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Background: Breast cancer is the leading cause of cancer-related death in women. Necroptosis, a form of programmed necrotic cell 
death, occurs in many solid tumors, including breast cancer, and influences anti-tumor immunity. The role of necroptosis in managing 
breast cancer recurrence remains unclear.
Methods: Gene expression profiles and clinical data of breast cancer patients were obtained from the GEO (GSE20685, GSE21653, 
GSE25055) and TCGA databases. Data analysis and visualization were performed using R. Unsupervised Consensus Clustering and 
LASSO-COX regression stratified breast cancer patients. GO, KEGG, GSVA, ESTIMATE, and ROC analyses were used to investigate 
necroptotic signatures. In vitro and in vivo experiments validated necroptosis’s role in breast cancer immunity.
Results: The potential function of necroptotic signature in immunity was first indicated with GO analysis in BRCA cohort. Next, two 
prognostic models based on the necroptotic profiles both suggested a link between low-risk group with a particular necroptotic immune 
signature. And a variety of immune cells and immune pathways were shown to be positively associated with a patient’s risk score. As 
an altered immune checkpoint pattern was observed after regulating necroptotic genes, where TIM-3 and LAGLS9 elevated 
significantly in low-risk group, further validation in vitro and in vivo demonstrated that manipulating a subset of necroptotic gene 
set could sensitize tumor response to the co-blockade immunotherapy of anti-TIM-3 and anti-PD-1.
Conclusion: We demonstrated two strategies to stratify breast cancer patients based on their necroptotic profiles and showed that 
necroptotic signature could assign patients with different tumor immune microenvironment patterns and different recurrence-related 
prognosis. A subset of necroptotic gene set, composed of TLR3, RIPK3, NLRP3, CASP1, ALDH2 and EZH2, was identified as 
a biomarker set for predicting immunotherapy-response and recurrence-related prognosis. Targeting necroptosis could helpfacilitate 
the development of novel breast cancer treatments and tailor personalized medical treatment.
Keywords: breast cancer, recurrence, necroptosis, tumor immune microenvironment

Background
Breast cancer (BRCA), as the most diagnosed cancer type and the leading cause of cancer-associated deaths in women, 
accounts for 701,000 deaths per year globally.1 Due to the varied molecular subtypes, breast cancer is featured with high 
heterogeneity, hence the varied prognosis. Therefore, the importance of personalized medical therapies is emphasized in 
breast cancer management. In early breast cancer, surgery remains to be the first approach to treat the tumor, 
supplemented by chemotherapy or radiotherapy to prevent metastasis and recurrence. Though the prognosis has been 
markedly improved with the combination of chemotherapy, ER/PR-targeted or HER2-targeted therapy and 
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immunotherapy, tumor relapse still poses a life-threatening event in breast cancer. Recurrent breast tumors are often 
unresponsive to treatments, hence the incurable outcome. As opposed to reactive medicine treatment after the onset of 
tumor relapse, the predictive and personalized paradigm focuses on the prediction and effective prevention before the 
clinical manifestation.2 Yet, such predictive and personalized approaches towards breast cancer recurrence remain 
unsatisfactory. Signatures to guide effective approaches are under urgent demand.

Necrosis is proposed to occur when tumors outgrow the blood supply and is generally observed in aggressive solid 
tumors including breast cancer. It was regarded as an unregulated accidental cell death process before it was re-defined as 
a molecularly controlled regulated form of cell death with biochemical, genetic, and functional evidence.3 Necrosis is 
featured by rapid loss of plasma membrane integrity, organelle welling and mitochondrial dysfunction, while lacking 
typical apoptotic features such as internucleosomal DNA cleavage and nuclear condensation. Several cell-death mod-
alities are included in regulated necrosis, such as necroptosis, parthanatos, ferroptosis, pyroptosis, pyronecrosis, mito-
chondrial permeability transition-dependent necrosis and NETosis.4 It has been illustrated that necroptosis of tumor cells 
under physio-pathological conditions is responsible for tumor necrosis and critical for metastasis in murine and human 
breast cancers.5

Necroptosis signaling is reported to be activated in breast cancer and correlated with its malignancy,6 and blockade of 
necroptosis signaling or pro-necroptotic proteins has been demonstrated to promote breast tumor recurrence.6,7 

Necroptosis, also known as programmed necroptosis, could be engaged by ligation of death receptors, which recruits 
RIPK1 to the intracellular region of the death receptor, followed by a series of ubiquitination and phosphorylation, 
resulting in necrotic cell death.8 It has been demonstrated that the interaction between RIPK1 and RIPK3 via the RHIM 
(RIP homotypic interaction motifs) domain is required for the initiation of necroptosis.9 Afterwards, necroptosis is 
executed by downstream components as reactive oxygen species (ROS), mitochondria, autophagy and so forth.10

Rising studies have been focusing on the role of necroptosis in immune response and immunotherapy.11,12 It is 
implied that necroptosis might defend against tumor progression and enhance anti-tumor immunity via eliciting strong 
adaptive immune responses.13 In the process of necroptosis, cell-membrane ruptures as a result of necrotic cell death, and 
releases immunostimulatory intracellular components.14 In addition, primary macrophages are suggested to activate 
following necroptosis.14 Pro-necrotic signaling is also indicated to promote intratumoral immune response in breast 
cancer.15 Therefore, necroptosis might exert its positive impact on anti-tumor immunity through various mechanisms. In 
addition, studies concerning tumor immune microenvironment in breast cancer have unraveled that immune signature is 
associated with tumor recurrence in ER-negative breast tumors and enriched adaptive immunity portends satisfactory 
5-year relapse-free survival (RFS).16

Despite the rising evidence emphasizing the correlation between necroptosis and tumor relapse, the detailed role of 
necroptosis in tumor immunity and relapse-free prognosis in breast cancer remains unclear. The potential value of 
necroptosis-targeted therapy as a predictive and personalized approach in breast cancer recurrence management is 
therefore undergoing exploration.

