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Abstract: In the last year, the armamentarium of melanoma therapeutics has radically changed. 

Recent discoveries in melanoma biology and immunology have led to novel therapeutics  targeting 

known oncogenes and immunotherapeutic antibodies. Phase III clinical trials of these agents 

have reported measurable and meaningful benefits to patients with metastatic disease. In this 

article, we review recent findings and discuss their significance in melanoma therapy. As our 

understanding of melanoma biology grows, this initial therapeutic success may be enhanced 

through the use of molecular markers to select patients, and new targeted immunotherapies in 

sequential or combination drug regimens.
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Epidemiology and treatment of metastatic 
melanoma
Malignant melanoma is an important health care issue. The incidence of melanoma 

has increased dramatically over the last four decades and melanoma is now one of 

the most common forms of cancer. In 2011, over 75,000 North Americans will be 

diagnosed with melanoma and over 9000 will die from it.1,2 Although less common 

than cancers of the breast, prostate, or colon, it is potentially more lethal. It has a high 

propensity for hematogenous and lymphatic dissemination to regional and distant 

sites and is poorly responsive to most systemic therapies. The 5-year survival rate for 

metastatic melanoma is dismal, ranging from 5% to 10% with a median survival of 

less than 8 months with treatment.3

Until recently, the therapeutic options for patients with metastatic melanoma were 

limited. The only approved treatment options were dacarbazine and interleukin 2 (IL-2). 

Dacarbazine, an alkylating agent, has a response rate of ,10%, with median response 

durations of 4–8 months.4 Single-agent therapy with IL-2, an immune-modulatory 

agent, has similar overall response rates of 16%, with ∼5% of patients achieving durable 

complete responses (CRs) that may result in long-term survival in selected patients.5 

Use of IL-2 is limited by its low overall response rate and its potential severe multiorgan 

toxicities requiring management in specialized cancer centers. With these agents, 

remissions are infrequent, usually of short duration, and treatment is primarily palliative, 

as neither agent has been shown definitively to improve  survival. Improved treatments 

with high-risk resected and advanced metastatic disease are urgently needed.

In the last year, there have been major treatment advances for metastatic 

melanoma patients. Two agents, ipilimumab (Yervoy™, Bristol-Myers Squibb, 
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 Princeton, NJ) and vemurafenib (Zelboraf, Plexxikon/Roche, 

Auckland, NZ), have demonstrated improved survival in 

patients with advanced melanoma when compared with stan-

dard  treatments. The clinical benefits of these targeted drugs 

have been realized after decades of research in the molecular 

pathogenesis of melanoma. This research has identified 

tumor and immune cellular signaling pathway abnormali-

ties that promote melanoma development and progression. 

Once regarded as a cancer with a dismal record of negative 

Phase III treatment trials, melanoma is now a tumor type 

for the clinical evaluation of paradigm-shifting therapeutic 

 strategies. In this review, we outline key molecular pathways 

and the agents targeting them.

Melanoma, the immune system, 
and immune targeting monoclonal 
antibodies
There is overwhelming evidence that melanoma is an 

immune-responsive cancer. Spontaneous regression of mela-

noma is observed and is probably due to immune  processes. 

The identification of tumor-infiltrating lymphocytes and 

melanoma antigen-specific T-cells in peripheral blood from 

cancer patients are evidence that melanoma-specific immune 

recognition and activation occur.6–8 Moreover, melanoma 

exhibits cellular properties that can be explained by immune 

selection, such as downregulation of major histocompat-

ibility complex class I expression or release of cytokines 

such as transforming growth factor-beta.9,10 Lastly, dramatic 

clinical responses have been demonstrated with immune-

modulatory treatments, such as IL-2 and adoptive T-cell 

transfer in selected patients with metastatic melanoma, 

although neither of these treatments have demonstrated 

superiority over standard of care in randomized clinical 

trials.4,11 However, ipilimumab, a novel monoclonal antibody 

modulating the immune system, provides the first evidence 

that an immunotherapy strategy can change the clinical 

course of metastatic melanoma and result in improvement 

in patient survival.12,13

Ipilimumab is a modulator of immune system  activation. 

T-cell activation occurs when an antigen is presented 

by a major histocompatibility complex molecule and a 

co-stimulatory molecule, B7.1 or B7.2, binds to CD28.14 

Simultaneously, downregulation of this process is initi-

ated by B7-cytotoxic T-lymphocyte-associated antigen 4 

(CTLA-4) binding. Inhibitory co-receptors and pathways 

restrict T-cell functions to prevent autoimmunity. In 

 cancer patients, this restraint impedes antitumor immunity. 

Monoclonal  antibodies that bind to CTLA-4 and block the 

interaction between B7 and CTLA-4 inhibit this negative 

signal, and may break peripheral tolerance to self-tissues 

and induce antitumor responses. Ipilimumab is a fully 

human, IgG1 monoclonal antibody that blocks CTLA-4. By 

inhibiting CTLA-4, ipilimumab potentiates T-cell activation 

and proliferation, promoting antitumor immunity. Proof of 

benefit from the approach is found in two recent random-

ized controlled Phase III trials that demonstrated improved 

survival in patients with metastatic melanoma treated with 

ipilimumab.12,13 However, the drug’s effect on the immune 

response is not tumor specific: ipilimumab treatment has been 

associated with severe and potentially fatal immunological 

adverse effects due to T-cell activation and proliferation. 

A risk evaluation and mitigation strategy has been set up to 

inform prescribers of the potential risks.

The first ipilimumab Phase III study randomized patients 

with advanced stage melanoma who progressed on standard 

treatments, to receive ipilimumab plus gp100 (a melanoma-

specific antigen), ipilimumab alone, or gp100 alone.12 The 

median overall survival (OS) was statistically superior among 

patients randomized to an arm containing ipilimumab, as 

compared with those patients receiving gp100 alone (approxi-

mately 10 months versus 6.4 months). No difference in OS 

was detected between the ipilimumab groups. This was the 

first study to demonstrate a survival benefit in the setting of 

advanced melanoma in over three decades, but the enthu-

siasm was tempered by the lack of a standard treatment in 

the control arm.

The second Phase III study, conducted in previously 

untreated metastatic melanoma patients and with an accept-

able control treatment arm, corroborated the benefits observed 

with ipilimumab treatment.13 This study randomly assigned 

patients with previously untreated metastatic melanoma to 

ipilimumab plus dacarbazine or placebo plus dacarbazine. 

OS was significantly longer in the group receiving ipilimumab 

plus dacarbazine than in the group receiving dacarbazine alone: 

11.2 months versus 9.1 months, respectively.  Interestingly, 

benefit from ipilimumab was seen across patient subgroups 

based on human leukocyte antigen types, tumor mutations, 

or prognostic factors such as serum lactate dehydrogenase. 

