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Background: Both HIV and TB are chronic infectious diseases requiring long-term treatment and follow-up, resulting in extensive 
electronic medical records. With the exponential growth of health and medical big data, effectively extracting and analyzing these data 
has become the research hotspot. As a fundamental aspect of artificial intelligence, machine learning has been extensively applied in 
medical research, encompassing diagnosis, treatment, patient monitoring, drug development, and epidemiological investigations. This 
significantly enhances medical information systems and facilitates the interoperability of medical data.
Methods: In our study, we analyzed longitudinal data from the electronic health records of 4540 patients, gathered from the National 
Clinical Research Center for Infectious Diseases in Shenzhen, China, spanning from 2017 to 2021. Initially, we employed the fine- 
tuned ChatGLM to structure the electronic medical records. Subsequently, we utilized a multi-layer perceptron to classify each patient 
and determined the presence of tuberculosis in HIV patients. Using machine learning-based natural language processing, we structured 
these records to build a specialized database for HIV and TB co-infection. We studied the epidemiological characteristics, focusing on 
incidence patterns, patient characteristics, and influencing factors, to uncover the transmission characteristics of these diseases in 
Shenzhen. Additionally, we used Long Short-Term Memory to create a predictive model for TB co-infection among HIV patients, 
based on their medical records. This model predicted the risk of TB co-infection, providing scientific evidence for clinical decision- 
making and enabling early detection and precise intervention.
Results: Based on the refined ChatGLM model tailored for structured electronic health records, the accuracy of symptom extraction 
consistently surpassed 0.95 precision. Key symptoms such as diarrhea and normal showed precision rates exceeding 0.90. High scores 
were also achieved in recall and F1 scores. Among 4540 HIV patients, 758 were diagnosed with concurrent tuberculosis, indicating 
a 16.7% co-infection rate, while syphilis co-infection affected 25.1%, underscoring the prevalence of concurrent infections among HIV 
patients. Utilizing electronic health records, a Multilayer Perceptron classifier was developed as a benchmark against Long Short-Term 
Memory to predict high-risk groups for HIV and tuberculosis co-infections. The Multilayer Perceptron classifier demonstrated 
predictive ability with AUROC values ranging from 0.616 to 0.682 on the test set, suggesting opportunities for further optimization 
and generalization despite its accuracy in identifying HIV-TB co-infections. In tuberculosis intelligent diagnosis based on laboratory 
results, the Long Short-Term Memory showed consistent performance across 5-fold cross-validation, with AUROC values ranging 
from 0.827 to 0.850, indicating reliability and consistency in tuberculosis prediction. Furthermore, by optimizing classification 
thresholds, the model achieved an overall accuracy of 81.18% in distinguishing HIV co-infected tuberculosis from simple HIV 
infection.
Conclusion: Combining the Multilayer Perceptron classifier with Long Short-Term Memory represented an advanced approach for 
effectively extracting electronic health records and utilizing it for disease prediction. This underscored the superior performance of 
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deep learning techniques in managing both structured and unstructured medical data. Models leveraging laboratory time-series data 
demonstrated notably better performance compared to those relying solely on electronic health records for predicting tuberculosis 
incidence. This emphasized the benefits of deep learning in handling intricate medical data and provided valuable insights for 
healthcare providers exploring the use of deep learning in disease prediction and management.
Keywords: Prediction models, HIV, Tuberculosis, Machine Learning, Artificial Intelligence

Introduction
Acquired Immunodeficiency Syndrome (AIDS), characterized by the progressive weakening of the immune system, 
frequently results in opportunistic infections like tuberculosis (TB).1 Notably, TB is the leading cause of mortality among 
individuals with Human Immunodeficiency Virus (HIV), where the combined prevalence and interaction of HIV and TB 
epidemics significantly contribute to acute illness and elevated global mortality rates. Qi et al2 conducted a meta-analysis 
in 2023 and determined that the pooled prevalence of HIV/TB co-infection in China was 6.0%. For people living with 
HIV (PLHIV), TB represents a critical cause of death, accounting for approximately one-quarter of all fatalities.3 

Nonetheless, there has been a consistent decline in TB-related deaths among PLHIV; in 2022, the estimated figure 
stood at 167,000 (95% UI: 139,000–198,000).4 The epidemiological investigation unveiled that the combined mortality 
rate among individuals concomitantly affected by HIV and TB in China was recorded at 15.92%.5

Various methods are utilized for screening TB, encompassing symptom assessment, chest imaging, C-reactive protein 
(CRP) testing, laboratory tests, and rapid molecular biology testing. During each HIV/AIDS follow-up, screening for 
symptoms of TB is recommended. PLHIV who exhibit symptoms should undergo either chest X-ray or CRP testing. CRP 
testing stands out as a straightforward, cost-effective, and immediate diagnostic method. Its accuracy in identifying active 
TB among HIV/AIDS patients surpasses that of symptom screening. For TB screening in HIV/AIDS patients, using 
a cutoff of 5 mg/L demonstrates higher sensitivity compared to a cutoff of 10 mg/L. Furthermore, these individuals 
should undergo an annual chest X-ray examination.