Therefore, we applied two independent prognosis models in the present study to investigate the potential value of 
necroptosis-related signatures in recurrence prognosis and tumor immune microenvironment in BRCA patient cohort. 
And we successfully identified a necroptosis-anchored tumor immune signature for patients with breast cancer, which 
helps to anticipate the relapse-free prognosis for patients and might enable a more tailored therapeutic regimen.

Methods
Data Processing
A total of 63 necroptosis-related genes were concluded from the literature.17–20 Gene expression profiles and full clinical 
information of breast cancer patients were obtained from GEO database (GSE20685, GSE21653 and GSE25055). 
GSE21653 contained 266 early breast cancer patients who underwent initial surgery, gene expression data of 266 breast 
cancers were quantified by using whole-genome DNA microarrays (HG-U133 plus 2.0, Affymetrix), while 14 patients 
were excluded due to lack of important clinical information. GSE20685 contained 327 breast cancer samples, 268 
patients underwent adjuvant chemotherapy and 91 patients had a relapse. GSE25055 contained 310 HER2-negative 
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breast cancer cases treated with taxane-anthracycline chemotherapy pre-operatively and endocrine therapy if ER-positive. 
The patients with complete survival information were included in our analysis. Among them, GSE21653 was assigned as 
the training set, while GSE20685 and GSE25055 were enrolled for validation. Probes were re-assigned with gene 
symbols according to the corresponding gene platform. Robust Multi-array Average (RMA) method was applied to 
normalize raw data between datasets, including background correction, log2 transformation and normalization. RNA 
expression data was scaled with a standard deviation of 1 and a mean of 0. The RNA sequencing (RNA-seq) data 
(FPKM) and survival information of breast cancer were derived from The Cancer Genome Atlas (TCGA; https://tcga- 
data.nci.nih.gov/tcga/). Gene expression data from different samples is combined into genomicMatrix; all data is then 
log2 transformed.

Functional Enrichment Analysis
GO (gene ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis were applied to perform 
the functional enrichment analysis, with the usage of R package clusterProfiler.21 Gene set variation analysis (GSVA) was 
also carried out with the R package “GSVA” to calculate the enrichment score of each pathway. The gene sets of “h.all. 
v7.2.symbols” downloaded in MSigDB and the known gene sets constructed by Mariathasan et al were used for GSVA 
enrichment analysis.

Construction of the Prognostic Gene Signature with Unsupervised Consensus 
Clustering
Sixty-three necroptosis-genes were selected from previously published literature. The patients were classified into two 
groups using the optimal k-means clustering. ConsensusClusterPlus R package was used to perform the cluster analysis 
with cycle computation 1000 times to ensure stability and reliability.22 The relapse-free survival (RFS) was calculated 
with the Kaplan–Meier method.

Construction of the Prognostic Gene Signature with LASSO-COX Regression
Lasso-Cox regression analysis was applied to identify the prognostic signature of genes of interest. Firstly, Lasso- 
penalized Cox analysis was performed with 10-fold cross-validation to narrow the genes for prognostic prediction. Six 
out of 63 necroptosis-related genes were screened out as a result. Thereafter, a stepwise multivariate Cox regression 
analysis was conducted to assess the contribution of a gene as an independent prognostic factor to relapse-free survival. 
The predictive model was established based on the expression levels of the 6 necroptotic genes and their relative 
coefficient (β) derived from the multivariate Cox regression analysis. The prognostic score = (−0.121*expression of 
ALDH2) + (−0.163*expression of CASP1) + (0.167*expression of EZH2) + (−0.242*expression of NLRP3) + 
(−0.365*expression of RIPK3) + (−0.431*expression of TLR3).

ESTIMATE Analysis
ESTIMATE (Estimation of Stromal and Immune Cells in Malignant Tumor tissues using Expression data) analysis23 was 
performed to predict tumor purity, infiltrating stromal cells and immune cells in BRCA patients. And three scores, 
STROMAScore, IMMUNEScore and ESTIMATEScore, were yielded to evaluate the tumor microenvironment.

ROC Analysis
To investigate the capability of the established prognostic model to distinguish between subgroups, time-dependent 
receiver operating characteristic (ROC) analysis was performed with the “survivalROC” package in R software. Patients 
were divided into low-risk and high-risk groups based on the optimal threshold of the prognostic score calculated by 
„survminer‟ package in R. Further Kaplan–Meier survival analysis was used to assess the prognostic differences between 
groups. A two-sided Log rank test was performed afterwards, using „survival‟ package in R. Student’s t test was used to 
compare the difference between groups. All statistical analysis was performed using R software v4.0.1 and P < 0.05 was 
considered as the determining value of statistical significance.
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Immunohistochemistry Analysis and Quantification
One hundred and seventy-one Breast cancer tissues embedded in paraffin were selected from Department of Pathology, 
Xiangya Hospital Central South University. The collection of tissue samples complied with the Declaration of Helsinki. 
The donors received the breast cancer resection during the span from 2010 to 2022 and were carefully followed-up. 
Deparaffination and rehydration of the tissue section were performed according to routine methods and followed by 
antigen retrieval with heat-induced epitope retrieval method. Endogenous peroxidase was blocked by incubation in 
methanol containing 3% hydrogen peroxide at room temperature. Blocking of nonspecific reactivity was performed with 
10% goat serum in TBS. Primary antibodies were applied onto tissue sections overnight at 4°C. Second antibodies 
conjugated by horseradish peroxidase were applied afterwards. Color detection was performed by Diaminobenzidine and 
counterstaining was applied by Mayer’s hematoxylin. Dehydration and mounting were finally performed to complete the 
procedure. Permeabilization, if necessary, was applied by emerging sections in 0.1% TBS-Triton x100 buffer for 10 min.