This confirmed the clinical benefit of ipilimumab and added 

to the growing number of immunotherapeutic strategies for 

patients with advanced melanoma.

These ipilimumab trials demonstrated proof of clinical 

benefit of immune modulation in metastatic melanoma. 

Key areas for future research focus on improving the 

risk–benefit of immunotherapy in metastatic disease and 

evaluating the agent in high-risk early stage disease. For the 
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former, efforts focused on the following areas are required: 

(1) reduction in the frequency and severity and improved 

management of adverse effects, (2) identification of markers 

of tumor sensitivity and patient risk of severe side effects, 

and (3) the evaluation of combination strategies that either 

increase the tumor-specific immune response and/or target 

tumor proliferation and survival pathways. For the latter, 

trials are underway to evaluate the benefit of ipilimumab 

in resected melanoma patients. Agents and trial results of 

therapies targeting the immune system are summarized in 

Table 1. Tumor-targeting drugs are discussed further in the 

next section.

The molecular pathways altered  
in melanoma cells
Crucial genetic alterations that enhance the oncogenic 

potential in melanoma have been identified. Key muta-

tions that lead to constitutive activation of tumor growth 

and survival pathways occur in the receptor tyrosine kinase 

CKIT (CD117), and the RAS/RAF/MEK/ERK and phos-

phoinositide-3-OH kinase (PI3K)/Protein Kinase B (AKT)/

phosphatase and tensin homolog deleted on chromosome 10 

(PTEN) signal transduction systems (Figure 1). Although 

convenient to conceptualize these pathways as independent, 

significant interactions occur and simultaneous activation 

of the pathways plays a role in melanoma pathogenesis. The 

demonstration that the mutant BRAF inhibitor vemurafenib 

improves survival in patients with metastatic melanoma 

proves that targeting aberrant proteins of signaling pathways 

with kinase inhibitors can lead to clinical benefit.15 Below, we 

describe some of these key pathways and the agents designed 

to target the components of these pathways (see Figure 1).

The RAS/RAF/MEK/ERK pathway
The RAS/RAF/MEK/ERK pathway plays a role in normal 

organogenesis; however, when aberrantly activated it 

can lead to malignant cellular proliferation, inhibition of 

apoptosis, and invasion.16 This mitogen-activated protein 

kinase (MAPK) pathway relays extracellular signals from the 

plasma membrane of the cell to the nucleus via an ordered 

series of phosphorylation events.17 Various extracellular 

stimuli, including growth factor-mediated activation of 

receptor tyrosine kinases (RTKs), lead to the sequential 

recruitment, phosphorylation, and activation of one of 

three RAS isoforms (designated KRAS, NRAS, HRAS), 

three RAF family members (ARAF, BRAF, CRAF) via a 

SRC-family tyrosine kinase,18–20 MEK (mitogen-activated 

ERK kinase),21–23 and ERK (extracellular signal-regulated 

kinase).21–23 Activated ERK translocates to the nucleus and 

phosphorylates several nuclear transcription factors necessary 

for cellular proliferation, differentiation, and survival.

Constitutive activation of the MAPK pathway occurs in 

90% of melanomas.24 The two most common mechanisms 

for MAPK pathway activation in melanoma are mutations 

in the BRAF (40%–60%) and NRAS genes (15%–30%).25,26 

The BRAF V600E mutation accounts for approximately 90% 

Table 1 Clinical trials of selected immune modulators in melanoma

Agent Phase Melanoma patients 
(n)

Observations Reference

Monoclonal antibodies
Anti-CTLA-4 
tremelimumab

3 655 Median OS 11.8 months (95% CI 10.4, 13.9)  
in the tremelimumab arm, and 10.7 months  
(95% CI 9.3, 12.0) in the chemotherapy arm,  
HR 1.04 (95% CI 0.84, 1.28)

126

Anti-PD-1 MDX-1106 1 10 1 PR, 2 MR 127
Anti-CD137 
BMS-663513

2 47 3 PR 128

Tumor vaccines
Recombinant MAGE-A3  
fusion protein

2 75 3 responses 129

gp100:209–217(210M)  
peptide

3 185 randomized to IL-2  
versus IL-2 + GP100

Overall RR 22.1% vs 9.7% 
(P = 0.0223) 
PFS 2.9 months (1.7–4.5) vs 1.6 (1.5–1.8)  
(P = 0.0101)

130

OncovEXGM-CSF* 2 43 6 CR, 6 PR, 7 SD of injected tumors 131,132

Note: *An oncolytic herpes simplex virus vector encoding granulocyte monocyte colony-stimulating factor (GM-CSF).
Abbreviations: CTLA4, cytotoxic T-lymphocyte-associated antigen 4; PD-1, programmed death-1; IL-2, interleukin 2; OS, overall survival; PFS, progression free survival; 
RR, response rate; HR, hazard ratio; PR, partial response; MR, minor response; CR, complete response; SD, stable disease.
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of all activating BRAF mutations.25 This protein product of 

the V600E mutation has demonstrated a 10.7-fold increase 

in kinase activity as compared with the wild-type protein.25 

Constitutive activation of BRAF and the MAPK pathway 

impart a proliferative and survival advantage to the cancer 

cell.27 Mutations in ARAF and CRAF have not been found in 

melanoma.28,29 Vemurafenib is a potent inhibitor of the acti-

vated V600E BRAF mutant protein and wild-type BRAF, but 

is a weak inhibitor of the A and CRAF isoforms.30

The second most common means for MAPK pathway 

activation in melanoma is through mutations in the NRAS 

gene.26 Somatic RAS mutations usually occur in codons 12, 

13, or 61 and maintain RAS protein in a constitutively active 

state.31 Mutations in the HRAS and KRAS isoforms are rare 

in melanoma.32–34 Interestingly, BRAF and RAS activating 

mutations are often mutually exclusive events, suggesting 

only one mutation within the same pathway is sufficient for 

pathway activation and denoting the redundant mechanisms 

of activating this pathway in melanoma pathogenesis. Of note, 

oncogenic RAS can also bind and activate PI3K, resulting 

in increased AKT activity.35 Thus, RAS activation leads to 

the upregulation of two major signaling cascades involved 

in melanoma: the MAPK and PI3K/AKT/mammalian target 

of rapamycin (mTOR) pathways. The mechanism of pathway 

activation and molecular response to specific targeted inhibi-

tion are likely to be determinants of sensitivity and clinical 

benefit to individual agents and combinations.

PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR pathway is another signaling 

transduction pathway that is aberrantly activated in several 

cancers, including melanoma.35 In response to activated 

RTKs, the PI3K phosphorylates phosphatidylinositol-4,5-

biphosphate to phosphatidylinositol-3,4,5-triphosphate 

(PIP3), recruiting other proteins to the plasma membrane and 

leading to activation of the major downstream effector of the 

PI3K pathway, AKT.36 Once active, AKT phosphorylates a 

number of substrates that promote cell survival, proliferation, 

and invasion.36 One substrate is the mTOR, a serine threonine 

kinase that modulates protein synthesis, angiogenesis, and 

cell cycle progression and validated therapeutic target in renal 

cell carcinoma, neuroendocrine tumors, and lymphoma.

Although activating mutations in PI3K are rare, down-

stream effectors PTEN and AKT, are altered in the major-

ity of melanomas.37,38 The tumor suppressor gene PTEN 

encodes a lipid and protein phosphatase that negatively 

regulates the PI3K cascade through dephosphorylation of 

PIP3.39,40 Decreased or loss of PTEN expression or function 

through epigenetic silencing, inactivating mutation or dele-

tion is observed in 30%–60% of primary melanomas.37,41–43 

 Interestingly, somatic mutations of PTEN gene occur in asso-

ciation with BRAF, but not NRAS mutations suggesting the 

dual pathway activation can be accomplished by alterations 

in NRAS alone or the combination of PTEN and BRAF.25,44 

In contrast, AKT is an oncogene that encodes a kinase that 

is frequently activated in human cancers.45 There are three 

AKT isoforms and AKT3 is the major isoform deregulated 

in melanoma.37 Overexpression of phospho-AKT, typically 

associated with increased gene copy number, is seen in a 

greater proportion of melanomas and melanoma metastases 

than nevi37,45 and may be associated with earlier progression 

and shorter survival of patients with melanoma.46 Inhibition 

of AKT3 using small interfering RNA or increased activa-

tion of PTEN stimulated apoptosis of melanoma cell lines, 

indicating a prosurvival function of AKT in melanoma.37 

In vitro cell line and in vivo mouse xenograft studies of 

simultaneously targeting AKT3 and V600E BRAF with 

small interfering RNAs led to increasing cellular apoptosis 

and decreasing proliferation supporting the relevance of both 

pathways in melanoma.47

Cell growth, proliferation, and survival
Invasion and metastasis
Tumor-induced neo-angiogenesis

Nucleus

Cytoplasm

RAS

PTEN

Cell membrane

RTKs recruit RAS to the cell
membrane leading to activation
of signaling cascades

Binding of specific growth
factors (eg,.: c-KIT, FLT-3,
PDGF, VEGF) activate
membrane RTKs

P

RAF

MEK

ERK

P13K

AKT

mTOR

Figure 1 Molecular pathogenesis of melanoma.
Abbreviations: AKT, Protein Kinase B; ERK, extracellular signal-regulated kinase; 
FLT-3, FMS-like tyrosine kinase 3; MEK, mitogen-activated ERK extracellular signal-
regulated kinase; mTOR, mammalian target of rapamycin; PDGF, platelet-derived 
growth factor; PI3K, phophoinositol-3-kinase; PTEN, phosphatase and tensin 
homolog; RAF, murine sarcoma viral oncogene; RAS, rat sarcoma oncogene; RTK, 
receptor tyrosine kinase; vEGF, vascular endothelial growth factor.
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c-KIT
c-KIT (also known as CD117) is a RTK that also contributes 

to the pathogenesis of a subset of melanomas that do not 

harbor NRAS or BRAF mutations. c-KIT activates several 

signaling cascades, including the MAPK, PI3K/AKT/

mTOR, and microphthalmia associated transcription factor 

pathways.48,49 c-KIT signaling is necessary for differentiation, 

proliferation, and migration of normal melanocytes. c-KIT 

mutations and/or copy number increases were identified in 

the melanomas from mucosa, acral and chronic sun-induced 

damaged skin.50 Point mutations in this gene result in con-

stitutive activation of downstream effectors of key signaling 

pathways in melanoma cells.51,52 Although the frequency of 

c-KIT alterations is reported to be lower in Chinese, Korean, 

and Australian cohorts53–55 compared to Western patients, 

such aberrations have been identified in Chinese patients with 

nonchronic sun-damaged skin and melanomas of unknown 

primary.54 Geographical variability in predisposing risk fac-

tors, small study sample sizes, incomplete testing of the c-KIT 

gene, and differing criteria for solar elastosis, the marker of 

chronic sun-damage may explain the apparent variation on 

KIT mutation frequencies between populations.

The above laboratory and clinical studies support the 

importance of activating c-KIT and components of the PI3K 

and MAPK pathways for melanoma pathogenesis. Based on 

this evidence, activation may occur through NRAS muta-

tions that activate both the PI3K and MAPK pathways, or 

concurrent BRAF mutations with altered function of either 

PTEN or AKT, or through c-KIT mutations. Although these 

are not the sole alterations that contribute to melanoma 

pathogenesis, the clinical and laboratory results provide the 

initial rationale for testing specific agents and combinations 

in melanoma patients.

Potential targeted treatments for 
patients with advanced melanoma 
Agents targeting the MAPK pathway
Agents targeting the MAPK pathway are the first small 

molecule kinase inhibitors to demonstrate clinical benefit 

for melanoma patients. Agents that have entered into clinical 

testing can be grouped into those that are relatively specific 

for BRAF and/or mutant BRAF, nonspecific RAF inhibitors, 

and MEK inhibitors. Clinical trials of agents within these 

classes show varying activity and toxicity that may be due 

to the pharmacology of the individual agents (ie, specificity 

and potency of target inhibition) and to the specific tumor 

molecular profile of patients. Pharmacodynamic studies 

suggest that .80% inhibition of ERK is needed for clinical 

activity.56 Common adverse events are rash, fatigue, nausea, 

and diarrhea. Specific toxicities include the development 

of cutaneous keratoacanthoma or squamous-cell carci-

noma with specific BRAF inhibitors, and retinal toxicity 

(central serous retinopathy and retinal vein occlusion) with 

MEK inhibitors.

Laboratory results suggest there are feedback loops within 

the MAPK system of biological and clinical relevance and 

that genotype may determine the activity of specific agents. 

For instance, the development of borderline and malignant 

skin tumors such as keratoacanthomas and squamous-cell 

carcinomas associated with BRAF inhibitors, is thought 

to arise due to paradoxical MAPK signaling in cells with 

wild-type BRAF.57 Clinical studies show that inhibition of 

wild-type RAF leads to upregulation of RAS signaling and 

ERK activation. Moreover, the results of three studies suggest 

that inhibitors thought to be selective for mutant BRAF can 

also activate CRAF through the formation of dimeric RAF 

complexes – a process that is enhanced by the presence of 

an oncogenic RAS mutation.58–61 These studies support the 

conclusion that mutant-specific BRAF inhibitors should be 

used for treating cancers caused by BRAF mutants (such 

as BRAF V600E-associated melanomas), but should not be 

used as single agents in melanomas (and other cancers) with 

RAS mutations as they may promote tumor genesis. Such 

mechanistic insight into both normal and pathogenic MAPK 

signaling suggest that certain agents and combinations may 

be preferable in certain molecular contexts and lead to the 

development of effective new anticancer therapies.