With the rapid expansion of antiretroviral therapy (ART) in developing country, a pressing issue remains the 
persistently high mortality rates in patients co-infected with TB and HIV, even with the availability of effective 
treatments for both conditions.6 Autopsy studies have disclosed a significant prevalence of undiagnosed TB in indivi-
duals positive for HIV-1, suggesting that the ramifications of co-infection may have been substantially underestimated.7 

Moreover, the concurrent presence of TB and HIV poses intricate clinical challenges, including diagnostic complexities, 
drug interactions, and increased adverse reactions to treatments. Despite extensive research efforts, accurately predicting 
TB development in PLHIV continues to be a formidable task, highlighting the necessity for sophisticated predictive 
models that can adapt to the evolving nature of these diseases.

Electronic medical records (EMRs) contain structured data, unstructured data, and time series data. Traditional 
statistical models are limited to handling structured data and cannot effectively analyze unstructured and time series 
data. In contrast, Machine Learning (ML) can simultaneously process and integrate these multi-dimensional and 
heterogeneous data types, providing more comprehensive and accurate analytical results. Traditional statistical models 
rely on manual feature engineering, requiring experts to select and extract features based on their experience. This 
process is time-consuming and prone to missing critical information. ML automates feature extraction by autonomously 
learning features and patterns through multi-layer neural networks. This capability enables the identification of complex 
non-linear relationships and hidden patterns, thereby improving predictive performance and accuracy. As medical 
informatics advances, the volume of EMR data continues to grow. ML, enhanced by big data technologies and distributed 
computing frameworks, can efficiently process and analyze massive datasets to extract valuable insights. However, 
traditional statistical models often face limitations in computing resources and time when dealing with large-scale data, 
making real-time analysis and prediction challenging. Specifically, ML endows systems with the ability to learn from 
data, enabling them to accomplish targeted tasks. Practically, this involves training models with large datasets to solve 
specific problems. ML excels at processing data, analyzing images, and identifying features without subjective inter-
ference, thereby providing more accurate anomaly detection, enhancing diagnostic accuracy, and predicting disease 
progression and prognosis.
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There were several clinical prediction models designed for TB screening in PLHIV,8–12 these models exhibit certain 
limitations. Some have been displayed sub-optimal performance during external validation, lack extensive external valida-
tion, or remain unassessed for clinical utility. Meanwhile, the unstructured nature of EHRs presents significant obstacles for 
data mining and reuse.13 Recent advancements, such as ChatGLM, have enhanced natural language processing capabilities 
for structuring EHRs. ChatGLM shows promising accuracy in comprehending medical text.14 But it lacks customization for 
institutional EHR quirks. Fine-tuning on local EHRs can adapt the model to local vocabulary and note patterns,15 improving 
generalizability. Our approach involved fine-tuning ChatGLM using anonymized EHRs from the National Clinical Research 
Center for Infectious Diseases. The modified model, when tested on an annotated dataset, showed superior F1 scores in 
identifying medication, symptom, and diagnosis entities than the original version. It also generated more coherent key-value 
pairs. Implementing this refined ChatGLM for structuring EHR in downstream tasks such as cohort selection and clinical 
decision-making, while upholding patient privacy. Overall, fine-tuning large language models on local EHRs shows potential 
for unlocking EHR data. The convergence of AI and public health is paving new pathways for the prediction, management, 
and comprehension of complex diseases.

LSTM (Long Short-Term Memory) is an advanced type of Recurrent Neural Network (RNN) particularly suited for 
handling and predicting tasks involving time series data, designed to address the issue of vanishing gradients. Unlike 
traditional RNNs, LSTM introduces specialized units for storing and managing memory, implemented through 
a meticulously designed structure of gates, including the input gate, output gate, and forget gate. Each LSTM unit 
contains a memory cell responsible for maintaining the network’s long-term state over time series. These gating 
mechanisms enable LSTM networks to more effectively control the flow of information within the network, thereby 
mitigating the vanishing gradient problem and capturing dependencies over extended sequences. These enhancements 
significantly boost the performance of RNNs, making them crucial for tackling more complex and demanding tasks 
involving long-sequence data.

The strength of LSTM lies in its ability to capture and utilize long-term dependencies within time series data, thereby 
improving the understanding and prediction of patients’ health statuses. Additionally, LSTM is widely used for predicting 
medical events, such as when a patient might need intensive care or forecasting the health trends of chronic diseases. By 
learning from and modeling patients’ historical data, LSTM can provide valuable predictive information, offering timely 
and accurate support for medical decision-making. Thus, the application prospects of LSTM in the medical field are 
promising, potentially bringing significant advancements and improvements to medical research and clinical practice.

In this study, by integrating MLP and LSTM, we combined the analysis of static and dynamic data, thereby improving 
the accuracy of predicting tuberculosis incidence among HIV/AIDS patients. The use of MLP allows us to delve into 
patients’ basic biochemical indicators, while the incorporation of LSTM enables us to account for the time-dependence of 
disease progression. This complementary approach not only enhanced the predictive capability of the model but also 
underscored the importance of combining different types of machine learning models to tackle complex medical 
prediction problems. Our research results highlighted the potential of employing multi-model approaches in medical 
research and clinical practice, providing valuable insights for future studies on similar issues.

