically, Miao and colleagues 
investigated the contribution of NF-κB p65-induced HDAC2 inflammatory response in neuropathic pain through the 
miR-183/TXNIP/NLRP3 signaling axis, which may aid in comprehending the pathophysiology of neuropathic pain in 
DM.196 Zhou et al found that TXNIP/NLRP3 inflammasome activation may contribute to insulin resistance and 
hyperglycemic progression and regulate neurological pain through miR-23a in spinal glial cells.197 Hao and colleagues 
proposed that the elevated TXNIP/NLRP3 complex may further promote the up-regulation of IL-1β levels and accelerate 
inflammation.198 In addition, Chen and colleagues have revealed that the TET2-TXNIP-NLRP3 inflammasome axis 
contributes to the progression of DNP.199 The authors also showed that the secretion of Caspase-1-mediated IL-1β pro- 
inflammatory cytokine triggers neuroinflammation during diabetic conditions in mouse models.199 Therefore, TXNIP 
may produce a promising therapeutic target for the prevention and management of peripheral neuropathy in patients with 
diabetes. Zhang et al aimed to explore the presence of brain microglia activation in neuropathic pain and to analyze the 
effectiveness and underlying molecular mechanisms of glucagon-like peptide-1 receptor agonist (GLP-RA) on DPN 
through regulating microglia.197 The authors revealed that downregulation of GLP-1RA could significantly induce 
inflammation by the activation of NLRP3 inflammasome in DPN, suggesting that NLRP3-dependent pyroptosis is 
a key contributor to the progression of DPN. Interestingly, a pioneering research reports that the GLP-1RA agonist 
mitigates the progression of diabetic neuropathic pain by obstructing the activation of NLRP3 inflammasome in brain 
microglia.197

The inflammatory response is one of the essential pathologic  features  that  link  to  the  onset  and  progression  of  
DPN.200,201 Inflammasome-driven  inflammation  contributes  to  a  wide  range  of  inflammatory  reactions and  targeting  
the  NLRP3 inflammasome  pathway  is  vital  for  the  treatment  of  inflammation-associated diseases such  as  pulmon-
ary  disease,  asthma,  coronavirus  disease  2019 and  DPN.73,202–204 NLRP3 inflammasome is activated after stimulation,  
followed  by  a  series  of  immune  responses such  as  NLRP3  inflammasome  proteins  (molecule  NLRP3,  the  adaptor  
molecule  ASC and  Caspase-1)  production,  Caspase  1-dependent  release  of  the  pro-inflammatory  cytokines  and  
pyroptotic  cell death.205 Additionally,  Schwann  cell  loss  or  apoptosis  commonly  occurred  in  both  clinic  DPN  
patients  and  experimental  animals and  inhibition  of  Schwann  cell  dysfunction  ameliorated  the progression of DPN. 
Therefore, the suppression of inflammasome  activation  and  Schwann  cell  apoptosis  might  be a potential therapeutic 
approach  for the treatment and management of DPN.

CXC motif chemokines have been implicated in neuronal injury and inflammatory reactions.206 Zhang et al 
performed a bioinformatics analysis utilizing data from the Gene Expression Omnibus (GEO) database to identify 
chemokine ligands (CXCLs) motifs associated with DPN.207 It was found that the expression level of CXCL2 was 
remarkably elevated in STZ-induced DPN rat sciatic nerve and HG-stimulated RSC96 cells.207 CXCL2 knockdown 
alleviates hyperglycemia-induced pyroptosis and inflammation by decreasing Caspase-3 activity in vitro and in vivo. In 
HG-treated RSC96 cells, CXCL2 knockdown increased cell viability and reduced apoptosis due to cleaved Caspase 3–9 
expression. Furthermore, CXCL2 knockdown restricted the activation of NLRP3 inflammasome and mitigated the release 
of pro-inflammatory cytokines such as IL-1β and IL-18. Under the HG condition, NLRP3 inflammasome activator 
nigericin enhances inflammasome activation by abolishing the inhibitory effects of CXCL2 knockdown. Therefore, 
NLRP3 inflammasome activation and prolonged inflammation further induce the pathogenesis and progression of DPN.
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Glycogen synthesis kinase-3β (GSK3β) is a serine/threonine kinase that is consistently active and primarily regulated 
through phosphorylation at the serine residue.208–210 The activity of GSK3β is elevated in the spinal cord of an animal 
model of neuropathic pain.211 Accumulating studies have revealed that inhibiting the activation of GSK3β alleviates the 
generation of pro-inflammatory cytokines and triggers the production of anti-inflammatory cytokines in cortical microglia 
stimulated with LPS in vitro.209,210,212 GSK3β can play an important role in activating NLRP3 inflammasome-mediated 
pyroptosis. Therefore, GSK3β/NLRP3-dependent pyroptosis further induces the development of diabetic neuropathic 
pain (DNP). NLRP3 inflammasome may recognize ROS generated by normal or malfunctioning mitochondria in the 
same cell. It has been suggested that elevated levels of ROS are detected by a complex containing TRX and TXNIP, 
which results in the complex dissociation.213 Accumulating evidence has shown that ROS generation stimulates tissue 
inflammation and induces NLRP3 inflammasome overactivation, leading to the progression of a variety of diseases.214,215 