For quantification, five pictures of random fields of view were taken for every slide with a Carl Zeiss microscope. 
Cells were counted by two independent researchers with the QuPath(v0.4.0). The primary antibody were ALDH2 
(Proteintech 15310-1-AP), CASP1(Proteintech 22915-1-AP), EZH2(Sigma, ZRB1095), NLRP3(Proteintech 19771- 
1-AP), RIPK3(Proteintech 17563-1-AP), TLR3(Invitrogen, PA5-81074).

siRNA and Cell Transfection
siRNA for genes (negative control, ALDH2, CASP1, EZH2, NLRP3, RIPK3, TLR3) were obtained from the commercial 
catalog in Ribobio, Guangzhou. siRNA transfections were performed using NEOFECT™ siRNA transfection reagent 
from Neofect (Beijing) biotech under instructions.

Cell Colony Formation Assay
Breast cancer cell line MD-MB-231 was purchased from Hunan Fenghui Biotechnology Co., Ltd., China. For the colony 
formation assay, equal amount of MDA-MB-231 cells were seeded into 6-well plate at a density of 500 cells per well. 
Cells were then cultured for 14 days before they were fixed and stained with crystal violet afterwards.

Combination Treatment with siRNA-Interference and Immunotherapy Therapeutic 
Study in vivo
All animal experiments were approved by the Ethics Committee at Xiangya Hospital Central South University. Mouse 
breast cancer cells E0771 (2x10^6 cells) were resuspended in 50 μL PBS (mixed with Matrigel at 1:1 ratio) and injected 
subcutaneously into the fourth pair of mammary fat pads of eight-week female c57BL/6 mouse. Tumor size was 
monitored every 4 days. siRNA of genes of interest and control siRNA (Ribobio, 5 nmol/kg) were dissolved in distilled 
water and were injected intratumorally every 3 days until the end time point of the experiment. Drugs of immunotherapy, 
anti-mouse TIM-3 (clone BT3-23, BioXCell, BE0115) plus anti-mouse PD-1 (clone RMP1-14, BioXCell, BE0146), were 
administrated with intraperitoneal injection at a dose of 10mg/kg once a week. The administration of siRNA and 
immunotherapy started 12 days after xenograft implantation.

Results
The Functional Pattern of Necroptosis-Related Genes in BRCA Cohort
In this study, gene expression and corresponding clinical data were achieved from GEO datasets, and a workflow of this 
study is shown in Figure 1A.

Three GEO BRCA datasets, including 878 patients in total, with available survival data and clinicopathological 
information (GSE20685, GSE21653 and GSE25055) were enrolled in our study. GSE21635 with 252 patients was 
introduced as the training set (Supplementary Table S1). And GSE20685 and GSE25055 were assigned into the 
validation sets.

A total of 63-related genes were concluded from related literature. GO analysis was performed to validate the 
molecular functions of the genes of interest in BRCA patients. As expected, the selected genes were enriched in 
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Figure 1 (A)Study flow chart. (B) GO enrichment analysis of the functional pattern of necroptosis-related genes in BRCA cohort. (C) KEGG enrichment analysis of 
differential necroptosis-related genes in BRCA cohort. (D) Forest plot analysis of individual gene of necroptosis-related gene set. (E) The interactions between the selected 
genes. This circle size represented the effect of each gene on the prognosis. Green dots stand for the favorable factors, while the purple dots stand for risk factors. Values 
were calculated by Log rank test.
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necroptotic processes and cell membrane structure. Intriguing, the synthesis and regulation of IL-1 (interleukin-1) were 
also abundantly enriched in this gene set, indicating the potential function of the selected necroptosis-related genes in 
immunity and inflammation (Figure 1B and C). Single impact of each gene in our selected gene set was evaluated with 
univariate Cox regression analysis and 12 of them were shown with significant impact on the patients’ prognosis in terms 
of tumor recurrence. Among them, ALDH2, CASP1, CASP9, IRF1, IRF2, NDRG2, NLRP3, RIPK3 TLR3 and TLR4 
were shown to favor the prognosis, while EZH2 and PGAM5 presented negative role (Figure 1D). Further interaction 
analysis has also confirmed positive correlations between favorable factors as well as the negative correlation between 
risk and favorable factors (Figure 1E).

Consensus Clustering of BRCA Patients Based on Necroptotic Signature
Unsupervised consensus clustering was performed to examine the necroptotic pattern in breast cancer patients. 
Unsupervised consensus clustering serves as a functional method to proceed unsupervised class discovery, which 
works as a data mining technique to detect possible groups based on intrinsic biological characteristics. It provides 
quantitative and visual stability evidence to estimate the unsupervised subgroups in a dataset.22

The consensus clustering matrix yielded 2 clusters with distinguishable differences. Further, principal component 
analysis (PCA analysis) confirmed a remarkable difference between the 2 clusters (Figure 2A and B and Table 1). It is 
worth mentioning that a worse relapse-free survival was indicated for the patients in cluster A compared to those in 

Figure 2 Consensus clustering of BRCA patients according to necroptotic gene set. (A)Consensus clustering matrix for k=2. (B) PCA analysis of the 2 clusters was shown 
with low overlapped samples. (C) Kaplan-Meier analysis for the 2 clusters in BRCA. Patients in cluster A have worse relapse-free survival. (D) Unsupervised clustering of 
necroptosis-related genes in the BRCA cohort. BRCA molecular subtype, survival analysis, expression of KI67/P53/ERBB2/ER/PR, tumor Grade, primary node metastasis, 
primary tumor stage and histology were used as patient annotations. High expression was presented in red, while low in blue.
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cluster B (Figure 2C). Necroptosis-related signature is therefore indicated to correlate with the tumor recurrence in breast 
cancer.