The study aimed to analyze the epidemiological characteristics and risk factors of tuberculosis infection in HIV/AIDS 
patients and to construct the LSTM-based predictive model to accurately forecast the incidence of TB. The application of 
this method will provide effective risk assessment tools in clinical practice, aiding healthcare providers in accurately 
identifying high-risk populations, optimizing resource allocation, and formulating more targeted prevention and treat-
ment strategies. Ultimately, this will help alleviate the public health burden posed by the dual infection of HIV and TB. 
By integrating Named Entity Recognition (NER) and LSTM, our research not only offered new perspectives for EMR 
analysis but also provided support and solutions for managing and preventing HIV and TB co-infection.

Methods
Study design and population
In this study, we utilized EMR data, a diverse dataset that encompassed patient medical information sourced from 
National Clinical Research Center for Infectious Diseases, Shenzhen. The hospital has emerged as a leading institution in 
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the field of infectious disease research, with a particular emphasis on HIV and TB. Over the period spanning from 
January 1, 2017, to December 31, 2021, we amassed a cohort of 6426 individuals suspected or confirmed to have HIV. 
Given the substantial size and diverse nature of the dataset, rigorous data cleaning was imperative to ensure the quality 
and reliability of the analysis. The data cleaning process involved several critical steps, starting with the removal of cases 
where individuals had only undergone preliminary HIV testing without subsequent confirmatory tests. Confirmatory 
testing is crucial for accurate HIV diagnosis, and its absence may lead to data inaccuracies. Additionally, we excluded 
individuals who, despite being initially suspected of HIV, maintained regular medical visits up to December 31, 2021, 
without receiving a definitive HIV diagnosis. This exclusion helped to refine the dataset by focusing solely on confirmed 
cases, thereby enhancing the specificity of our research findings. Moreover, records with incomplete patient identification 
data were also removed. Accurate patient identification is pivotal in longitudinal health studies to track patient history 
and treatment outcomes effectively. Incomplete data can lead to duplication of records or misattribution of medical 
information, which could skew the results and lead to erroneous conclusions. After these exclusions, we retained a total 
of 4540 HIV patients for inclusion in this study. These records encompass a wealth of information, including patient 
identification, comprehensive medical histories, records of clinical visits, results from diagnostic tests and medical 
imaging, as well as the treatment plans meticulously crafted by attending physicians. The research received ethical 
approval from the Ethics Review Committee of the Third People’s Hospital of Shenzhen (Approval Number: [2022– 
027]). Due to the study’s methodology, which did not entail direct patient involvement, the Ethics Committee of The 
Third People’s Hospital of Shenzhen, China, sanctioned the study’s protocol and exempted the requirement for acquiring 
informed consent from participants. The research was conducted in strict conformity with pertinent ethical standards and 
legal mandates. The study complied with the Declaration of Helsinki.

The precise identification of patients is crucial in ensuring accurate patient recognition. The medical histories go 
beyond an account of individual past illness and surgeries to encompass familial medical backgrounds, thereby yielding 
valuable insights into hereditary or familial diseases. Clinical records provide a detailed reflection of both outpatient and 
inpatient treatment processes, while test and imaging results serve as vital pieces of evidence for diagnoses. The 
treatment plans offer a comprehensive outline of the planning and execution of therapeutic interventions, while nursing 
records monitor any changes in the patient’s daily health status and vital signs. Prescription information duly documents 
the therapeutic guidance and recommendations of the physicians. This extensive compilation of data coalesces into 
a comprehensive information repository that not only underpins clinical decision-making but also provides a valuable 
database for medical research endeavors. Electronic medical records, with their expansive scope, offer large-scale real- 
world clinical data that can be instrumental in the development of clinical support decision systems.

Blood examinations encompass a wide array of tests, such as complete blood counts, platelet analysis, liver and renal 
function panels, cardiac enzymes, lipid profiles, glycemic indicators, thyroid assessments, infectious disease screenings, 
cancer diagnostics, autoimmune markers, hormonal levels, and genetic disease indicators. These tests play a crucial role 
in diagnosing various conditions, tracking disease progression, and evaluating treatment efficacy. For example, white 
blood cell counts and differentials can signal infections or blood disorders; liver enzymes, such as glutamic pyruvic 
transaminase and glutamic oxaloacetic transaminase, shed light on liver health; creatinine and urea measurements 
indicate kidney function; lipid profiles, including cholesterol and triglycerides, are critical for cardiovascular risk 
assessment; thyroid tests are vital for identifying thyroid issues; and markers for infectious diseases like HIV, 
Hepatitis B Virus, and Hepatitis C Virus are crucial in detecting these viral infections.