Selective mutant BRAF-inhibitor 
vemurafenib
Vemurafenib (PLX-4032, RG7204) is an inhibitor of a 

mutant form of the BRAF kinase and the second agent, 

after ipilimumab, to improve OS in patients with advanced 

melanoma.15 In the Phase III study, named BRIM 3 (BRAF 

Inhibitor in Melanoma 3), previously untreated patients with 

advanced melanoma that harbored the V600E mutation, 

were randomized to either vemurafenib or dacarbazine. 

A significant improvement in 6-month OS was observed in 

the vemurafenib group versus the dacarbazine group (84% 

versus 64%, respectively). In the interim analysis for OS 

and final analysis for progression-free survival (PFS), vemu-

rafenib was associated with a significant relative reduction 

of 63% in the risk of death and of 74% in the risk of either 

death or disease progression compared with dacarbazine. 

Common adverse events associated with vemurafenib were 
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arthralgia, rash, fatigue, alopecia, photosensitivity, nausea, 

and diarrhea. Cutaneous squamous-cell carcinoma, keratoa-

canthoma, or both developed in 18% of patients. All lesions 

were treated by simple excision. This trial was the first to 

show that a rationally targeted agent improved survival 

by inhibiting an aberrantly overactive signaling pathway 

in melanoma.

Resistance to vemurafenib
Despite the benefits observed with vemurafenib, both intrin-

sic and acquired resistance has been observed in patients 

with advanced melanoma. Emerging evidence suggests that 

resistance to vemurafenib is complex and multifactorial. 

Preclinical studies suggest that PTEN loss, C-RAF muta-

tions, or Cot-1 mutations may confer intrinsic resistance 

to vemurafenib.62,63 Vemurafenib-mediated apoptosis was 

 significantly impaired in PTEN negative melanoma cell 

lines.63 Moreover, screening for kinases that prevented 

vemurafenib-mediated cell growth arrest identified both 

CRAF and Cot1 as potential drivers of resistance.62 Both 

CRAF and Cot 1 bypass BRAF signaling, activating the 

MAPK pathway. Although these studies may make mecha-

nistic sense, no study has demonstrated that pre-existing 

alterations in PTEN, CRAF, or Cot-1 predict for intrinsic 

resistance to vemurafenib.

In attempts to identify the genetic changes that lead to 

acquired resistance to vemurafenib, researchers have com-

pared matched tumor samples from patients prior to treatment 

and after treatment failure. Cot-1 mRNA levels, and insulin-

like growth factor recptor-1 and platelet-derived growth fac-

tor receptor (PDGFR) immunohistochemistry staining have 

all been found to be elevated in post-treatment samples when 

compared to pretreatment biopsies.62,64,65 Moreover, RAS or 

MEK activating mutations, that were not present in the pre-

treatment tumor, have been identified in tumors from patients 

progressing on vemurafenib treatment.64,66 A common theme 

in these mechanisms of resistance is the restoration of MAPK 

signaling and/or an increase in PI3K/AKT/mTOR signaling, 

emphasizing the importance of these pathways on melanoma 

progression. By understanding the molecular events that lead 

to resistance, rational combinations or subsequent treatments 

can be designed.

Other selective BRAF inhibitors
Selective inhibitors of BRAF are in development including 

SB90885, GDC-0879, and GSK2118436 (GSK436). The 

most detailed clinical information is available for the latter 

and is summarized in the next column.

GSK436
GSK436 is a highly potent and selective adenosine-5′-
triphosphate (ATP)-competitive BRAF inhibitor. The selec-

tivity of this agent for mutant BRAF is over 100 times greater 

than the wild-type protein.67 It displays dose-dependent inhi-

bition of MEK and ERK phosphorylation in mutant BRAF 

cell lines and tumor regression in xenograft models.67 In the 

first-in-human Phase I study, 61 patients (57 with BRAF 

mutations) had been accrued and the maximum tolerated 

dose had not yet been determined by the time the study 

was reported (see Table 2).68 In patients with mutant BRAF 

melanoma, a response rate of 63% (10 of 16 patients) was 

observed in the patients receiving doses $150 mg twice a 

day. Cohorts receiving lower doses had a response rate of 39% 

(26 of 41 patients, one CR, and 25 partial responses [PRs]). 

The probability of response to GSK436 directly correlated 

with the presence of a BRAF mutation and inversely with the 

presence of a PTEN alteration. Due to its high response rate 

and reasonable toxicity profile, GSK436 is being evaluated 

in combination with the MEK inhibitor GSK1120212 in an 

attempt to enhance the clinical activity (discussed further 

below).

Nonselective BRAF inhibitors
Sorafenib
Sorafenib is a small molecule inhibitor of multiple kinases, 

including wild-type BRAF, V600E BRAF, and CRAF as well 

as vascular endothelial growth factor receptors (VEGFR) and 

PDGFR.69,70 Inhibition of the MAPK pathway has been dem-

onstrated in vitro and in vivo with this agent. Sorafenib has 

limited single agent activity in patients with melanoma.71,72 

Although interesting clinical activity was reported from a 

Phase II trial of sorafenib combined with carboplatin and 

paclitaxel,73 the Phase III trials testing this combination in 

the first- and second-line settings did not show improve-

ments in response rate, PFS, or OS (Table 2).74,75 Currently, 

clinical investigations are focused on combining sorafenib 

with other targeted, immunomodulatory, and chemotherapy 

agents (see Table 3).

RAF265
RAF265 is also a multitargeted small molecule inhibitor of 

both the V600E BRAF mutant and VEGFR. A Phase I trial 

treating advanced melanoma patients with RAF265 dem-

onstrated an overall response rate of 16% (6 of 37 patients) 

for BRAF mutation-positive melanoma patients and 13% 

(4 of 30) for wild-type or BRAF mutation status unknown 

patients (see Table 2).76 Because of dose limiting hematologic 
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 toxicity, an intermittent schedule will be explored in an effort 

to improve the therapeutic index. Whether this agent offers 

particular advantage over more selective and effective BRAF 

inhibitors, such as vemurafenib and GSK2118436, will be 

determined in future clinical trials.