Unsupervised clustering of necroptosis-related genes has suggested that the molecular subtypes and PR/ER signatures 
have a clear differentiated distribution among the two clusters. Basal breast cancer samples with PR negative and ER 

Table 1 Clinicopathologic Characteristics of Breast Cancer Patients 
According to the Necroptosis Pattern

Variables GSE21653 P value

Cluster A (%) Cluster B (%)

Age at diagnosis (years) 0.873
≤ 50 62 (34.8) 25 (33.8)

> 50 116 (65.2) 49 (66.2)

Tumor size 0.015
T1 49 (27.5) 8 (10.8)

T2 76 (42.7) 45 (60.8)

T3 48 (27.0) 18 (24.3)
Unknown 5 (2.8) 3 (4.1)

Lymph node status 0.782

Negative 81 (46.0) 35 (47.9)
Positive 95 (54.0) 38 (52.1)

Grade <0.001

I 38 (21.7) 5 (6.8)
II 70 (40.0) 14 (19.2)

III 67 (38.3) 54 (74.0)

ER status <0.001
Negative 53 (30.1) 57 (77.0)

Positive 123 (69.9) 17 (23.0)

PR status <0.001
Negative 64 (36.4) 60 (81.1)

Positive 112 (63.6) 14 (18.9)

ERBB2 status 0.306
Negative 149 (83.7) 58 (78.4)

Positive 15 (8.4) 11 (14.9)
Unknown 14 (7.9) 5 (6.8)

P53 status 0.002

Wild Type 99 (55.6) 26 (35.1)
Mutant 37 (20.8) 31 (41.9)

Unknown 42 (23.6) 17 (23.0)

Ki67 status 0.003
Negative 50 (28.1) 8 (10.8)

Positive 89 (50.0) 53 (71.6)

Unknown 39 (21.9) 13 (17.6)
Molecular subtype <0.001

Basal 26 (14.6) 49 (66.2)

ERBB2 10 (5.6) 12 (16.2)
Luminal A 80 (44.9) 5 (6.8)

Luminal B 41 (23.0) 3 (4.1)

Normal 21 (11.8) 5 (6.8)
Vital status 0.045

Alive 115 (64.6) 54 (73.0)

Dead 63 (35.4) 20 (27.0)
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negative were mainly distributed in cluster B, which was consistently featured by higher tumor grade. (Figure 2D, 
Supplementary Table S2)

Necroptosis Signatures Assign Breast Cancer with Differentiated Profiles of Tumor 
Immune Microenvironment
Gene set variation analysis (GSVA) analysis was performed to investigate the difference between necroptotic sub- 
clusters. We found that the immune-related signaling pathways were indicated to be the most altered pathways between 
the 2 clusters, suggesting the impact of necroptosis on immune system. Chemokine signaling was listed as one important 
pathway that has significant difference between clusters (Figure 3A). Consistently, patients included in cluster B were 
shown with significantly upregulated activity of the major immune cells (Figure 3B and C). ESITMATE analysis were 
performed between the two clusters and patients B cluster were shown to harbor significantly higher infiltration of 
immune cells (Figure 3D). Further analysis of immune checkpoint signature had additionally provided convincing data 
that patients in cluster B were rendered with higher sensitivity to immunotherapy with immune checkpoint blockade 
(Figure 3E).

Construction of Risk Prognostic Model Based on Necroptosis Signature
Lasso Cox regression analysis was performed on 63 necroptosis-related genes in GSE21653 cohort, to construct 
a necroptosis-related risk model. LASSO Cox regression serves as a method for variable selection and shrinkage in 
Cox’s proportional hazards model. A more refined model could be generated after a penalty function constructed by 
LASSO Cox regression analysis. It has been widely applied in screening genes in cancer research.24

6 genes were filtered out by the Lasso analysis and were therefore selected to build up the prognostic model, ie TLR3, 
RIPK3, NLRP3, CASP1, ALDH2 and EZH2 (Figure 4A and B). In line with former Results, the 6 genes were also 
included in the 12 genes that were shown to influence tumor relapse in Figure 1. A subset of necroptotic gene set was 
therefore identified.

Prognostic score was calculated based on the expression data of the 6 genes for each patient included. The score was 
further weighted by the multivariate Cox regression coefficients as following formula: (−0.121*expression of ALDH2) + 
(−0.163*expression of CASP1) + (0.167*expression of EZH2) + (−0.242*expression of NLRP3) + (−0.365*expression 
of RIPK3) + (−0.431*expression of TLR3). Afterwards, we obtained the optimum cut-off score using “survminer” 
package in R, patients had a score of 0.05 or higher were separated into high-risk group, and those with a risk score lower 
than 0.05 were divided into low-risk group (Table 2). A dramatically shortened relapse-free survival (RFS) was observed 
in the high-risk group (Figure 4C). Further subsequent time-dependent ROC analysis joined to confirm the high 
capability of such risk model to distinguish between the two subgroups. The separability of the necroptosis-related 
risk model was verified with the high AUCs of 0.759, 0.799, 0.791 at 1, 3, 5 year-RFS, respectively (Figure 4D).