LSTM model
LSTM are a special type of recurrent neural network that possess the ability to learn long-term dependencies. They were 
introduced by Hochreiter & Schmidhuber (1997)16 and refined and popularized in subsequent works, solidifying their 
status as highly effective solutions across a myriad of problems. Widely used in modern times, LSTMs have emerged as 
an important force in the field of artificial intelligence.17

The primary task of LSTM is to utilize a patient’s historical health records to predict their likelihood of developing 
a disease at a future point in time. This system functions akin to an experienced physician who can forecast future health 
risks by analyzing a patient’s past health conditions. Input (analogous to information gathered by a doctor): Patient’s 
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blood sample data——These data are derived from blood tests conducted at various times in the patient’s past, such as 
blood sugar levels, cholesterol levels, etc., similar to how a doctor obtains health information through blood tests. 
Patient’s structured medical history data——This includes records of the patient’s medical history, such as past illnesses, 
treatment records, etc., analogous to the process by which a doctor understands a patient’s medical history. Output 
(doctor’s diagnostic prediction): Likelihood of illness ——Based on the patient’s historical health data, the system 
calculates the probability of the patient developing a certain disease at a future point in time, much like how a doctor 
predicts future health conditions based on examination results and medical history.

The core feature of LSTMs is the cell state, symbolized as the horizontal line in Figure 1. This cell state functions like 
a conveyor belt, smoothly carrying information across the network with minimal linear interference, allowing data to be 
transferred unaltered. LSTMs can delete or add information to the cell state, carefully regulated by structures called gates. 
Gates are a way to selectively let information through, composed of a sigmoid neural net layer and a pointwise 
multiplication operation. The sigmoid layer outputs numbers from 0 to 1 describing how much each component should 
be let through. A value of 0 represents “let nothing through” while a value of 1 represents “let everything through”. 
LSTMs possess three such gates to protect and control the cell state. The output of the LSTM fuses contextual 
information from X, making it particularly well-suited for time series data analysis.18 Simply adding a basic MLP on 
top of the LSTM output vector completes the design of a LSTM-based classifier, which is widely applied in intelligent 
diagnosis applications utilizing sequential follow-up data.19

MLP Classifier
The MLP Classifier implements a MLP architecture for regression tasks. The model consists of fully-connected neural 
network layers with a sigmoid output activation function.

The model starts by taking an input feature vector, denoted as x, of any size. This vector is then processed through 
two hidden layers, each using ReLU activations, followed by a final sigmoid output layer. In our study, the first hidden 
layer projects the input into a 30-dimensional representation, while the second layer maps this into a 10-dimensional 
embedding before the final regression output. By varying the input and output sizes, number of layers, and hidden 
dimensions, this model can be adapted for different regression problems. The modular implementation allows flexibility 
in model architecture. The use of fully-connected layers and stacked nonlinear activation gives the model the ability to 
learn complex mappings between input features and target variables. The ReLU activations introduce nonlinearity, while 
the final sigmoid squashes outputs to (0,1) for probabilistic regression.

In this study, we utilized longitudinal electronic medical records (EMRs) and detailed laboratory test data from 
individual patients to predict the probability of disease onset at a future predetermined time point. Our analysis focused 
on historical health data spanning several years, carefully extracting patterns and trends indicative of disease progression. 

Figure 1 Diagram illustrating the structure of an LSTM unit.
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Specifically, the laboratory test data included a comprehensive set of biomarkers such as ID, A/G, Glu, PDW, Cr, PCT, 
PLT, GGT, TG, AMY, HDL, IG%, HGB, MPV, DB, TB, GLO, EO#, MCH, LDL, HCT, EO%, IG#, TP, ALB, ALT, AST, 
MCV, Urea, NEUT#, LYMPH%, TH/TS, RBC, RDW-CV, Th-Cell, Ts-Cell, Th-Count, P-LCR, MONO#, NRBC#, 
RDW-SD, NRBC%, T-CELL, Ts-Count, MONO%, NEUT%, U/C, CHOL, MCHC, eGFR, BASO#, BASO%, TBA, 
WBC, LYMPH#, AST/ALT, Tc-Count. These biomarkers were instrumental in identifying biochemical and hematolo-
gical changes that may signify early stages of disease development.

The EMRs data incorporated critical elements such as chief complaint, history of present illness, physical examina-
tion, diagnostic tests, and initial diagnosis. By integrating these EMRs with the laboratory test results, our predictive 
model leveraged temporal data sequences to forecast potential health outcomes.

This approach allowed us to identify at-risk individuals early on by interpreting subtle longitudinal changes in their 
health data, enabling proactive and personalized early intervention strategies. Our model was built using advanced 
machine learning algorithms that processed these vast and varied datasets to accurately predict the probability of disease 
occurrence at future time points. This predictive capability is crucial for implementing timely healthcare interventions 
that could potentially mitigate or even prevent the onset of disease, thus significantly improving patient outcomes and 
reducing healthcare costs.

Training sample generation
In the training of our MLP and LSTM models, we adopted a five-fold cross-validation strategy to prevent overfitting. 
This technique involves dividing the entire dataset into five distinct subsets. Throughout the training phase, each subset is 
systematically used once as a validation set while the remaining four subsets are utilized as the training data. This 
iterative process not only allows every segment of the dataset to be used for both training and validation but also 
significantly enhances the generalizability of the models. Employing such a rigorous validation method is essential to 
ensuring that the MLP and LSTM models maintain robust performance when exposed to new and diverse datasets.