MEK inhibitors
MEK is an attractive therapeutic target as it is downstream 

of both activated BRAF and NRAS. Preclinical studies 

suggested that melanoma cell lines with mutant BRAF 

were more sensitive to MEK inhibition than those har-

boring activating NRAS mutations and wild-type BRAF 

genes.77 Small-molecule inhibitors of MEK completely 

abrogated tumor growth in BRAF mutant xenografts, 

whereas RAS mutant tumors were only partially inhibited.77 

Agents that entered clinical development include CI-1040, 

PD-0325901, GSK1120212, and AZD6244. The activity of 

first- and second-generation MEK inhibitors CI-1040 and 

PD-0325901 has been limited by pharmacologic and  toxicity 

issues. Cl-1040 was an agent that was generally tolerated 

well, but it failed to demonstrate sufficient anticancer activity 

to warrant further  development.78 PD-0325901 is structurally 

similar to Cl-1040, but is more potent at MEK inhibition and 

has greater systemic exposure. In Phase I trials, melanoma 

patients achieved objective responses, and suppression of 

phosphorylated ERK in melanoma specimens.78,79 However, 

clinical development was terminated because of unex-

pected high incidence of musculoskeletal and neurological 

adverse events (see Table 2). Newer MEK inhibitors such 

as GSK1120212 appear to have greater potency and have 

demonstrated promising clinical activity, particularly in 

tumors with BRAF mutations.

GSK1120212
GSK1120212 (GSK212) is a reversible, selective allosteric 

inhibitor of both MEK1 and MEK2. Preclinical studies have 

demonstrated that it can inhibit the phosphorylation of ERK 

and had growth inhibition in a variety of cancer cell lines.80 

The first-in-human Phase I study of GSK212 determined the 

recommended Phase II dose to be 2 mg daily (see Table 2).81 

Table 2 Clinical trials of single-agent kinase inhibitors in melanoma

Agent Phase Number of melanoma patients  
evaluable for response (n)

Response observed  
in melanoma patient(s)

Reference

c-KIT inhibitors
Imatinib 2 16 No objective responses 103
Imatinib 2 21 1 PR, 4 SD 102
Imatinib 2 25 No objective responses, 2 SD 104
Imatinib 2 43 c-KIT positive 10 PR, 13 SD 

mPFS = 3.5 months, 6 months,  
PFS rate = 36.6%

101

Imatinib 2 25 2 CR, 4 PR 100
Dasatinib 2 36 2 PR 105
Multi-target BRAF inhibitors
Sorafenib 2 30 0 CR, 0 PR, 7 SD, 23 PD 72
RAF265 (CHIR-265) 1 76 The overall response rate by  

RECIST 1.0 was 6/37 (16%) for  
mut BRAF pts and 4/30 (13%)  
for wt (3)/unknown (1) BRAF pts

76

Selective BRAF inhibitors
GSK2118436 1/2 57 BRAF mutation positive 1 CR, 25 PR 68
MEK inhibitors
PD-0325901 1 48 0 CR, 3 PR, 10 SD 78
PD-0325901 1 7 1 CR 79
GSK1120212 1 42 BRAF mutation positive: 2 CR, 6 PR 

BRAF wt: 2 PR
81

AZD6244 R2 104 6 PR 83
AKT inhibitors
Perifosine 2 14 0 CR, 0 PR 86
mTOR inhibitors
Temsirolimus 2 33 1 PR 91
Everolimus 2 53 2 PR 92

Abbreviations: OS, overall survival; PFS, progression free survival; HR, hazard ratio; RR, response rate; PR, partial response; MR, minor response; CR, complete response; 
SD, stable disease; mut, mutant; wt, wild-type; pts, patients.
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Common toxicities were grade 1 and 2 rash and  diarrhea. 

There were three cases of reversible central serous retinopathy. 

Seventy-two of 162 patients enrolled in the study had 

advanced melanoma. Of the patients with melanoma, 24 

tumors harbored BRAF mutations, 24 had a wild-type BRAF 

gene, and 22 had an unknown BRAF status. There were two 

CRs and six PRs among 20 evaluable patients with BRAF 

mutant melanoma for a preliminary objective response rate 

of 40%. In contrast, two of 22 evaluable patients with BRAF 

wild-type melanomas had PRs. These results suggest that 

response correlates with BRAF mutation status. Activity in 

some BRAF wild-type melanoma tumors suggest that these 

are also dependent on the MAPK pathway by mechanisms 

unrelated to most common BRAF mutations. Trials of drug 

combinations are currently being tested to improve the effi-

cacy of this agent.

AZD6244
AZD6244 (formerly called ARRY-142886) is a selective 

non-ATP competitive inhibitor of MEK1 and MEK2.82 In a 

Phase II trial, 210 patients with advanced melanoma were 

randomly allocated to AZD6244 or temozolomide (see 

Table 2).83 Although there was no significant difference in 

the primary endpoint of PFS between the two arms, five of 

six patients with PRs from AZD6244 had BRAF V600E-

mutated tumors. The activity observed warrants further 

investigation of this agent in combination with other drugs 

in selected patients.

Table 3 Clinical trials of combinations in melanoma

Agent Combination Phase Melanoma patients  
evaluable for  
response (n)

Response or endpoints  
observed in melanoma  
patient(s)

Reference

Multi-target BRAF inhibitors
Sorafenib Interferon alpha 1 1 with the remaining  

12 being renal cell cancer
1 SD 133

Sorafenib Pegylated  
Interferon alpha

2 41 3 PR, 14 SD 134

Sorafenib Dacarbazine R2 51 in the sorafenib  
and dacarbazine arm

CR + PR = 12 
There were statistically significant  
improvements in PFS rates at 6 and  
9 months, and in TTP in favor of the  
sorafenib plus dacarbazine arm.  
No difference in OS was observed

135

Sorafenib Dacarbazine 2 74 0 CR, 8 PR, 34 SD, 32 PD 136
Sorafenib Carboplatin  

and Paclitaxel
1/2 34 11PR, 19 SD 73

Sorafenib in the first-line setting Carboplatin  
and Paclitaxel

3 409 pts on the sorafenib, 
carboplatin,  
and paclitaxel arm

No difference in OS, PFS, or RR 74

Sorafenib in the second-line  
setting

Carboplatin  
and Paclitaxel

3 135 pts in both arm No difference in OS, PFS,  
or incidence of best response

75

Sorafenib Temsirolimus 1 23 0 CR, 0 PR, 10 SD 112
Sorafenib Tipifarnib 1 7 0 CR, 0 PR, 3 SD 118
Sorafenib Temsirolimus  

or Tipifarnib
R2 Arm A – Sorafenib  

and temsirolimus arm:66 
Arm B – Sorafenib  
and tipifarnib

Arm A: 0 CR, 3 PR, 24 SD 
Arm B: 0 CR, 1 PR, 10 SD

119

Selective BRAF inhibitors
GSK2118436 GSK1120212 1/2 No prior BRAF inhibitor: 71 

Prior BRAF inhibitor: 24
without prior BRAF inhibitor:  
5 CR, 44 PR, 22 SD. 
Prior BRAF inhibitor: 0 CR, 3 PR