Validation of the Necroptosis-Based Prognostic Risk Model
GSE20685 and GSE25055 was applied into our study as the validation sets to assess the prognostic value of aforemen-
tioned necroptosis-based risk model. Patients in each validation set were stratified into low-risk and high-risk subgroups 
according to the necroptotic signature identified in the training set. In line, patients included in the high-risk group 
suffered a significantly shortened RFS compared to those in the low-risk subgroup (Figure 4E and G). Additional time- 
independent ROS analysis provided convincing evidence for the satisfactorily differentiable model of the necroptotic 
signature (Figure 4F and H).

Univariate and multivariate Cox analysis were performed in the training and validation sets. Our results indicated that 
the necroptotic signature acted as an independent prognostic factor in the training group (Supplementary Figure S1A, B). 
In line with the result in the training group, the stratification of patients into low- and high-risk subpopulations was 
validated as an independent prognostic factor in both validation sets. Additionally, the presence of lymph node metastasis 
and organ metastasis also play the roles as independent risk factor in the risk models in the validation database 
(Supplementary Figure S1C-F).
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Figure 3 Features of tumor immune microenvironment in two necroptotic clusters. (A) KEGG analysis of the differential genes between two clusters. (B and C) Immune 
cell infiltration analysis between two clusters. (D) ESTIMATE analysis for the comparisons between cluster A and B were presented in histogram. (E) Immune checkpoint 
analysis between two clusters.
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Figure 4 Risk model derived from necrotic-cell-death related genes. (A and B) Lasso Cox regression analysis of 63 necroptosis-related genes. (C and D) Kaplan-Meier 
Survival analysis for patients in high/low risk and ROC curve of 1-, 3-, 5-year survival in GSE21653. (E and F) Kaplan-Meier Survival analysis for patients in high/low risk and 
ROC curve of 1-, 3-, 5-year survival in GSE20685. (G and H) Kaplan-Meier Survival analysis for patients in high/low risk and ROC curve of 1-, 3-, 5-year survival in 
GSE25055.
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To further validate the predictive power of the Necroptosis-related signature for breast cancer patients, we tested the 
signature in TCGA dataset. According to the signature identified above, patients in the lower-risk group had significantly 
better OS and RFS In TCGA dataset, AUCs at 1, 3 and 5 years were 0.606, 0.594 and 0.645 for OS. AUCs of RFS at 1, 3 
and 5 years were 0.580, 0.593 and 0.536 (Supplementary Figure S2).

Table 2 Clinicopathologic Characteristics of Breast Cancer Patients 
According to the Necroptosis-Related Signature

Variables GSE21653 P value

Low Risk (%) High Risk (%)

Age at diagnosis (years) 0.794
≤ 50 45 (35.2) 42 (33.9)

> 50 83 (64.8) 82 (66.1)

Tumor size 0.437
T1 32 (25.0) 25 (20.2)

T2 64 (50.0) 57 (46.0)

T3 28 (21.9) 38 (30.6)
Unknown 4 (3.1) 4 (3.2)

Lymph node status 0.754

Negative 57 (45.6) 59 (47.6)
Positive 68 (54.4) 65 (52.4)

Grade <0.001

I 32 (25.6) 11 (8.9)
II 48 (38.4) 36 (29.3)

III 45 (36.0) 76 (61.8)

ER status <0.001
Negative 42 (33.1) 68 (55.3)

Positive 85 (66.9) 55 (44.7)

PR status 0.005
Negative 52 (0.9) 72 (58.5)

Positive 75 (59.1) 51 (41.5)

ERBB2 status 0.494
Negative 104 (81.3) 103 (83.1)

Positive 12 (9.4) 14 (11.3)
Unknown 12 (9.4) 7(5.6)

P53 status 0.001

Wild Type 78 (60.9) 47 (37.9)
Mutant 24 (18.1) 44 (35.5)

Unknown 26 (20.3) 33 (26.6)

Ki67 status 0.002
Negative 41 (32.0) 17 (13.7)

Positive 61 (47.7) 81 (65.3)

Unknown 26 (20.3) 26 (21.0)
Molecular subtype <0.001

Basal 25 (19.5) 50 (40.3)

ERBB2 10 (7.8) 12 (9.7)
Luminal A 60 (46.9) 25 (20.2)

Luminal B 16 (12.5) 28 (22.6)

Normal 17 (13.3) 9 (7.3)
Vital status 0.003

Alive 97 (75.8) 72 (58.1)

Dead 31 (24.2) 52 (41.9)
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To testify the value of our prediction model based on the necroptosis-signature for patients with breast cancer, in addition to 
univariate and multivariate Cox regressions to determine its accuracy in predicting clinical outcomes, we further compared our 
signature with other cell death-related prediction models (ferroptosis and pyroptosis).25–30 As shown in Figure 5 and 
Supplementary Figure S3, our signature had better diagnostic efficiency than previously reported signatures.

Furthermore, we investigated whether the risk value of our prognosis model was informative in treatment regiments 
with the dataset GSE25055. GSE25055 is a neoadjuvant study of 310 HER2-negative breast cancer cases treated with 
taxane-anthracycline chemotherapy pre-operatively and endocrine therapy if ER-positive. We observed that the risk 
scores were positively associated with the residual cancer burden (RCB) after neoadjuvant chemotherapy. Higher risk 
scores indicated poor pathological response to neoadjuvant chemotherapy (Supplementary Figure S4).

Clinicopathological Patterns and Tumor Immune Microenvironment Patterns in 
Necroptotic Risk Models
We further stratified patients according to clinicopathological risk factors and examine the prognostic value of necrotic cell 
death signature in the subpopulation of BRCA cohort with Kaplan-Meier analysis. Regardless of various clinicopathological 
factors, patients in the high-risk group suffered an unfavorable prognosis compared to those in the low-risk group 
(Supplementary Figure S5).