The structured data of patients is aggregated by patient ID to obtain the follow-up time series of patients. The follow- 
up data of each patient were sorted in ascending order according to the follow-up time, and the LSTM training samples 
were constructed by using the method of permutation and combination. For example, if a patient has 5 follow-up data, 
then take the 1, 2, and 3 follow-up data as the input sequence x_1, x_2, x_3 of LSTM, and take the third diagnosis result 
as the expected output y_3 of LSTM. In this way, we can generate 9 training samples from 5 follow-up data (Figure 2).

Figure 2 Training sample generation of HIV patients.
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Results
Baseline characteristics
The study cohort comprised 4540 individuals between January 1, 2017 and December 31, 2021. As detailed in Table 1, the 
majority of participants were male (3876, representing 85.4%), with an average age of 39.5 years. Notably, 758 individuals 
(17%) were concurrently afflicted with HIV and TB. The median number of follow-up appointments per participant was 10, 
ranging from 1 to 152. The median interval between follow-ups was 88 days (ranging from 1 to 1465 days), and the median 
duration of follow-up per participant (from the last to the first visit) was 782 days (ranging from 1 to 1825 days).

In summary, our cohort covered a sizable HIV-infected population with longitudinal outpatient records, enabling 
modeling of disease progression. The male predominance aligns with the known HIV epidemiology in our context.20 

However, future studies should focus on enhancing the representation of underrepresented groups, such as women and 
adolescents.21 The workflow diagram of the AI diagnosis framework was illustrated in Figure 3.

Table 1 Baseline Characteristics of the Cohorts

Variables Classification Number %ð Þ= x� �SD
� �

Sex Male 3876 85.4
Female 664 14.6

Ethics the Han nationality 4364 96.1
Others 176 3.9

Education level Primary school 435 9.6

Middle school 1167 25.7
High school 1372 30.2

University and above 1566 34.5

Married status Married 1948 42.9
Unmarried 2592 57.1

Payment Methods Medical insurance 3444 75.9

Self-pay 1096 24.1
Smoking Yes 708 15.6

No 3832 84.4

Drinking Yes 196 4.3
No 4344 95.7

Household registration Shenzhen 318 7.0

Non Shenzhen 4222 93.0
BMI group <18.5 775 17.1

18.5~ 3005 66.2

≥24 760 16.7
BMI / 4540 21.28±3.108

Age <18 45 1.0

18~50 3665 80.7
>50 830 18.3

Age group / 4540 39.53±12.589

Height (cm) / 4540 169.02±6.635
Weight (kg) / 4540 61.05±10.585

Chronic disease Diabetes 178 3.9
Hypertension 246 5.4

Coronary artery disease 35 0.8

Cerebral infarction 68 1.5
Chronic kidney disease 39 0.9

(Continued)
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Table 1 (Continued). 

Variables Classification Number %ð Þ= x� �SD
� �

Infectious diseases Tuberculosis 758 16.70

Pulmonary tuberculosis 619 13.6

Multidrug-resistant tuberculosis 13 0.3
Extra-pulmonary tuberculosis 327 7.2

Syphilis 1141 25.1

Viral Hepatitis 659 14.5
HBV 283 6.2

HCV 89 2.0

Tuberculous Meningitis 67 1.5
Malniferous Basketball Bacteria 135 3.0

Pulmonary infection Yes 998 22.0

No 3542 78.0
Tumor Yes 669 14.7

No 3871 85.3

Cancer Yes 90 2.0
No 4450 98.0

Calculus Yes 248 5.5

No 4292 94.5
Polyp Yes 145 3.2

No 4395 96.8

Admission Pathway Emergency treatment 3122 68.8
Outpatient 1418 31.2

Route of admission Outpatient 1120 24.7

Hospitalization 3420 75.3
Psychological status Normal 3303 72.8

Anxiety 1207 27.2

Risk of malnutrition Yes 730 16.1
No 3810 83.9

ICU history Yes 463 10.2

No 4077 89.8
Allergy history Yes 195 4.3

No 4345 95.7
Resuscitation history Yes 617 13.6

No 3923 86.4

Herpes zoster Yes 112 2.5
No 4428 97.5

Drug induced liver damage Yes 221 4.9

No 4319 95.1
Drug induced dermatitis Yes 95 2.1

No 4445 97.9

Condyloma Yes 81 1.8
No 4459 98.2

Anal Abnormalities Yes 586 12.9

No 3954 87.1
Perianal abscess Yes 129 2.8

No 4411 97.2

Fistula Yes 222 4.9
No 4318 95.1

Mixed hemorrhoids Yes 142 3.1
No 4398 96.9

(Continued)
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Structuring EMR Results with ChatGLM
ChatGLM-6B14 is a significant stride in the realm of open-source, bilingual (Chinese and English) conversational 
language models. Built upon the General Language Model (GLM) framework, it boasts an impressive 6.2 billion 
parameters. Leveraging model quantization technology, ChatGLM-6B can be locally deployed on consumer-grade 
graphics cards, requiring only 6GB of memory under INT4 quantization level.

Table 1 (Continued). 