Recently, Wang et al showed that ROS overproduction further contributes to the progression of DNP by activating the 
TXNIP-NLRP3-NR2B signaling axis.216 In summary, these findings suggest that the activation of pyroptosis-regulated 
signaling pathways plays a contributory role in the pathogenesis and progression of DPN (Figure 2). Therefore, a more 
comprehensive investigation of the role and underlying molecular mechanisms of the pyroptosis-driven signaling 
pathway in the progression and pathogenesis of DPN is highly warranted.

ROS is known to play a prominent role in the pathogenesis of a variety of diseases including DM.217 Hyperglycemia, 
metabolic disorders, increased oxidative stress and mitochondrial dysfunction may exacerbate peripheral nerve damage 
in people with diabetes. NLRP3 is an inflammasome activated by ROS, which acts as a second messenger in the 
activation of the inflammasome and is believed to stimulate pyroptosis by activating the NLR/Caspase-1 signaling 
complex.192,218 Under normal conditions, the anti-oxidant enzymes can eliminate ROS during cell metabolism to 

Figure 2 Pathophysiological roles of pyroptosis-dependent cell death in the course of the pathogenesis of DPN. Hyperglycemia, insulin resistance and hyperlipidemia 
stimulate NLRP3/ASC inflammasome signals, further activating pro-caspase-1 into Caspase-1 form. Then, activated Caspase-1 induces the generation and maturation of 
inflammatory factors including IL-1β and IL-18, resulting in low-grade inflammation and peripheral nerve injury, eventually advancing DPN.
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maintain the balance of ROS generation and elimination.219 The accumulation of ROS results in oxidative stress and 
cellular disorders such as upregulation of lipid peroxidation and cell apoptosis when endogenous anti-oxidant defense 
cannot eliminate it in time.219 The overproduction of ROS can further activate the expression of NF-κB, which is 
a crucial transcription factor in inflammation, stress response and cell growth and survival.220 The hyperglycemia, 
hyperinsulinemia and insulin resistance of diabetes enhanced oxidative stress, leading to excessive cytokine generation in 
DPN.221 It has been found that ROS-dependent NLRP3 inflammasome activation induces downstream pro-inflammatory 
responses, aggravating chronic inflammatory nerve damage.222 Emerging studies have shown that inflammatory factors 
infiltrate peripheral nerves and chronic inflammatory reactions impair the normal function of peripheral nerves.223,224 

Under inflammatory conditions, the cascade release of pro-inflammatory factors such as IL-6, IL-1 and TNF-α activates 
glial cells, which further express receptors for pro-inflammatory mediators and participate in inflammatory immune 
responses. Second, pro-inflammatory factors produce a cascade-like reaction, resulting in inflammation. Finally, the 
release of substance P and excitatory amino acids continues to depolarize dorsal horn neurons, leading to pain sensitivity 
and persistent pain.225–227 Therefore, ROS-dependent inflammasome activation and inflammatory reactions may further 
contribute to the pathogenesis and progression of DPN.