125

VEGF inhibitor
Bevacizumab Everolimus 2 57 1 CR, 6 PR, 33 SD  

The median PFS and OS were  
4 months and 8.6 months  
respectively

122

Bevacizumab Ipilimumab 1 22 1 CR, 6 PR, 7 SD 123

Abbreviations: OS, overall survival; PFS, progression free survival; HR, hazard ratio; RR, response rate; PR, partial response; MR, minor response; CR, complete response; 
SD, stable disease; mut, mutant; pts, patients.
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The activity of MEK inhibitors in some patients 

with BRAF wild-type melanomas seen with GSK212 

and AZD6244 suggest that there are other mechanisms 

determining sensitivity to MEK inhibition. Results from 

laboratory studies evaluating inhibitors across multiple cell 

line panels indicate that MEK inhibitor activity does not 

absolutely correlate with the mutational or phosphorylation 

status of BRAF, MEK, RAS, or PI3K.84 This lack of correla-

tion has fueled efforts to develop expression profiles of MEK 

activation and sensitivity. An 18-gene expression signature of 

MEK activation and inhibition derived from multiple tumor 

cell lines and xenografts may correlate with sensitivity and 

be used as a marker of pharmacodynamics response to MEK 

inhibition.85 A 13-gene signature was also identified that was 

predictive of resistance to a MEK inhibitor in cancer cells, 

despite these cells having functional MEK activity. These 

signatures potentially may be used to select patients sensitive 

and resistant to MEK inhibition.84

Agents targeting  
the PI3K/AKT/mTOR pathway
In contrast to the clinical benefits seen with agents targeting 

the MAPK pathway tested in melanoma patients, the results 

from clinical trials evaluating agents targeting the PI3K/AKT/

mTOR pathway have been disappointing. There are a number 

of potential explanations for the lack of activity: (1) subop-

timal pharmacology and target modulation of the agents at 

maximum tolerable doses, (2) relative lack of importance 

of the pathway as a driver of melanoma cell proliferation or 

survival, (3) intrinsic or rapid onset of acquired resistance 

to target inhibition, or (4) failure to enrich enrollment into 

trials for patients likely to benefit. Unfortunately, not all trials 

have incorporated pharmacodynamics assessment of target 

inhibition in tumor or surrogate tissue nor employed patient 

enrichment strategies, thus further evaluation of emerging 

agents targeting the pathway with better pharmacology is 

warranted. Descriptions of agents and results from clinical 

trials are provided in the following sections.

AKT inhibitors
PI3K/AKT/mTOR pathway is another signaling transduc-

tion pathway that is aberrantly activated in melanoma and 

pharmacological inhibition may also benefit patients with 

melanoma.35 Although a number of PI3K inhibitors are in 

clinical development and may have activity in PTEN mutant 

tumors, inhibiting downstream targets AKT or mTOR may 

be preferable due to the frequency of AKT amplification 

in melanomas. Despite this finding, the activity of AKT 

inhibitors perifosine and GSK2141795 as single agents in 

the treatment of advanced melanoma has been disappointing. 

These initial results may be due to issues of pharmacology 

of the individual agents and lack of optimal target inhibition 

in tumor due to off-target or target-specific toxicity-limiting 

doses.

Perifosine
Perifosine is an AKT and PI3K inhibitor and structurally 

related to miltefosine. It interferes with the recruitment of 

proteins with the pleckstrin homology domain, like AKT, 

to the plasma membrane. A Phase II study of perifosine 

treatment in previously untreated patients with metastatic 

melanoma was conducted and of 14 evaluable patients, none 

achieved an objective response (see Table 2).86 The extent 

of AKT or MAPK pathway inhibition was not evaluated in 

this study. The authors recommended that no further devel-

opment of single agent perifosine was required in metastatic 

melanoma patients.

GSK2141795
GSK2141795 (GSK795) is a reversible, selective ATP-

competitive inhibitor of all AKT isoforms. Preclinical studies 

had demonstrated that GSK795 could inhibit proliferation 

of cancer cell lines. A Phase I trial has been conducted with 

GSK795 to determine the recommended Phase II dose, 

pharmacokinetics, pharmacodynamics, and safety of the 

drug.87 In total, 76 patients were enrolled. In the 54 patients 

evaluable for response, one PR was observed in a patient 

with metastatic anal cancer, two patients with endometrial 

cancer had prolonged stable disease (SD) and minor tumor 

responses in a population selected for molecularly defined 

predictive signatures (PTEN loss or PIK3CA mutations). 

No responses were observed in the patients with melanoma, 

although few were enrolled in this study.

mTOR inhibitors
Inactivating PTEN mutations are identified in 50% of 

melanomas.88 The resulting increase in activity of mTOR is 

believed to derail the normal control of nutrients leading to 

excessive cell growth and proliferation.89 However, the results 

from early Phase clinical trials testing mTOR inhibitors and 

rapamycin derivatives, temsirolimus and everolimus, in mela-

noma patients have also shown limited single agent activity.

Temsirolimus
Temsirolimus is an intravenous mTOR kinase inhibitor 

and ester derivative of rapamycin. When bound to FK506 
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binding protein, it interacts and inhibits the mTOR kinase 

activity, resulting in inhibition of the cell cycle.90 Preclinical 

studies of temsirolimus demonstrated that it could inhibit 

tumor activity in a variety of cancers including melanoma 

cell lines and animal models. A Phase II trial of temsiroli-

mus was conducted in patients with metastatic melanoma 

(see Table 2).91 Thirty-three patients were treated with only 

one patient experiencing a PR lasting 2 months. The median 

time to disease progression was 10 weeks. Of note, the dose/

schedule used in this trial is not the maximum tolerated dose 

and target inhibition in tumor was not evaluated in this trial. 

Whether antitumor activity would be greater with higher 

doses is an unanswered question.

Everolimus
Everolimus is an oral mTOR inhibitor. A two-stage Phase 

II trial was conducted in 29 patients with metastatic mela-

noma (see Table 2).92 By the first interim analysis, the activ-

ity of everolimus looked favorable with 35% of patients 

experiencing SD at 16 weeks. The median PFS and OS were 

just over 3 months and 12 months, respectively. To further 

investigate the activity of everolimus, the enrollment of a 

second cohort treated with a higher dose was conducted. 