Variables Classification Number %ð Þ= x� �SD
� �

Pregnancy Yes 122 2.7

No 4418 97.3

Premature rupture of membranes Yes 12 0.3
No 4528 99.7

Termination of Pregnancy Yes 51 1.1

No 4489 98.9
Chest Pain Yes 174 3.8

No 4366 96.2

Fever Yes 1331 29.3
No 3209 70.7

Cough Yes 1120 24.7

No 3420 75.3
Decreased white blood cells Yes 504 11.1

No 4036 88.9

NRS 2002 Score / / 1.20±1.263
Self-care score / / 92.26±17.856

Length of hospitalization / / 19.72±11.611

Abbreviation: SD, Standard Deviation.

Figure 3 Workflow diagram of our AI pediatric diagnosis framework.
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The unstructured nature of EHRs limit computational reuse.22 We fine-tuned the ChatGLM language model on EHR 
notes to extract structured information. Our training data set comprises 4540 EMRs, which are randomly divided into 
70% as training set, 20% as validation set and as 10% test set. The training labels are generated using self-developed 
regular expressions to structure part of the EHRs.

The disadvantage of regular expressions is that when there is new data or other description methods, regular 
expressions cannot accurately match the description content, thus marking errors. Therefore, more generalized models 
are often required to structure electronic case data. Here we chose the large language model ChatGLM for fine-tuning. 
Before fine-tuning, It can be seen that the initial ChatGLM didn’t have the ability to structure EMRs. Fine-tuning 
significantly improved its extraction of clinical entities from free text. On the test set, it achieved high accuracy, 
precision, recall and F1 scores for common entities like bowel movements and mental status (Table 2).

In summary, fine-tuning improved ChatGLM’s EHR structuring ability despite imperfect regular expression labels. 
Our approach enhances accessibility of unstructured EHR data. Further iterative training on expanded notes could 
improve generalization. Overall, large language models show promise in unlocking EHR data for clinical research and 
decision support.

Intelligent diagnosis of HIV and HIV/TB based on structured EMRs
Distinguishing HIV patients from those co-infected with TB using EHRs has the potential to significantly improve 
clinical decision making. We have investigated the performance of MLP models to accurately classify patients into those 
with HIV alone versus those with HIV/TB, using structured EHR inputs. EHR features including chief complaints, 
physical exam findings, lab tests and medications were extracted using a ChatGLM model fine-tuned on our EHR corpus. 
This transformed free text notes into structured inputs amenable for LSTM classification. We compiled a dataset of 4540 

Table 2 Structuring Electronic Medical Records with ChatGLM

Symptoms Accuracy Precision Recall F1 Score

Stool-hematochezia 0.96352413 0.604651163 0.847826087 0.705882353

Stool-normal 0.952861953 0.910284464 0.997601918 0.95194508
Pharynx-congestion 0.982603816 0.64556962 0.944444444 0.766917293

Sane-clear 0.982603816 0.977755308 0.990778689 0.984223919

Abdomen-tenderness 0.988776655 0.529411765 0.818181818 0.642857143
Abdomen-soft 0.98372615 0.972098214 0.995428571 0.983625071

Anus 0.970819304 0.8 0.8 0.8

Abdomen-normal 0.98989899 0.902173913 0.902173913 0.902173913
Abdomen 0.976992144 0.434782609 0.588235294 0.5

Vulva-hyperemia 0.992143659 0.720930233 0.939393939 0.815789474

Anus-phyma 0.97979798 0.747368421 0.855421687 0.797752809
Pulmonary-infection 0.990460157 0.851351351 0.913043478 0.881118881

Pulmonary 0.976992144 0.768292683 0.940298507 0.845637584

Vulva 0.992143659 0.714285714 0.909090909 0.8
Body size-moderate 1 1 1 1

limbs-swollen 0.995510662 0.6875 0.785714286 0.733333333

Tonsil-swollen 0.997755331 0.870967742 1 0.931034483
Skin mucosa-normal 0.995510662 0.948905109 0.992366412 0.970149254

Skin mucosa 0.992704826 0.941605839 0.984732824 0.962686567

Intestinal-normal 0.994388328 0.967567568 0.978142077 0.972826087
Intestinal-intestinal gurgling sound normal 0.997194164 0.994318182 0.977653631 0.985915493

Intestinal 0.996071829 0.333333333 0.5 0.4

Kidney-pain 0.998877666 1 0.866666667 0.928571429
Pharyngeal 1 1 1 1

Average 0.987139918 0.805131385 0.896966465 0.84426834

Abbreviation: ChatGLM, Chat General Language Model.
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de-identified patient encounters, with classes balanced via oversampling minority (HIV/TB) examples. 80% were 
randomly selected for LSTM training, with the rest for testing. Five-fold cross-validation was used to reduce variability. 
The MLP classifier achieved test set area under the receiver operating characteristic curve (AUROC) of 0.682–0.616 in 
predicting HIV/TB status based on EHR features (Figure 4).

In summary, MLP showed promising differentiation between HIV and HIV/TB patients given structured EHR data. 
Further refinements in feature selection and model optimization could improve generalizability. Our approach balancing 
prediction performance and scaling potential could help translate EHR data into actionable clinical insights.