Inhibition of Pyroptosis-Dependent Signaling Pathways for the Therapeutic 
Regulation of DPN
Jinmaitong (JMT) is a traditional Chinese compound with a long history of use and has shown significant clinical 
effectiveness in the prevention and treatment of DPN.228 Previous studies have indicated that JMT lowers blood glucose 
and lipid metabolism, reduces nerve conduction velocity in DPN patients, alleviates numbness, cold and pain and 
enhances nerve transmission.229 Further studies reveal that JMT inhibits oxidative stress and alleviates DNA damage to 
sciatic nerves (SNs) in STZ-induced diabetic rats.230 Prior research has demonstrated that JMT targets peripheral 
neuronal apoptotic genes such as Bcl-2 and Caspase-3.231 Xie et al reported that JMT exerts promising anti-oxidative 
effects to protect against SNs injury in STZ-induced diabetes.232 Recent evidence suggests that overactivation of NLRP3 
inflammasome plays an essential role in the pathogenesis of DM and its complications.49,123,190,233,234 The NLRP3 
inflammasome includes the apoptosis-associated speck-like adaptor protein (ASC), NLRP3 and pro-caspase-1. Upon 
activation, NLRP3 becomes ligated to ASC and then binds to pro-caspase-1. This binding promotes cleavage and 
transformation of pro-caspase-1 to Caspase-1, which further facilitates the generation and maturation of pro- 
inflammatory factors IL-1β and IL-18 and activates pyroptosis.73,235 TXNIP has been reported to be upstream of 
NLPP3 and the complexes of these two proteins are necessary for inflammasome activation.164 Intriguingly, Sun et al 
demonstrated that JMT alleviates the pathogenesis and progression of DPN by inhibiting the activation of the TXNIP/ 
NLRP3 inflammasome axis and mitigating pyroptosis-mediated inflammatory reactions in STZ-induced diabetic rats.144 

JMT could suppress the expression level of TXNIP and NLRP3 inflammasome proteins, as demonstrated by immunos-
taining and Western blot analysis of SNs in diabetic rats. In addition, the protein expression Cleaved-Caspase-1 was 
higher and the Caspase-1 precursor level was downregulated in the diabetic rats compared to the control rats, indicating 
the activation of the Caspase-1-dependent pyroptosis is a key contributor to the progression of DPN. It was also 
demonstrated that JMT decreased the protein expression level of GSDMDC1 and suppressed the activation of the 
Caspase-1 signaling pathway in the STZ-induced diabetic rat model. Therefore, JMT could be a new ant-pyroptotic drug 
candidate for alleviating DPN (Figure 3). This research supports the therapeutic application of JMT as a traditional 
Chinese medicine in DPN treatment. However, further studies are highly required to investigate the primary active 
components of JMT targeting other pyroptosis-related signaling pathways in future research endeavors.

Loganin (LGN) is an iridoid glycoside obtained from the fruit of Cornus officinalis. A number of investigations have 
confirmed the promising anti-oxidant, anti-inflammatory and hypoglycemic actions of LGN, a compound traditionally 
applied in the treatment of DN.236–238 Past research indicates that LGN can remarkably alleviate diabetes-mediated 
anxiety and depression by lowering blood glucose and mitigating pro-inflammatory cytokines.239 Further investigation 
revealed that LGN stimulates the release of neurotrophic factors, which reduce mesencephalic neuronal death, ameliorate 
neurite damage and inhibit the activation of oxidative stress.240 Wang and co-workers have shown that LGN exerts 
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remarkable neuroprotective actions by alleviating neuronal pyroptosis in rats with cerebral hemorrhage.241 Recently, 
Kong et al reported that LGN ameliorates diabetic renal injury by obstructing the activation of NLRP3 inflammasome- 
dependent pyroptosis.242 Li and co-workers also indicated that LGN treatment attenuated OGD/R-induced cardiomyocyte 
pyroptosis by alleviating cell membrane damage and inhibiting the pyroptosis-related protein expression level of Cleaved 
Caspase-1, IL-1β and IL-18.243 Furthermore, LG intervention blocked GLP-1R/NLRP3 pathway activation in OGD/ 
R-stimulated H9C2 cardiomyocytes by promoting GLP-1R expression and obstructing NLRP3 inflammasome 
stimulation.243 Intriguingly, LGN treatment mitigates ROS production, inhibits NF-κB–P2RX7–TNXIP protein expres-
sion and alleviates NLRP3 inflammasome-mediated RSC96 cell damage. Previous research has indicated that LGN 
mitigates the generation of inflammatory mediators including IL-1β by restricting the activation of NF-κB signaling 
pathway in the spinal cord tissue of PDN rat models.244 In terms of neuroprotection, LGN attenuates mesencephalic 
neuronal apoptosis, neurite nerve damage and oxidative stress through the enhancement of neurotrophic factors.240 

