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Abstract: Niacin, also known as nicotinic acid, is an organic compound that has several cardio-

beneficial effects. However, its use is limited due to the induction of a variable flushing response 

in most individuals. Flushing occurs from a niacin receptor mediated generation of prostaglandins 

from arachidonic acid metabolism. This study examined the ability of docosahexaenoic 

acid, eicosapentaenoic acid, and omega-3 polyunsaturated fatty acids (PUFAs), to attenuate 

niacin-induced prostaglandins in THP-1 macrophages. Niacin induced both PGD
2
 and PGE

2
 

generation in a dose-dependent manner. Niacin also caused an increase in cytosolic calcium 

and activation of cytosolic phospholipase A
2
. The increase in PGD

2
 and PGE

2
 was reduced by 

both docosahexaenoic acid and eicosapentaenoic acid, but not by oleic acid. Omega-3 PUFAs 

efficiently incorporated into cellular phospholipids at the expense of arachidonic acid, whereas 

oleic acid incorporated to a higher extent but had no effect on arachidonic acid levels. Omega-3 

PUFAs also reduced surface expression of GPR109A, a human niacin receptor. Furthermore, 

omega-3 PUFAs also inhibited the niacin-induced increase in cytosolic calcium. Niacin 

and/or omega-3 PUFAs minimally affected cyclooxygenase-1 activity and had no effect on 

cyclooxygenase -2 activity. The effects of niacin on PGD
2
 generation were further confirmed using 

Langerhans dendritic cells. Results of the present study indicate that omega-3 PUFAs reduced 

niacin-induced prostaglandins formation by diminishing the availability of their substrate, as well 

as reducing the surface expression of niacin receptors. In conclusion, this study suggests that 

the regular use of omega-3 PUFAs along with niacin can potentially reduce the niacin-induced 

flushing response in sensitive patients.

Keywords: flushing, prostaglandin E
2
, phospholipids, GPR109A, cardiovascular, docosa-

hexaenoic acid, arachidonic acid

Introduction
Nicotinic acid (niacin) is a water soluble vitamin that has been widely used in the 

prevention of cardiovascular disease.1,2 The Coronary Drug Project Study reported that 

niacin reduced nonfatal myocardial infarction by 24% and stroke by 22%.3 Some of the 

general cardio-beneficial effects of niacin at a dose of 1.5 g/day include the reduction 

of total cholesterol, triglycerides, very-low-density lipoprotein, low density lipoprotein 

(LDL), and lipoprotein(a) by 20%.4–7 Niacin has also been shown to effectively increase 

high-density lipoprotein (HDL) by approximately 20%.8,9 These cardio-beneficial 

effects of niacin are mediated largely through a receptor-independent mechanism.

Alternative lipid-reducing medications are statins, best known for their 

LDL-cholesterol lowering effects. Niacin, in contrast, is the most effective, clinically 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
37

O R I g I N A l  R E S E A R C h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/JIR.S29044

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

mailto:rsiddiqu@iuhealth.org
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/JIR.S29044