Based on the analysis of GSVA, chemokine signaling and some infection-related signaling pathways were among the 
important differential pathways between two risk groups (Figure 5A). Patients in the low-risk subgroup were shown with 
significantly upregulated infiltration of B cells, CD8+ T cells, eosinophils, macrophages, monocytes, NK cells, plasma-
cytoid dendritic cells and so forth (Figure 5B and C). An active immune microenvironment was therefore indicated. 
ESITMATE analysis also joined to confirm that patients in the low-risk group were shown to harbor significant higher 
infiltration of immune cells, however significantly elevated stroma infiltration was also suggested in the low-risk group 
(Figure 5D). Further analysis of immune checkpoint signature had revealed elevated expression of CD200, CD27, CD28, 
CD40, CD86, HAVCR2, NRP1, LAIR1, LGALS9, TNFRSF14, TNFSF14 in low-risk group, depicting the activated 
immune checkpoint patterns in the low-risk group (Figure 5E).

In addition, consistent immune profiles based on necroptosis-related signature were confirmed independent of prior 
therapies in the analysis of GSE25055 (Supplementary Figure S6). Though with different prior therapies, activated 
B cells, activated CD8+ T cells, eosinophils, immature B cells, MDSCS, macrophages, mast cell, monocytes, natural 
killer T cells, T follicular helper cells, type 1 helper cells stayed commonly more infiltrated in the low-risk group with 
better prognosis. ImmuneScore and ESTIMATEScore stayed higher in low-risk compared to high-risk group. Therefore, 
no significant changes of necroptosis-related immune signature were observed with prior therapies.

Individual Role of Each Gene from Necroptosis-Related Subset in Predicting 
Clinicopathological Features and Tumor Microenvironment
We identified a subset of necroptotic gene set from the Lasso-Cox regression model, composed by TLR3, RIPK3, NLRP3, 
CASP1, ALDH2 and EZH2. The expression of each gene in this subset was examined in patient sub-cohorts stratified by different 
clinicopathological risk factors. Tumor size, lymph node status, tumor grade, TRP53 mutation and molecular subtypes are 
included in the stratification. ALDH2 and TLR3 express differently in tumors of different sizes. ALDH2, EZH2, RIPK3 and 
TLR3 express differentially in diverse tumor grades. And only EZH2 and RIPK3 present different expression between patients 
harboring wild type TRP53 and those harboring mutated TRP53. Overall, the more advanced the tumor grade is and the bigger the 
tumor size is, the lower expression of ALDH2, CASP1, RIPK3 and TLR3 were detected as well as the higher expression of EZH2. 
While the expression of genes in subset stays unaltered in samples with different lymph node status, all of the 6 genes exhibit 
significantly different expression in molecular subtypes of breast cancer (Supplementary Figure S7).

Gene expression of the indicated six necroptotic subset genes was validated in both prognostic models. And it was 
indicated that the subset genes were correspondently elevated in the group with high immune cell infiltration in both 
models (Figure 6A and B). The Alluvial plot revealed the variation of necroptotic gene cluster, necroptotic risk group and 
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Figure 5 Features of tumor immune microenvironment in low-risk and high-risk groups. (A) KEGG analysis of the differential genes between two subgroups. (B and C) 
Immune cell infiltration analysis between two subgroups. (D) ESTIMATE analysis for the comparisons between cluster A and B were presented in histogram. (E) Immune 
checkpoint analysis between two subgroups.
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tumor recurrence in individual BRCA patient and suggested the consistency of established prognostic models 
(Figure 6C).

Prognostic validation was performed by Kaplan–Meier analysis for the indicated six necroptosis-related genes. 
Except for EZH2, the expression of which was negatively correlated with survival time, the rest 5 genes of necroptotic 
signatures were suggested to act as favorable prognostic factors (Figure 6D-I).

Figure 6 (A) Gene expression of necroptotic subset genes in two clusters after consensus clustering. (B) Gene expression of necroptotic subset genes in high-/low- risk 
groups derived from risk models with Lasso-Cox analysis. (C) Alluvial diagram of BRCA patient necroptotic gene cluster, necroptotic risk group and tumor recurrence. (D-I) 
Prognostic validation of the six necroptosis-related genes, i.g. ALDH2, CASP1, EZH2, NLRP3, RIPK3 and TLR3. (J) ESTIMATE analysis of the selected 6 necroptotic genes 
and ESTIMATEScore, ImmuneScore and StromaScore was presented respectively. (K) The correlation between the selected 6 necroptotic genes and infiltrated immune cells 
of TME. (L) Immune checkpoint analysis based on the selected 6 necroptotic genes.
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Consistently, TLR3, RIPK3, NLRP3, CASP1 and ALDH2 were exemplified to present positive association with 
ESTIMATEScore, ImmuneScore, StromaScore as well as immune cell infiltrations, whilst EZH2 was negatively 
correlated with the aforementioned scores (Figure 6J, K). Especially, EZH2 was shown to have negative correlation 
with infiltrated Eosinophils, MDSCs, macrophages, NK cells, Neutrophils and plasmacytoid dendritic cells. Correlation 
analysis between immune checkpoint signature and each gene in the selected 6 gene set had also joined to support the 
activated pattern of immune checkpoint upon the onset of the necroptotic subset (Figure 6L).