Furthermore, LGN has been demonstrated to mitigate neuropathic pain by ameliorating Schwann cell demyelination in 
rats with chronic contraction injury.245 High glucose levels adversely affect apoptosis, metabolism, proliferation and 
migration of Schwann cells.246 Accumulating evidence suggests that the overproduction of ROS caused by high glucose 
induces the activation of oxidative stress and inflammation, a recognized mechanism in the molecular pathogenesis of 
DPN.168,247 The study by Cheng and colleagues provides the first evidence that LGN treatment inhibits the activation of 
NLRP3 inflammasomes and subsequent pyroptosis by inhibiting the formation of ROS in high-glucose-treated RSC96 
Schwann cells.19 Intriguingly, the authors revealed that LG treatment attenuates pyroptosis-driven inflammatory reactions 
and downregulates NF-κB-P2RX7-TNXIP protein expression, protecting RSC96 cells against NLRP3 inflammasome 
overactivation.19 More importantly, the authors showed that LGN treatment could significantly suppress the mRNA and 
protein expression level of NLRP3, ASC, Caspase-1 and GSDMD and pro-inflammatory factors IL-1β and IL-18 in high- 

Figure 3 Schematic illustration of therapeutic implications by several experimental compounds/drugs targeting inflammasome and pyroptosis-related signaling pathways for 
novel therapeutic strategies in the treatment and management of DPN.
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glucose-stimulated Schwann RSC96 cells.19 It was proved that LGN can alleviate hyperglycemia-induced peripheral 
nerve injury by suppressing pyroptosis-dependent cell death (Table 1). Therefore, LGN could be a novel pharmacological 
drug candidate for suppressing NLRP3 inflammasome-dependent pyroptosis and inflammation in the treatment of DPN.

Curcumin (CUR), a bioactive compound found in turmeric, exhibits wide-ranging therapeutic actions in the treatment 
of a variety of diseases.256–260 Numerous pieces of evidence indicate that CUR possesses promising anti-inflammatory, 
anti-oxidant and neuroprotective properties that attenuate the pathogenesis and progression of diabetic complications 
including DPN.261–264 Recently, Zhang and co-workers explored that CUR alleviates the progression of DPN by 
enhancing the expression of NGF in rat models.265 Dwivedi et al evaluated the pharmacological effects of nCUR 
combined with long-acting subcutaneous insulin (INS) in STZ-induced rats.248 Current studies have explored that 
apoptosis-regulated signaling pathways further lead to the activation of pyroptosis.71,171,266 Pioneering research per-
formed by Elsayed and co-workers showed that CUR alleviated apoptosis and inhibited glial activation with modulation 
of Nrf2/HO-1 and NF-kB signaling in STZ-induced diabetic spinal cord central neuropathy. Therefore, CUR has possible 
therapeutic targets attenuating Caspase-3-dependent pyroptosis to alleviate and treat DPN. More specifically, the authors 
revealed that nCUR alone or in combination with insulin alleviates neuropathic pain by obstructing the activation of 
NLRP3 inflammasome and mitigating the release of inflammatory factors, indicating that nCUR exerts promising 
pharmacological targets suppressing inflammasome-mediated cell death for ameliorating the progression of DPN. 
Therefore, CUR could be a potent anti-pyroptotic drug candidate in alleviating DPN. However, the pharmacological 
effects and underpinning molecular mechanisms of CUR targeting Caspase-1/GSDMD-dependent pyroptosis and inflam-
mation in ameliorating DPN remain elusive. Further studies must be executed to explore the pharmacological target of 
CUR in other pyroptosis-related signaling pathways in the pharmacological treatment of DPN.

Vincamine (VIN) is a monoterpenoid indole alkaloid obtained from Catharanthus roseus, commonly called Vinca 
rosea. Growing evidence suggests that VIN exerts multiple biological functions including anti-coagulant, memory- 
enhancing, nootropic, hypoglycemic, hypolipidemic, vasodilatory and anti-oxidant properties.267 Previous studies have 
shown that VIN possesses practical antidiabetic activities by elevating serum insulin and C-peptide levels in streptozo-
tocin (STZ)-induced diabetic rats.267–269 Du et al report that GPR40 agonist VIN enhances glucose homeostasis in T2 
diabetic mice.270 The author and co-workers found that VIN could protect the function of INS-832/13 cells by regulating 
G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathways, while increasing glucose- 
stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII signaling pathway, which reveals 
a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells.270 Xu and colleagues 
found that VIN intervention impeded sciatic nerve myelin sheath injury and improved foot skin IENF density in DPN 
mice.249 The authors showed that VIN administration significantly ameliorated neurological dysfunctions in DPN mice. 