Journal of Inflammation Research 2012:5

available agent for increasing HDL-cholesterol. The combined 

use of niacin and statins is recommended for improved 

outcomes of cardiovascular events.10–14 For example, an 

HDL-Atherosclerosis Treatment Study15 (HATS) reported 

that a combined treatment of simvastatin plus niacin 

resulted in significant regression of angiographic coronary 

atherosclerosis and reductions in the rate of clinical events 

during 2.5 years of follow-up.16 However, a very recent 

Atherothrombosis Intervention in Metabolic Syndrome 

with low HDL/High Triglyceride: Impact on Global Health 

Outcomes (AIM-HIGH) study reported no incremental 

clinical benefits from the addition of niacin to simvastatin 

therapy during a 36-month follow-up period, despite 

significant improvements in HDL cholesterol and triglyceride 

levels.17,18 The outcome of this study decreased enthusiasm 

for the combined use of niacin and statins. In addition to this, 

niacin use is limited by the majority of patients experiencing a 

“flushing response” that is characterized by severe reddening 

of the skin, itching, and tingling, which leads many patients 

to discontinue use.19,20 Several studies have shown that 

flushing occurs in response to the vasodilatory effects of 

prostaglandin D
2
 (PGD

2
) and prostaglandin E

2
 (PGE

2
), and 

their metabolites, which are elevated after treatment with 

niacin.21–23 Recently, it has been shown that the epidermal 

Langerhans cells are one of the cell types responsible 

for niacin-induced PGD
2
 release.24,25 The niacin-induced 

flushing appears to be initiated through a receptor-mediated 

process.26–28 For example, mice deficient in PUMA-G, a 

murine niacin receptor, failed to show a niacin-induced 

increase in ear blood flow (a measure of niacin flush).29 

These investigators have also demonstrated that mice lacking 

PGD
2
 and PGE

2
 receptors had reduced flushing responses.29 

Furthermore, other evidence also suggests that PGD
2
 acting 

through the DP1, a subtype of PGD
2
 receptor, and PGE

2
 

acting via type 2 and type 4 PGE
2
 receptors, mediates the 

niacin-induced flushing response.29,30 Recent studies have 

demonstrated that Langerhans dendritic cells respond to 

niacin with a transient increase in the cytoplasmic Ca2 

concentration and have suggested that Gi (GTP binding 

protein) is activated through the niacin receptor.25 It is well 

known that an increase in the cytoplasmic Ca2+ concentration 

causes activation of phospholipase A
2
 (PLA

2
), which liberates 

arachidonic acid (AA) from membrane phospholipids. 

AA can be further metabolized to PGD
2
 and PGE

2
 by the 

ubiquitously expressed type 1 cyclooxygenase (COX) 

and both PGD
2
 and PGE

2
 synthases, which are present in 

Langerhans dendritic cells. Benyo et al25 suggest that the 

release of PGD
2
 and PGE

2
 from niacin-activated cells then 

results in vasodilation in the dermal papillae of the upper 

dermis layer, where the Langerhans cells are localized. This 

sensitization of epidermis by PGD
2
 and PGE

2
 results in the 

characteristic flushing response.

Both epidemiological31–33 and prospective randomized 

clinical trials34–36 have reported a decrease in morbidity 

and mortality from heart disease in patients with diets 

supplemented with omega-3 polyunsaturated fatty acids 

(PUFAs). Two particular omega-3 PUFAs are of inter-

est: eicosapentaenoic acid (EPA; 20:5, omega-3) and 

docosahexaenoic acid (DHA; 22:6, omega-3).

Omega-3 PUFAs improve the plasma lipid profile. 

Harris37 concluded that omega-3 PUFAs generally lowered 

triglycerides (TG) by 25%–28% in an analysis of 72 human 

trials, where normal subjects or hypertriglyceridemic 

patients were given 7 g or less of omega-3 PUFAs/day 

for at least a 2 week period. Harris37 further noted that 

omega-3 PUFAs were able to lower lipoprotein cholesterol 

in animal studies, but there was only a minor impact on 

lipoprotein cholesterol levels in human studies. Another 

study by Mori et al also observed similar findings in mildly 

hypertriglyceridemic patients. Intake of omega-3 PUFAs 

(4 g/day for 6 weeks) reduced TG levels by 18%–20% but 

had a minimal impact on low-density lipoprotein cholesterol 

or high-density lipoprotein cholesterol (HDL-C).38 In contrast 

to these studies, long-term treatment of hypertriglyceridemic 

patients with omega-3 PUFAs (4 g/day for 16 weeks) led 

to a significant reduction in TG by 47%, while TG levels 

rose by 16% with a placebo (corn oil). This omega-3 PUFA 

effect was associated with a decrease in ratios of total 

cholesterol to HDL (20%) and a modest increase in high-

density lipoprotein cholesterol (13%).39 Similar results were 

also reported in another study where hypertriglyceridemic 

patients were treated with omega-3 PUFAs (4 g/day) for 

6 months.40 It appears from different studies41 that higher 

levels of omega-3 PUFAs for longer durations have beneficial 

effects on the plasma lipid profile.