In addition, a small cohort of clinical BRCA specimens from our institute was included to join the verification of the 
selected necroptosis-related genes. A total of 171 BRCA samples with clinical information were collected from the 
department of pathology and breast oncology, Xiangya Hospital. Immunochemistry analysis was applied on specimen 
samples. With the help of the quantification of IHC staining, samples were classified into low- and high-expression 
groups for each protein of interest. Kaplan–Meier analysis was performed afterwards for each gene. In consistence, 
patients with higher expression of ALDH2, CASP1, NALRP3, RIPK3 and TLR3 have longer disease-free survival, while 
patients with high EZH2 expression suffered earlier tumor recurrence (Figure 7A).

The Potential of Targeting Necroptosis in Immunotherapy in Breast Cancer 
Recurrence Management
As mentioned above, we have identified C10orf54, CD200, CD200R1, CD27, CD28, CD40, CD40LG, CD48, CD86, 
HAVCR2, LAIR1, LGALS9, TIGIT, TNFRSF14, TNFSF14 as the immune checkpoints uniformly altered in both 
stratification models. To validate the genetic changes, we silenced the key genes that we have selected out from the 
two stratification models in breast cancer cell line MD-MB-231 (ie, ALDH2, CASP1, EZH2, NLRP3, RIPK3, TLR3) and 
testified the impact on biological function and immune checkpoints (Figure 7B and D). We observed that the expressions 
of immune checkpoints of interest were significantly suppressed upon the silencing of CASP1 and NLRP3, while 
silencing of EZH2 led to a reverse result. Moreover, Cal-9 (LGALS9) were indicated to be consistently regulated along 
with the alteration of the necroptotic genes (Figure 7C).

Interestingly, HAVCR2(TIM-3) and its ligand LGALS9 were also observed to be significantly elevated in the low-risk 
group in both stratification models. As anti-TIM-3 therapy has been proved to facilitate the response to anti-PD-1 therapy 
due to its important role in T-cell exhaustion,31,32 we further investigated if necroptotic signature could help to predict the 
outcome of breast cancer immunotherapy with co-blockade of TIM-3 and PD-1.

Therefore, the response to the co-blockade immunotherapy with anti-TIM-3 and anti-PD-1 under different manipula-
tion of necroptotic genes was examined in vivo. As expected, treatment with siRNA of CASP1 and NLRP3 suppressed 
the response to co-blockade treatment, whereas siRNA-EZH2 significantly sensitized tumor response to the co-blockade 
immunotherapy (Figure 7E).

Discussion
Necroptosis, serving as an alternative form of programmed cell death, is the best-characterized form of regulated necrotic 
cell death.4 The role of necroptosis in tumor immunity remains controversial. On the one hand, it could evoke strong 
adaptive immune responses to defend against tumor promotion. On the other hand, the following recruited inflammatory 
response might also promote tumorigenesis and metastasis. An immunosuppressive tumor environment and promoted 
oncogenesis were also implied upon the necroptotic RIP1/RIP3 signaling via CXCL1.33

We demonstrated that our selected gene set of necroptosis enriched in not only the programmed necrotic cell death but 
also in IL-1 synthesis and regulation pathway, suggesting the potential function of necroptosis in immunity and 
inflammation, which is consistent with previous reports.34 Further, our current study applied two models to identify 
the subpopulations of BRCA cohorts. Unsupervised consensus clustering had resulted in two clusters with well-separable 
tumor immune microenvironment, in which patients in cluster B present much higher immune cell infiltration and 
dramatically enriched immunity and inflammation pathways, thus the better prognosis for patients in this cluster. 
Meanwhile, Lasso-Cox regression has assigned patients into low-risk and high-risk subgroup of breast cancer patients 
with explicitly-separable survival difference between groups. More immune cell infiltration and high immune score were 
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Figure 7 (A) Prognosis of the patient in low- and high-necroptotic genes expression groups. (B) Efficiency of siRNA for necroptotic genes of interest. (C) Colony formation 
of MDA-MB-231 upon siRNA targeted necroptotic genes of interest. (D) Alteration of immune checkpoints after silencing of necroptotic genes. (E) Tumor growth of 
xenograft with the administration of co-blockade of anti-PD-1 and anti-TIM3 along with different siRNA injection. (ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001).
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concluded in patients in the low-risk group as expected, though the difference between the two risk subgroups was not as 
significant as that in two consensus clustered subgroups.

RIPK1 has been putatively recognized as one of the key necroptosis regulators. But it was also argued that ZBP1, 
instead of RIPK1, mediated tumor necroptosis in breast cancer.35 Histologic tumor necrosis has been presumed to occur 
as tumor progresses aggressively. And it was suggested that a progressive switch from predominantly apoptotic to 
necrotic tumor cell death was involved in the development of invasive cancer. Thus the presence of necroptosis has been 
indicated to serve as an unfavorable prognostic factor for some patients.36 However, the majority of key regulators of the 
necroptotic pathway are generally downregulated in tumor cells.13

In our current analysis, a subset of necroptotic gene set from the Lasso-Cox regression model was identified, 
composed of TLR3, RIPK3, NLRP3, CASP1, ALDH2 and EZH2. Among them, 5 necroptotic genes, TLR3, RIPK3, 
NLRP3, CASP1 and ALDH2, were suggested to be favorable prognostic factor, while EZH2 might predict poor 
outcomes for BRCA patients. To examine the detailed value of the selected necroptotic markers might help to make 
better therapeutic decisions.