Table 1 Compounds/Agents Targeting Pyroptosis-Related Signaling Pathways for the Therapeutic 
Regulation of DPN

Compounds/Agents Targeting of Inhibiting Pyroptosis-Related Signaling Pathways References

Jinmaitong TXNIP/NLRP3/Caspase-1/GSDMC1/IL-1β and IL-18 [144]

Loganin IL-18 ROS/NF-kB/P2RX7/TNXIP/NLRP3/ASC/Caspase-1/IL-1β and [15]

nCurcumin Caspase-1/GSDMD/IL-1β and IL-18 [248]

Vincamine ROS/NF-kB/NLRP3 [249]

GLP-1R antagonist NLRP3/Cleaved Caspase-1/IL-1β [250]

Açai berry NLRP3/ASC/Caspase-1/IL-1β [251]

Swertiamarin NOXS/ROS/NLRP3/ IL-1β and IL-18 [252]

Dexmedetomidine ROS/P2X4/NLRP3/IL-1β [187,253]

Salidroside P2X7/TXNIP/NLRP3/IL-1β and IL-18 [254,255]
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The authors showed that VIN administration improved the blood flow velocities and perfusion areas of foot pads and 
sciatic nerve tissues in DPN mice.249 Moreover, VIN administration suppressed NLRP3 inflammasome activation 
through either β-Arrestin2 or β-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through 
CaMKKβ/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling pathway in the sciatic 
nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells.249 The beneficial effects of VIN were abolished by 
GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. This pioneering review supports that VIN 
could treat DPN by pharmacologically activating GPR40. A pharmacological treatment for DPN may be achieved by 
targeting GPR40 activation through the suppression of the NLRP3 inflammasome. Therefore, VIN may be an effective 
pharmacological drug candidate in inhibiting the activation of NLRP3 inflammasome-dependent pyroptosis for the 
alleviation of DPN. However, further research is highly warranted to explore the anti-pyroptotic effects of VIN in the 
treatment and management of DPN.

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates a wide range of biological functions through 
a specific receptor named the GLP-1 receptor (GLP-1R).271 GLP-1RAs such as exendin-4 and liraglutide are common 
drugs used for the treatment of T2D.272,273 GLP-1RA administration has been demonstrated to alleviate diverse CNS 
disorders including Alzheimer’s disease, Parkinson’s disease and cerebral ischemia by attenuating microglial 
activation.274–276 New research by Wang and colleagues found that activating microglial GLP-1R in the spinal cord 
alleviates inflammatory reactions, neuropathic pain and bone cancer.277 Pioneering research also showed that intracer-
ebroventricular GLP-1RA administration suppressed Iba-1 expression and microglia activation in the brain and thalamus 
of DNP rats.250 A previous study by Mohiuddin et al showed that GLP-1 signaling protects peripheral nervous system 
neurons from oxidative insult in DPN. The therapeutic potential of GLP-1RAs on DPN was investigated in depth using 
the cellular oxidative insult model applied to the dorsal root ganglion (DRG) neuronal cell line. Interestingly, Zhang et al. 
GLP-1RA administration suppressed the classical pyroptosis-regulated mRNA and protein expression levels of IL-1β, 
NLRP3 and Cleaved Caspase-1 in LPS-stimulated BV2 microglia.250 The authors showed that microglia were activated 
in the cortex and thalamus of diabetic rats.250 Intracerebral administration of GLP-1RA or minocycline alleviated heat 
and mechanical allodynia in rats.250 Moreover, the activation of brain microglia was attenuated in DNP rats by 
intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, found by RNA 
sequencing, was reduced in DNP rats by administration of GLP-1RA. These findings suggest that GLP-1RAs have 
neuroprotective potential, which is achieved by their direct actions on DRG neurons by inhibiting the activation of 
inflammasome signaling pathways. Therefore, GLP-1RA could be a potential therapeutic avenue for attenuating diabetic 
neuropathic pain via suppressing the activation of NLRP3 inflammasome.