In addition to their effects on the lipid profile, omega-3 

PUFAs also exert many cardio-beneficial effects via their 

involvement in several cellular processes. The incorporation of 

omega-3 PUFAs into cellular membranes changes the nature 

of the substrate for phospholipases. PLA
2
 is a physiologically 

important enzyme. Its activity is stimulated by niacin 

through phospholipase C-mediated calcium mobilization.42 

Cytosolic PLA
2
 (cPLA

2
) catalyzes the hydrolysis of fatty 

acids from the sn-2 position of membrane phospholipids, 

resulting in the production of proinflammatory AA-derived 

eicosanoids and platelet-activating factors.43 Not much is 
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known about the direct regulatory effect of omega-3 PUFAs 

on cellular PLA
2
 activity. However, omega-3 PUFAs are 

easily incorporated into membrane phospholipids on the 

sn-2 position, where AA is usually present. Cytosolic PLA
2
 

hydrolyzes phospholipids containing omega-3 PUFAs, and 

then generates free DHA or EPA. DHA, EPA, and AA all 

compete for COX and lipooxygenase enzymes; however, 

AA is the strongest substrate of the three.44,45 It is therefore 

possible that omega-3 PUFAs can effectively reduce the 

generation of AA-derived proinflammatory eicosanoids 

including PGD
2
 and PGE

2
. Furthermore, DHA is a unique 

fatty acid, because it significantly alters basic properties of 

cell membranes, including acyl chain order and fluidity, phase 

behavior, elastic compressibility, ion permeability, fusion, 

rapid flip-flop, and resident protein function.46 Similarly, 

recent studies have demonstrated that several signaling 

proteins, including surface receptors, are enriched in lipid 

rafts and can be displaced from membrane rafts by both DHA 

and EPA.47,48 Various possible mechanisms for niacin-induced 

PGs formation are outlined in Figure 1.

The objective of this study was to investigate if omega-3 

PUFAs are capable of inhibiting the niacin-induced PGD
2
 

and PGE
2
 generation. To test the “proof of the principle,” 

differentiated macrophages were used, as it has been shown 

that macrophages are capable of responding to niacin in a 

similar fashion to that of Langerhans cells.49 Experiments 

on human cultured epidermal Langerhans cells were also 

performed to further confirm the results. Niacin treatment 

caused generation of both PGD
2
 and PGE

2
 in macrophages, 

but induced formation of only PGD
2
 in Langerhans 

cells. Omega-3 PUFAs reduced AA levels in the cellular 

membranes and also reduced surface expression of niacin 

receptors. This results in an attenuation of niacin-induced 

PGD
2
 and PGE

2
 synthesis.

Figure 1 Proposed cellular mechanism for Niacin-induced prostaglandins formation.
Notes: Niacin binding to its receptor, gPR109A, causes influx of calcium (Ca2+) through voltage gated channels. Ca2+ binds to cPLA2, which subsequently phosphorylated by 
cellular kinases and translocated to plasma membrane.  Phospholipids containing AA, EPA, or DHA are degraded into free fatty acids by the action of cPLA2. COX-1 and -2 
catalyze oxygenation of AA into 2-series Pg and TXA and oxygenation of EPA into 3-series Pgs and TXA.  DhA is not a substrate for COX-1; however, in endothelial cells 
COX-2 enzymes convert EPA and DhA into hydroxy fatty acids in the presence of aspirin.  These are released from the endothelium and are rapidly converted by 5-lOX 
in adherent leukocytes into bioactive compounds termed as resolvins (resolution phase interaction product). Resolvins derived from EPA are designated as E series (RvE) 
and those derived from DHA are termed as D series.  
Abbreviations: 5-lipooxygenase, 5-lOX; AA, arachidonic acid; COX-1 and-2, Cyclooxygenase-1 and-2; cPlA2, cytosolic phospholipase A2; DhA, docosahexaenoic acid; 
EPA, eicosapentaenoic acid; Pg, prostaglandins; TXA, thromboxanes. 
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Materials and methods
Materials
Niacin was obtained from Sigma-Aldrich (St Louis, MO). 