An interim analysis of the second cohort found the median 

PFS and OS was just under 2 months and 9.5 months 

respectively, tempering the enthusiasm generated by the 

activity observed in the first cohort. Of the 53 patients 

enrolled in total, two patients had unconfirmed PRs. The 

authors concluded that everolimus as a single agent had 

insufficient activity in metastatic melanoma patients. The 

reason as to why patients treated at the lower dose had 

longer survival compared with those treated at higher 

doses is unknown.

c-KIT inhibitors
Three commercially available, orally administered small 

molecule tyrosine kinases inhibitors, imatinib, dasatinib, and 

nilotinib, are under evaluation in melanoma. While all three 

agents inhibit c-KIT, PDGFR, and BCR-ABL, they differ in 

potency of inhibition, cellular uptake, mechanism interaction 

with kinase, and overall inhibitory profile for other cellular 

kinases.67,93,94 The three agents were initially approved for the 

treatment of patients with chronic myelogenous leukemia 

which results from the translocation product BCR-ABL.95–97 

Both imatinib and dasatinib have demonstrated activity in 

gastrointestinal stromal tumors, which harbors activating 

mutations in c-KIT or PDGFR.98,99 Results suggest that these 

agents may have activity in c-KIT mutated and, possibly, 

c-KIT amplified melanomas.

Imatinib mesylate
Five Phase II trials of single agent imatinib have been con-

ducted (see Table 2) and the results of these trials demonstrate 

the importance of patient selection based on the presence of 

mutations in tumors.100–104 Across three trials conducted in 

patients with mostly nonchronically sun-damaged melanomas 

and not requiring c-KIT mutation for enrollment, only one 

of 65 patients achieved a PR, and that patient had a c-KIT 

mutation-positive acral melanoma.102–104 In contrast, two 

published Phase II studies that required patients to harbor 

melanomas with c-KIT mutations reported dramatically dif-

ferent results.100,101 Across these two studies, there were two 

CRs and 14 PRs among 65 evaluable patients, for a response 

rate of almost 25%. Responses were seen in melanomas with 

c-KIT mutations with known functional relevance. Mutations 

in c-KIT exons 11 and 13 seemed to correlate better with 

response than either amplifications or c-KIT overexpression 

assessed by immunohistochemistry.67 These promising results 

with imatinib in this molecular subgroup of melanoma patients 

warrant confirmation in a prospective randomized trial.

Dasatinib
A Phase II study in a molecularly unselected population of 

advanced melanoma patients has recently been published (see 

Table 2).105 Of the 36 patients evaluable for response, two had a 

PR lasting 24 weeks or more. One of these patients was found 

to have a c-KIT mutation. The other responder had a wild-type 

c-KIT gene, but amplification of c-KIT was not tested in this 

study. The activity of the drug in patients with melanomas likely 

to carry c-KIT aberrations is currently being evaluated.106

Nilotinib
Nilotinib is a second-generation tyrosine kinase inhibitor 

of c-KIT, PDGFR, and BCR-ABL. Nilotinib has similar 

potencies against c-KIT and PDGFR compared to ima-

tinib.67  However, the agents differ with respect to cellular 

transport, where imatinib is transported actively and nilo-

tinib is transported passively. Due to this passive diffusion, 

nilotinib may achieve higher intracellular concentrations and 

be subject to less extrinsic resistance mechanism as com-

pared with imatinib.67 Several Phase II studies are currently 

recruiting patients with melanomas from acral, mucosal, 

and chronically sun-damaged skin or melanomas that harbor 

c-KIT aberrations.107–111
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New treatment paradigm  
for advanced melanoma
Ipilimumab and vemurafenib are poised to become the ther-

apy of choice for patients with previously untreated advanced 

melanoma. The initial treatment for patients with tumors 

that harbor the BRAF V600E mutation will be vemurafenib, 

while those patients harboring wild-type BRAF tumors will 

be treated with ipilimumab. However, despite the advances 

observed with these agents, both intrinsic and acquired 

resistance has been observed and no standard second-line 

treatment has been established. Hence, further research into 

the molecular predictors and mechanisms contributing to 

resistance will aid in the design of rational treatment com-

binations and regimens to employ after treatment failure. 

Research into the molecular pathogenesis of melanoma and 

its dependence on particular signaling cascades will aid in 

these efforts.

Combinations of targeted agents  
in melanoma
Intrinsic and acquired resistance to novel targeted agents 

is likely due, in part, to the cross talk that occurs between 

the pathways required for melanoma development and 

progression. Coordinated blockade of multiple pathways 

with combinations of targeted agents will hopefully lead to 

improved treatment efficacy. With the goal of overcoming 

resistance and enhancing clinical efficacy, a Phase I/II trial 

is opening soon evaluating the combination of ipilimumab 

and vemurafenib in subjects with metastatic melanoma 

and the mutant form of BRAF (clinicaltrials.gov identifier: 

NCT1400451). Other combinations of targeted agents are 

currently in varying phases of development. Combination 

strategies have focused on: (1) inhibiting additional targets 

within the same pathway or (2) inhibiting a different pathway 

or cellular process that are involved in the pathogenesis or 

drug resistance of melanoma. Trials combining CTLA4 and 

other immunomodulatory antibodies, and/or vaccines are also 

underway. In general, vaccine development strategies may 

benefit most from combinations with novel immunomodulat-

ing monoclonal antibodies. These strategies are based on our 

current understanding of melanoma targets/pathways, avail-

ability of the agents, and limited preclinical experiments that 

suggest at least additive efficacy of the combination. Results 

to date suggest that activity of a combination is related to 

obtaining effective inhibition of the individual targets without 

inducing significant additional normal tissue toxicity.

Inhibiting targets in parallel 
pathways
Sorafenib and temsirolimus
As single agents, sorafenib and temsirolimus have modest 

antimelanoma activity; however, these agents inhibit targets 

within the parallel signaling pathways and have limited 

overlapping toxicities. Hence the combination of sorafenib 

and temsirolimus was expected to produce at least additive 

activity and have a tolerable side effect profile. The results of a 

Phase I study of a combination of sorafenib and temsirolimus 

in patients with advanced melanoma did not meet these 

expectations (see Table 3).112 Dose escalations of the individual 

agents were impeded by higher than expected rates of toxicity. 

There were no responses among 23 evaluable patients, although 

ten patients had SD of 8–24 weeks. The combination did have 

effects on target modulation, as both phosphorylated MEK and 

AKT decreased from pre- and on-treatment tumor biopsies. 

However, there was no trend in the change of phosphorylated 

ERK with the combination  treatment. The reason for the 

decrease in phosphorylated MEK and not ERK is unknown, 

but probably speaks to the complexity of crosstalk amongst 

these pathways and challenges of assessing pharmacodynamics 

markers in clinical trials.