The fruit of the South American acai palm (Euterpe oleracea Mart), which is abundant in anti-oxidants, has recently 
gained interest as a functional diet. Açai berry has been applied in several studies as a potential anti-hyperglycemic and 
anti-inflammatory agent that prevents various injuries to physiological systems.278–282 Multiple evidence indicates that 
açai berries consist of a variety of polyphenolic compounds including pelargonidin, cyanidin, malvidin, delphinidin, 
peonidin, dihydrokaempferol, quercetin, luteolin and chrysoerial.283,284 Many studies reveal that carotenoids such as 
carotene, lycopene, astaxanthin, lutein and zeaxanthin are also enriched in açai fruit pulp.283,285,286 Açaí extract also 
presented beneficial effects against age-related oxidative stress in a d-Gal-induced aging model in human erythrocytes. 
Since aging of these cells is related to oxidative stress and E. oleracea presents anti-oxidant properties, this functional 
food could improve the functions of erythrocytes. The homeostasis of the organism as a whole counteracts age-related 
changes.287 The bioactive components of açai berry extract possess multiple beneficial effects through modulation of OS, 
inflammation, autophagy, Nrf2 activity in the hippocampus and frontal brain and NLRP3 inflammasome activation.288,289 

Cadona et al report that açaí extract exerts remarkable anti-neuroinflammatory actions by modulating the ROS/NLRP3/ 
Caspase-1 inflammasome signaling axis.290 Pioneering research by Impellizzeri and co-workers suggests that adminis-
tration of 500 mg/kg dose of açai berry extract ameliorates cognitive impairment by restricting the activation of NLRP3/ 
ASC/CASP signaling axis in both sciatic nerve and spinal cord tissues of STZ-induced DPN mouse models.251 The 
authors clearly showed that açaí berry reduces mast cell degranulation and histological damage in diabetic neuropathy, 
improves physiological defense against ROS, modulates the NLRP3/ASC/CASP signaling axis, mitigates inflammation 
and inhibits oxidative stress. Thus, suppressing the NLRP3/ASC/CASP signaling pathway could be a potential 
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therapeutic target in the treatment of DPN. Therefore, açai berry could be a novel therapeutic agent suppressing 
pyroptosis-dependent cell death for the treatment and management of DPN.

Swertiamarin (SWN) is an iridoid compound mainly derived from Enicostemma littorale Blume, a plant with decades 
of traditional application in the treatment of diabetes, swelling, rheumatism and abdominal ulcers.291 A growing body of 
evidence indicates that SWN exerts promising anti-oxidant, hepatoprotective, anti-hyperlipidaemic, anti-nociceptive, 
anti-edematogenic and free radical scavenging properties.292 SWN has recently been shown to decrease hyperinsulinemia 
and hyperglycemia in rat models of diabetes and obesity.293,294 Previous studies have indicated that SWN can 
significantly improve the insulin resistance effect of patients with T2DM by activating the AMPK pathway, thereby 
restoring and enhancing the insulin sensitivity of hepatocytes.295 Furthermore, SWN significantly mitigates NF- 
κB-driven inflammation in arthritis animal models.295 Saravanan et al demonstrated that SWN suppresses inflammation 
in adjuvant-induced arthritis by restricting NF-κB/IκB and JAK2/STAT3 transcription factors.296 Recently, Wang and co- 
workers have revealed that SWN effectively attenuated DPN in rats by restricting the NOXS/ROS/NLRP3 signaling 
pathway.252 The expressions of NOXS, ROS, NLRP3 and inflammatory factors in DPN rats were detected using ELISA 
and the protein expressions of NOXS, ROS and NLRP3 were also detected with Western blotting.252 It was shown that 
SWN downregulated the protein expressions of NOXS, ROS and NLRP3, maintained the balance of inflammatory 
factors, increased the pain threshold and nourished nerves to treat DPN in the rat models.252 Therefore, SWN could be 
a promising therapeutic drug candidate for attenuating the pathogenesis and progression of DPN by suppressing the 
activation of NLRP3-dependent pyroptosis. However, further investigations are highly required to clarify the pharma-
cological targets of other pyroptosis-driven signaling pathways that alleviate DPN. Additional studies are also needed to 
explore the advantages and disadvantages of the two based on equivalent efficacy and the underlying molecular 
mechanisms to provide active and effective prevention and treatment and new low-toxic and harmless drug targets for 
DPN patients.