Intelligent prediction of TB based on structured EMRs
Predicting future TB infection in HIV patients using longitudinal records has the potential to optimize screening and 
disease management. To address this issue, we developed LSTM models to forecast TB onset from structured EHRs. Per 
patient’s EHRs were aggregated and sorted chronologically. Input sequences contained preceding visits, with the target 
label being TB status at the subsequent visit. We employed five-fold cross-validation to reduce model overfitting and 
evaluate model performance. The LSTM models achieved modest performance, with AUROCs of 0.503–0.688 for TB 
classification on held-out visits (Figure 5). Several factors likely contributed: (1) EHRs lacked sufficient quality and 
depth, and subjective descriptions varied across patients with the same diagnoses. (2) EHRs capture limited superficial 
data unlike more definitive lab tests.

However, our EHR structuring using a fine-tuned ChatGLM model enabled high-throughput feature extraction from 
free text. With higher-quality EHR data, the LSTM models could likely improve. To better determine if patient 
trajectories can predict impending TB onset, we trained LSTM models on structured laboratory tests results. This richer 
physiological data could better capture latent TB progression.

Figure 4 Five-fold cross-validation of the MLP predicting HIV-TB status based on EHR features.
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Intelligent identification of HIV and TB based on inspection and inspection indicators
We have evaluated the performance of LSTM models in categorizing HIV/TB status using laboratory test features. 
Laboratory features including complete blood count, liver function tests, lipid profiles and others were extracted from our 
clinical data warehouse, without the erythrocyte sedimentation rate (ESR), interferon gamma release assays (IGRAs) and 
other TB-specific indicators. Values were z-score normalized before model input. We used the same 5-fold cross- 
validation approach as our prior EHR study, with an 80/20 train/test split. The LSTM classifier achieved an AUROC 
of 0.823–0.850 in predicting HIV/TB status based solely on lab tests (Figure 6). This performance surpassed its 
performance using EHR features.

The confusion matrix represented the performance of a classification model that differentiates between HIV and TB 
based on electronic medical record data. In this matrix, 2975 HIV cases were correctly identified, while 1051 were 
incorrectly classified as TB. For TB, 84 cases were correctly identified, and 14 were misclassified as HIV. The overall 
accuracy of the model is 74.18%. While the model is quite accurate in identifying HIV, as indicated by a high number of 
true positives, it showed lower precision in correctly classifying TB, suggesting areas for improvement in future model 
adjustments.

We evaluated LSTM models for forecasting TB onset in HIV patients using structured blood test data similarly to our 
EHR study. Longitudinal test results were sequenced for model input. Five-fold cross-validation yielded AUROCs of 
0.869–0.644 for predicting future TB infection from earlier lab results (Figure 7). This significantly outperformed EHR- 
based models. The predictive models accurately screened individuals warranting closer follow-up and diagnostic workup. 
This could enable early case detection and treatment to improve outcomes and reduce transmission.23

The confusion matrix depicted the performance of a classification model distinguishing between HIV and TB from 
electronic medical record data. In this model, 6188 cases of HIV were correctly classified, while 1426 cases were 
incorrectly identified as TB. For TB, 513 cases were accurately classified, with 128 cases incorrectly identified as HIV. 
The overall accuracy of the model is noted as 81.18%. This matrix suggests a good performance in identifying HIV 
cases.

Figure 5 Five-fold cross-validation of the LSTM predicting TB based on EHR features.
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Figure 6 Five-fold cross-validation of the LSTM predicting TB based on lab tests.

Figure 7 Five-fold cross-validation of the LSTM predicting TB based on structured blood test data.
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Discussion
In this study, we analyzed the epidemiological characteristics of 4540 HIV patients admitted to the National Clinical 
Research Center for Infectious Diseases between 2017 and 2021. The findings revealed that a significant 16.7% of HIV 
patients were co-infected with TB. This statistic not only highlighted the prevalence of TB co-infection in the manage-
ment of HIV but also underscored the urgent need for more effective prevention methods among patients with HIV. The 
study was conducted at the National Clinical Research Center for Infectious Diseases in Shenzhen, China, encompassing 
a broad population from the Pearl River Delta. This offered a wide-ranging perspective and a robust data foundation for 
our research. Additionally, Shenzhen, known for its substantial migrant population, boasts a diverse demographic 
structure representative of the entire country. This unique characteristic of population mobility makes Shenzhen 
particularly significant for studying the epidemiological features of infectious diseases. Collectively, these factors 
enhanced the representativeness and applicability of our findings.

In terms of patient demographics, the average age was 39.5 years, with males accounting for 85.4%, indicating 
a gender imbalance. This phenomenon aligned with global research findings, which show a higher rate of HIV infection 
among males, particularly among sexual minority groups. Regarding education levels, 34.5% of the patients had received 
college education or higher, challenging conventional assumptions about the socioeconomic status of HIV patients and 
showing that HIV crosses different educational backgrounds. Unmarried patients accounted for 57.1%, possibly related 
to the main transmission routes of HIV, especially in the high-risk sexual behavior. The presence of smoking and drinking 
behaviors, although not prevalent, still requires attention in clinical management, as these behaviors could exacerbate the 
health impact of HIV infection. Population mobility is another factor worth noting, with 93.0% of patients from other 
provinces, highlighting the importance of inter-regional cooperation in HIV epidemic monitoring and resource allocation.