Sorafenib and tipifarnib
The frequency of activating RAS mutations in melanoma 

and most cancers suggest that it would be an ideal target for 

inhibition. Unfortunately, no direct inhibitor of RAS has been 

developed, as it lacks an accessible small molecule binding 

site. One strategy indirectly inactivates RAS function by 

inhibiting the post-translational modifications required for the 

full biological activity of RAS. RAS undergoes farnesylation 

to associate with the plasma membrane and is subsequently 

activated.113 Inhibitors targeting farnesyl transferase, the 

enzyme that catalyzes this modification, have been developed 

and tested in patients with advanced melanoma. The major-

ity of farnesyl transferase inhibitors have limited activity 

as single agents and in combination with chemotherapy in 

melanoma patients.114–117 However, several trials combining 

farnesyl transferase inhibitors with other targeted agents in 

patients with melanoma are underway. A Phase I trial evalu-

ating the combination of the farnesyl transferase inhibitor, 

tipifarnib with sorafenib in patients with advanced malignan-

cies has been reported (see Table 3).118 Evidence of target 

modulation was seen in a quarter of patients with a 50% or 

more reduction in farnesyl transferase levels. Three of seven 
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melanoma patients had SD. One patient with prolonged SD 

had a PDGFR mutation. It is unknown whether the observed 

response was due to sorafenib, which is known to inhibit 

PDGFR, or the combination of both agents.

Another randomized Phase II trial in molecularly unse-

lected metastatic melanoma patients tested the combina-

tions of sorafenib and temsirolimus (Arm A) or sorafenib 

and tipifarnib (Arm B) (see Table 3).119 Significant toxicity 

limiting dose escalation was seen with both combinations. 

Among 66 evaluable patients in Arm A, there were three 

PRs (5%) and 24 SD (36%). Of the 42 evaluable patients in 

Arm B, there was one PR (2%) and ten SDs (24%). Based on 

these results, neither combination appear to show sufficient 

activity for further evaluation, possibly due to poor pathway 

inhibition at tolerated doses.

Bevacizumab and everolimus
Vascular endothelial growth factor (VEGF) is frequently 

overexpressed in melanoma and high levels of VEGF may 

represent an adverse prognostic feature.120 Aberrant activity 

of the VEGF pathway results in tumor angiogenesis and 

monocyte/macrophage migration. Concurrent inhibition 

of tumor and endothelial cell proliferation by combining a 

VEGF inhibitor with an mTOR inhibitor like everolimus, 

which also down regulates the VEGF receptor may be 

efficacious. The combination of the VEGF monoclonal anti-

body bevacizumab and everolimus has activity in metastatic 

clear cell renal carcinoma.121 A Phase II study involving 

57 patients with metastatic melanoma evaluated the efficacy 

and safety of bevacizumab and everolimus. Seven patients 

(12%) experienced objective responses (1CR, 6PR) and 

33 had SD (58%) (see Table 3).122 The median PFS and OS 

were 4 months and 8.6 months, respectively. This activity 

is greater than expected for the individual agents and the 

researchers recommended further exploration of these agents 

in other combinations.

Ipilimumab and bevacizumab
The activity of immunological therapies may in part be 

related to damage to the tumor vasculature. Ipilimumab 

induces a hemorrhagic necrosis of tumors that is likely 

due in part to immune mediated vasculopathy.123 Similar 

changes are observed in metastases of patients with durable 

clinical responses to CTLA-4 antibody blockade and vac-

cination with irradiated autologous tumor cells engineered 

to secrete GM-CSF.124 In these patients, high titer antibod-

ies are produced against VEGF, suggesting ipilimumab 

and other immunotherapy may induce host responses that 

target angiogenic networks in the tumor microenvironment. 

In addition, VEGF not only affects tumor angiogenesis, it 

also potently inhibits the maturation of antigen presenting 

cells and thus may contribute to the ability of tumors to evade 

the host immune response. Based on these observations, the 

combination of ipilimumab and bevacizumab was studied 

in a Phase I study (see Table 3).123 Among 22 patients evalu-

able for response, six (27%) PRs, one (5%) CR, and seven 

(32%) durable SDs were observed. Serial perfusion computed 

tomography scans showed a persistent decreased tumor blood 

flow, and post-treatment biopsies in twelve patients revealed 

activated vessel endothelium with extensive T-cell trafficking 

and nonproductive central angiogenesis. Clinical activity and 

correlative studies suggest additive to synergistic effects with 

the combination of ipilimumab and bevacizumab and that 

this combination merits further exploration.

Inhibiting targets within  
the same pathway
Combined BRAF and MEK inhibition
The most promising combination strategy under evaluation is 

the simultaneous inhibition of BRAF and MEK. Promising 

evidence derived from a BRAF V600E human melanoma 

xenograft model, illustrated that combined administration of 

BRAF inhibitor GSK2118436 (GSK436) and MEK inhibitor 

GSK1120212 (GSK212) lead to greater antitumor activity 

compared to either monotherapy and decreased incidence 

of the BRAF inhibitor induced hyper-proliferative skin 

lesions.125 In fact, a Phase I/II trial has been conducted with 

the combination of GSK436 and GSK212 in patients with 

tumors harboring V600 BRAF mutations, 93% (n = 101 

patients) with advanced melanoma (see Table 3).125 Full 

monotherapy doses were tolerated in combination and the 

common adverse events included: pyrexia, rash, chills, nau-

sea, vomiting, diarrhea, and fatigue. Grade 3 neutropenia 

and leukopenia were also observed in only three and two 

patients respectively. As predicted by the xenograft model the 

co-administration of a MEK inhibitor lowered the incidence 

of rash and hyper-proliferative skin lesions, presumably 

by GSK212 blocking the BRAF inhibitor-induced activa-

tion of the MAPK pathway in cells with a wild-type BRAF 

gene. Forty-one of 71 patients with advanced melanoma 

and no prior exposure to a BRAF inhibitor had objective 

responses. Of 24 patients that had previous BRAF inhibitor 

therapy, three had PRs. These results exemplify the fact that 

combination treatments targeting the same pathway may be 

tolerable, reduce mechanism-based toxicity, and potentially 

enhance activity.
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Conclusion
Improvements in the understanding of the molecular underpin-

nings of melanoma have finally translated into targeted therapies 

that improved survival for patients with advanced melanoma. 

Ipilimumab and vemurafenib are now the first-line treatment 

options for patients. CTLA4, other immune modulatory anti-

bodies, and vaccines may play a crucial role in initiating and 

maintaining a melanoma specific immune response. Vaccine 

development strategies may benefit most from combinations 

with novel immune modulating monoclonal antibodies. In 

early Phase clinical trials of small molecule kinase inhibitors, 

there has been some significant antitumor activity identified in 

unique molecular subsets of melanoma patients. Research is 

currently focused on understanding the mechanisms of intrinsic 

and acquired resistance to these agents. These advances will 

lead to rationally designed combinations of first- and second-

line therapies that will hopefully improve efficacy and toler-

ability in selected groups of melanoma patients.
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