The P2X4 receptor and pro-inflammatory cytokines in gliocyte-mediated signaling pathways contribute to the 
progression of neuropathic pain.297 DAMPs downstream of P2X4 activate the NLRP3 inflammasome, which further 
matures and secretes cytokines, disrupting cells and tissues.298,299 P2X4 could modulate the production of proinflamma-
tory cytokines such as IL-1β by activating NLRP3 inflammasome via endogenous DAMPs. Dexmedetomidine (DEX) is 
a recently developed α2-adrenergic receptor agonist that selectively ameliorates sympathetic nervous system functions 
and delivers significant anxiolytic effects.300 Past studies have indicated that DEX alleviates pain and slightly reduces 
breathing rate.301,302 Recently, pioneering research by Lin and co-workers has shown that administration of DEX 
mitigates DPN by suppressing the activation of oxidative stress and dysfunction of the mitochondria via regulating the 
microRNA-34a/SIRT2/S1PR1 axis.303 DEX has been revealed to alleviate spinal nerve damage by modulating the 
activation of the P2X4 receptor.304 In addition, Zhang and co-workers have demonstrated that the administration of 
DEX can effectively DPN-related behaviors and nerve cell damage by suppressing Caspase-3/9-dependent cell death and 
ROS production in diabetic rats.253 Previous studies have demonstrated that DEX exhibits potential anti-inflammatory 
activity, suggesting its potential to alleviate diabetes-induced inflammation.305,306 Inflammatory cytokines play an 
important role in neuronal damage, especially in painful neuropathy. The elevated levels of P2X4 and NLRP3 in STZ- 
treated rats suggested that cytokines are involved in the pathogenesis and progression of neuropathy.307 The exact 
mechanism of high glucose-induced P2X4 expression is not fully understood. It has been reported that hyperglycemic 
stimulation can activate the JAK/STAT signaling pathway by promoting the activity of transcription factor STAT1, 
thereby increasing the expression of P2X4.308 Numerous evidence indicates that overactivation of NLRP3 inflammasome 
may regulate the inflammation process of DM and related complications.49,309 In addition, P2X4 receptors could mediate 
the secretion of pro-inflammatory cytokine IL-1β.310 Kang et al investigated the impacts of P2X4/NLRP3 signaling on 
the development of DNP in rats.187 The authors showed that the expression of P2X4 and NLRP3 in DNP rats was 
markedly reduced after treatment with DEX.187 This finding is consistent with the involvement of the P2X4 receptor in 
the development of DNP. The NLRP3 and IL-1β upregulation findings suggest they intervene in inflammatory factor 
activation. The authors revealed that DEX administration suppressed the expression levels of P2X4, NLRP3 and IL-1β, 
suggesting that DEX modulates inflammasome overactivation and mitigates inflammation by blocking the activation of 
P2X4 receptor.187 Therefore, DEX is more likely to target P2X4/NLRP3-dependent pyroptosis in alleviating DNP. 
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However, the pharmacological target and underlying molecular mechanisms of DEX suppressing the Caspase-1/4/5/11 
inflammasome-dependent pyroptosis are unknown. Therefore, more studies are highly required to analyze the pharma-
cological targets of DEX in suppressing pyroptosis-dependent cell death for promising therapeutic avenues in the 
treatment of DPN.

Salidroside (SLD), a phenylpropanoid glycoside molecule, is the active component in the root of Rhodiola rosea, 
which has been employed to alleviate high-altitude sickness for decades.311,312 Previous studies have shown that SLD 
exerts significant anti-oxidant, anti-inflammation and stress reducer and anti-cancer, cardioprotection and immune 
enhancer properties.313,314 Accumulating studies have demonstrated that SLD significantly improves glucose home-
ostasis in diabetic animals by alleviating inflammation and increasing cellular metabolic flux.314,315 Current research 
indicates that SLD exerts remarkable anti-pyroptotic effects in the treatment of multiple disorders including Parkinson’s 
diseases, Alzheimer’s diseases, etc.46,316–320 Prior investigation suggests that SLD alleviates neural injury in STZ- 
induced T2D in rats.321 Moreover, Hu and co-workers have shown that SLD alleviates chronic constriction injury- 
induced neuropathic pain and inhibits the activation of TXNIP/NLRP3 signaling pathway.254 Recently, Liu et al reported 
that SLD mitigates ulcerative colitis by suppressing macrophage pyroptosis and restoring Th17/Treg balance.322 Chai 
et al also demonstrated that SLD ameliorates depression by suppressing NLRP3-mediated pyroptosis via inhibiting the 
activation of P2X7/NF-κB/NLRP3 signaling axis.318 In addition, Wang and colleagues have revealed that SLD mitigates 
neuroinflammation and enhances functional recovery following spinal cord injury by regulating microglia polarization.323 