In the field of EHR research, a major challenge is the unstructured nature of data, which significantly limits the 
reusability of EHR data for computational processing. This study enhanced the ability to extract structured information 
from EHR notes by meticulously fine-tuning the ChatGLM. After optimization, the model demonstrated significant 
improvements in identifying and extracting clinical entities from free text. Although regular expressions have limitations 
in data annotation, the finely tuned and optimized ChatGLM showed notable improvements in processing structured 
electronic health records. Furthermore, by iteratively training the model on larger datasets, its generalizability across 
different data types and application scenarios is expected to further improve.

We evaluated the performance of LSTM using laboratory test features for classifying HIV and HIV/TB co-infection. 
Notably, during the dataset construction, we deliberately excluded ESR, IGRAs, and other highly specific TB tests to 
explore the model’s predictive performance without relying on these particular indicators. To ensure consistency and 
comparability of the data before inputting it into the model, all laboratory test values were standardized using z-score 
normalization. When relying solely on laboratory test data, the LSTM classifier achieved AUROC values between 0.823 
and 0.850 in predicting HIV and HIV/TB co-infection, significantly outperforming the results obtained using only EHR 
data for TB prediction. Although we did not directly analyze the model weights to determine which input features were 
most crucial for the prediction results, we recognized the importance of such analysis for understanding the model’s 
decision-making process and enhancing its applicability and interpretability in clinical settings. Future research could 
incorporate model interpretability techniques, such as SHAP value analysis or feature importance evaluation, to explore 
and validate which specific input data features are most critical for predicting the co-infection status of HIV and TB. This 
not only helped uncover the key biological and clinical factors behind the model’s decisions but also provided clues for 
discovering new interactions between diseases. Moreover, such in-depth analysis can help identify and optimize the 
model’s application to specific patient groups, thereby offering more personalized and precise support for clinical 
decision-making. Healthcare professionals can utilize the model established in this study to conduct personalized 
predictions for patients. Based on the results, they can provide health education and formulate targeted intervention 
measures, thereby enhancing patients’ understanding of their conditions and improving treatment adherence.

We employed a method similar to EHR research to conduct an in-depth analysis of structured blood test data. 
We evaluated the performance of the LSTM model in predicting TB infection among HIV patients (AUROC: 
0.869–0.644). This result significantly outperformed previous models based on EHR data. Utilizing this advanced 
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predictive model, we can accurately identify individuals who require closer follow-up and further diagnostic 
examinations. This not only facilitated early case detection but also significantly improved treatment outcomes 
through timely interventions, effectively reducing disease transmission. The research confirmed the efficacy of the 
LSTM model in predicting TB infection among HIV patients and highlighted the immense potential of integrating 
structured blood test data with machine learning techniques to enhance early disease diagnosis and intervention. 
Additionally, we also recognized that enhancing the model’s interpretability in clinical applications is crucial for 
promoting broader adoption of these technologies in real-world clinical settings. Therefore, in future work, we 
plan to extensively utilize visualization and explanation tools such as T-SNE, LIME, and SHAP to clearly 
elucidate the basis of the model’s decisions, thereby increasing transparency and trust in clinical environments.

However, data quality and accessibility are critical challenges in clinical practice. High-quality, complete medical records 
are essential for model training and prediction, but in clinical practice, data often suffer from missing values, inconsistencies, 
and noise, which can impact model accuracy and reliability. Therefore, establishing standardized data collection and 
processing procedures is necessary to ensure data quality and consistency. Additionally, it is crucial to strictly adhere to 
relevant regulations and ethical standards to ensure data privacy and security. Hospitals and healthcare institutions need the 
appropriate technical infrastructure to deploy and maintain these complex prediction models, including high-performance 
computing resources, data storage and management systems, and professional technical teams.

This study had several limitations. Prior research have indicated that TB/HIV co-infection may be linked to 
various factors, such as the route of HIV transmission, a history of TB exposure, CD4+ T cell counts, and the use 
of isoniazid preventive therapy.24–26 However, due to the constraints of retrospective data, some factors were not 
included in a epidemiological analysis. Given the model’s training on HIV-positive patients, challenges in feature 
generalization may arise when extrapolating to HIV-negative populations. Clinical predictions specifically tailored 
for high-risk groups or for diagnosing symptomatic individuals seeking medical care may not be as effective in 
identifying primarily subclinical tuberculosis cases in largely healthy individuals who are not actively seeking 
medical attention within a community setting.

Conclusion
This study underscored the necessity of integrating deep learning techniques with electronic health data, showcasing 
the immense potential of artificial intelligence in the public health. The model based on laboratory time-series data 
significantly outperformed those relying solely on electronic health records in predicting tuberculosis incidence. This 
finding not only highlighted the advantages of deep learning in handling complex medical data but also provided 
valuable insights for healthcare providers on exploring the application of deep learning in disease prediction and 
management. Combining deep learning techniques with electronic health records can substantially improve the 
accuracy of disease diagnosis and the personalization of treatment, bringing revolutionary breakthroughs to the field 
of public health. In the future, the study will progress by broadening the research parameters and conducting 
a multicenter prospective cohort study to identify and validate additional influencing factors, thereby enhancing the 
model’s performance.
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