Recent studies concerning genes involved in necroptosis have discovered its distinct role of RIPK3 in 
necroptosis.37,38 Researchers have shown that necroptotic gene MLKL presents a positive correlation with B, NK and 
T lymphocytes in multiple breast cancer subtypes, and RIPK3 exhibits positive correlations with lymphoid cells only in 
HER2+ and TNBC breast cancer, which is consistent with our data. While DFNA5, a molecule mediating post-apoptotic 
secondary necrosis, is associated with the monocytic lineage and macrophages in ER+ breast cancer.15 However, RIPK3 
was also reported to robustly increase in recurrent breast tumor cells and promote productive cell cycle.39 It is also 
reported that necroptosis could be induced by the combination of activation of innate immune signaling through Toll-like 
receptor 3 (TLR3) and IFNγ treatment.14

Consensus clustering has provided us with separated clusters with drastically differential tumor immune microenviron-
ments based on different necroptotic traits. BRCA patients in low-risk group, identified by Lasso-Cox regression model, 
exhibits consistent more infiltration of immune cell in tumor tissue. In addition, the selected subset of necroptosis-related 
genes was intriguingly shown to be significantly associated with immune cell infiltration in tumor, as well as the immune 
checkpoint profiles. Taken together, the necroptotic signature of breast cancer patient could be used as a potential biomarker 
to predict tumor immunity and patient’s response to immune checkpoint blockade immunotherapy.

Recent studies have revealed the important role of necroptosis in oncogenesis and tumor metastasis. Necroptosis- 
related lncRNAs were also indicated to correlate to the infiltration of activated CD4+ memory T cells, M1 macrophages, 
and resting mast cells, as well as some common immune checkpoint molecules in triple negative breast cancer.40 Tumor 
necroptosis-mediated shedding of cell surface proteins was suggested to suppress anti-tumor immunity induced by 
T cells.41 Our study joined to provide the tumor immune microenvironment profile based on necroptosis signature.

In the current study, we have identified a few immune checkpoints that were consistently altered in both models, i.g. C10orf54, 
CD200, CD200R1, CD27, CD28, CD40, CD40LG, CD48, CD86, HAVCR2, LAIR1, LGALS9, TIGIT, TNFRSF14, TNFSF14. 
Among them, C10orf54 (also known as VISTA), Siglecs family (CD200, CD200R1), HAVCR2 (also known as TIM-3) as well as 
its ligand LGALS9, and NECL subset (TIGIT) were regarded as novel targets of immunotherapy, besides PD-1/PD-L1 and 
CTLA-4. In addition, besides the immune response-related pathways, JAK-STAT signaling pathway was indicated to be the 
commonly altered signaling pathway between two subgroups after stratification, inferring the potential regulation mechanism 
behind necroptosis and anti-tumor immunity microenvironment.

Further, necroptosis has been agreed as a novel target for cancer treatment, and growing discoveries of therapeutic 
compounds have been reported to defend against tumor by inducing necroptosis.42 Some compounds targeting RIP1 and 
RIP3 were verified to exert their effect of anti-tumor through the induction of necroptosis.43 And the induction of 
necroptosis was also reported to circumvent cancer drug resistance in breast cancer.44 Recent study focusing on 
necroptosis-related lncRNAs also implied that necroptosis-related lncRNAs signature could provide patients with 
a reference to make chemotherapy decision.45 Our data also illustrated that low risk score in our necroptotic prognosis 
model could indicate a low RCB and thus a better pathological response to neoadjuvant chemotherapy. A hint of 
personalized neoadjuvant chemotherapy was therefore indicated for patients with low risk.
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In addition, we validated that regulation of some key necroptotic genes could affect the response to immunotherapy 
with combined inhibitors of TIM-3 and PD-1. Patients in the necroptotic low-risk group were thereafter indicated with 
better response to co-blockade of TIM-3/PD-1 immunotherapy. The potential of targeting necroptosis as a novel therapy 
for malignancies is therefore fundamentally implied.

By analyzing necroptosis signatures in breast cancer, it was implied that the necroptotic signatures could have predictive 
value in terms of cancer relapse-related prognosis as well as immunotherapy response. Based on the molecular profile of 
necroptosis signature, we could identify patients who were more likely to present early cancer relapse or respond poorly to 
immunotherapy. These could further help in stratifying patients into different risk groups and guiding treatment decisions. In our 
study, highly activated necroptotic signatures indicated late recurrence occurrence. In addition, more immunogenic malignancy 
with activated immune microenvironment was also implied in the activated necroptotic signature, suggesting the more efficiency 
of immunotherapy in this scenario. Specifically, distinctly altered immune checkpoints upon varied necroptotic signatures were 
also inferred in our study, which could aid in the prediction of response to immunotherapy with certain immune checkpoint 
blockades.

Further, the necroptotic signature is suggested to contribute to the personalization of medical services in recurrent breast 
cancer management. By integrating information about the necroptotic profile with other clinical and molecular data, 
healthcare providers could develop individualized treatment plans for patients. Taken the results from our study, personalized 
strategies could include selecting therapies that target necroptosis gene subset based on the patient’s molecular profile. 
Patients with highly activated necroptotic signatures and corresponding activated immune microenvironments could be 
assigned with immunotherapy like immune checkpoint blockades. Whereas patients, with suppressed necroptotic signatures 
should be tailored with specific necroptosis-targeting interventions to aid in immunotherapy. Personalization of medical 
services can lead to improved treatment outcomes, reduced adverse effects, and optimized healthcare resource utilization.

Conclusion
We demonstrated two strategies to stratify breast patients based on their necroptotic profiles and showed that necroptosis- 
related signature could assign patients with distinct tumor immune microenvironment patterns and corresponding relapse- 
free prognosis. A subset of necroptotic gene set, composed of TLR3, RIPK3, NLRP3, CASP1, ALDH2 and EZH2, was 
identified and could be used as a biomarker set for predicting tumor recurrence and immunotherapy response in breast 
cancer, and might help to tailor personalized approach in breast cancer recurrence management.
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