Intriguingly, Zheng and co-workers also demonstrated that SLD administration remarkably improved hyperglycemia, 
reduced insulin resistance and mitigated peripheral nerve injury and neuropathic pain in diabetic rats.324 Mechanistically, 
it was shown that SLD mediated AMPK pathway activation and restricted NLRP3 inflammasome activation in DRGs.324

Numerous studies have revealed the relevance of several ATP receptor subtypes to inflammation and neuropathic 
pain.325–329 In particular, P2X7 receptors (P2X7Rs) are important cell surface regulators of several key inflammatory 
molecules including TNF-α, IL- 1β, IL-18 and IL-6. Moreover, P2X7Rs are upregulated in inflammation and neuropathic 
pain states.325 Therefore, antagonists or modulators of P2X7Rs may have therapeutic potential as novel anti- 
inflammatory and anti-nociceptive agents. P2X7Rs could be among the pivotal targets of SLD for its anti-nociceptive 
and anti-inflammatory actions. Ni and colleagues have found that the effects of SLD on the altered pain behaviors, pro- 
inflammatory cytokines and the levels of P2X7 receptors in DM rats had a similar dose-response relationship, showing 
significant effects.255 The notion that inhibition of P2X7 Rs may play an important role in conveying antinociceptive and 
anti-inflammatory effects of SLD is strongly bolstered by previous studies, demonstrating the crucial roles of P2X7 
receptors in triggering inflammation and neuropathic pain. Knocking out the P2X7 gene in mice results in the absence of 
inflammatory and neuropathic behavioral hypersensitivities.326 P2X7 Rs are up-regulated in injured nerves in patients 
with neuropathic pain and the gain-of-function in the P2X7 receptors is associated with pain hypersensitivity in 
osteoarthritis, post-mastectomy pain and diabetic neuropathic patients.329 Past studies confirmed that selective 
P2X7R antagonists have therapeutic potential for the treatment of both inflammation and peripheral pain.330 

Therefore, SLD attenuated nociception in diabetes probably through inhibiting both expression and activation of 
P2X7Rs and subsequently reducing the release of pro-inflammatory cytokines. These findings suggest that SLD could 
be an effcetivepharmacological drug suppressing pyroptosis for a novel therapeutic avenue in the treatment and 
management of DPN.

Conclusions, Current Challenges and Future Prospectives
Understanding the regulatory mechanisms of inflammasome activation is essential to regulate the prolonged inflamma-
tory response following nerve injury, enhance peripheral nerve regeneration and alleviate inflammatory reactions in the 
patients with DM. Numerous research investigations have revealed that NLRP3 inflammasome activation results in 
peripheral nerve injury-induced pain in peripheral nerve injury models. The comprehension of the function and 
regulatory mechanisms of NLRP3 inflammasome in peripheral nerve regeneration during DM is currently constrained. 
The underlying molecular mechanisms of Schwann cell-macrophage coordination in the inflammatory response, nerve 
development and regeneration are also undefined. Further investigation must be conducted to analyze the contributory 
role of pyroptosis in Schwann cells and macrophages. Inhibiting excessive activation of the NLRP3 inflammasome and 
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pyroptosis can enhance peripheral nerve injury repair based on its roles and regulatory mechanisms in the central and 
peripheral nervous systems. Several existing inhibitors have unanticipated adverse effects due to non-specificity. 
Therefore, further research is necessary to improve the selectivity of pyroptotic inhibitors. Researchers have recently 
concentrated on the effective experimental compounds/drugs targeting inflammasomes and pyroptotic signaling path-
ways. Natural bioactive compounds, traditional medicines and other natural products may present new therapeutic 
perspectives and guidance for the treatment and management of DPN. The therapeutic effects of these compounds/ 
drugs are currently confined to the pre-clinical and clinical research stages. More pharmacological agents, particularly 
non-coding RNAs, require immediate investigation to evaluate and confirm their effectiveness and pharmacological 
actions for the treatment and management of DPN. Therefore, further research is necessary for a deeper comprehension 
of the mechanisms underpinning pyroptosis, which will contribute to our understanding of the role of pyroptosis- 
mediated cell death in the pathogenesis of DPN and facilitate the development of effective therapeutic agents that target 
pyroptotic signaling pathways.
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