PGD
2
 and PGE

2
 monoclonal enzyme immunoassay (EIA) 

kits came from the Cayman Chemical Company (Ann 

Arbor, MI). COX Fluorescent Activity Assay Kits were 

also purchased from Cayman Chemical. Phycoerythrin-

conjugated rat monoclonal anti-human HM74A/GPR109A 

and Rat IgG Isotype Control-PE were obtained from R&D 

Systems  (Minneapolis, MN). THP-1 or Human Acute Mono-

cytic  Leukemia cells were purchased from American Type 

 Culture Collection (Manassas, VA). Langerhans dendritic 

cells expressing CD1a, MHC class II, and Birbeck gran-

ules, were obtained from MatTek Corporation (Ashland, 

MA).  Diisopropyl fluorophosphate and sodium fluoride 

were from Sigma Chemical Co (St Louis, MO). Phorbol-

12-myristate-13- acetate was acquired from Calbiochem 

(San Diego, CA).

Cell culture and differentiation  
of THP-1 macrophages
THP-1 human monocytic cell line was maintained in 

RPMI 1640 media supplemented with L-glutamine, 

25 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acid), 10% fetal bovine serum (FBS), and 1% 

penicillin-streptomycin-antimycotic (100X; GIBCO, Grand 

Island, NY). Cells were maintained at 37°C and 5% CO
2
. 

To initiate differentiation, the cells were plated at near 

90% confluence in serum-free RPMI 1640 (GIBCO) with 

25 nM phorbol-12-myristate-13-acetate for 48 hours at 

37°C and 5% CO
2
. Differentiation was verified via bright-

field microscopy as well as Western blot analysis of CD36 

expression.

Culturing of Langerhans cells
Freshly isolated human dendritic/Langerhans cells were 

obtained from MatTek Corporation (Ashland, MA) in a T-10 

flask. Cell suspension was centrifuged at 800 xg; cells were 

re-suspended, and then plated at a density of 40,000 cells per 

well in a 96-well plate in dendritic-cells maintenance media 

(DC-MM) supplemented with 5% FBS and a proprietary 

mixture of cytokines to maintain the dendritic cell pheno-

type as per the supplier’s instructions. Cells were allowed 

to attach overnight in an incubator maintained in 37°C and 

5% CO
2
. Cells were then treated with niacin and/or fatty 

acids as described in the following sections.

Cell growth assay
Stock solutions (1 mM) of DHA, EPA, and oleic acids (OLA) 

were prepared by complexing with fatty acid-free bovine 

serum albumin (BSA).4 Varying concentrations (0, 12.5, 

25, 50, 75, and 100 µM) of fatty acids were used to treat the 

THP-1 derived macrophages. Cell viability was tested using 

the WST-1 assay. The assay was performed according to the 

manufacturer’s instructions (Roche, Indianapolis, IN).

Lipid extraction analysis
THP-1 monocytes (5 × 106) were differentiated in a T-75 

flask for 48 hours. The resulting macrophages were treated 

with 0, 12.5, 25, 50, 75, and 100 µM DHA, EPA, or OLA 

for 24 hours in RPMI 1640 supplemented with L-glutamine, 

25 mM HEPES, 5% FBS, and 1% penicillin-streptomycin-

antimycotic at 37°C and 5% CO
2
. The cells were harvested 

by trypsinization and centrifuged at 800 xg for 5 minutes and 

then washed in phosphate buffered saline (PBS) containing 

1% fatty-acid free BSA. The cells were re-suspended and 

then lysed in PBS by sonicating on ice. An internal standard 

(C23:0) was added to 500 µl of cell lysate and a portion 

of the remaining 100 µl was used to establish a protein 

concentration in order to normalize fatty acid content to 

the amount of protein present. Lipids were extracted with 

chloroform: methanol (2:1) using the Folch method50 

and fatty acids were converted into methyl esters at room 

temperature for 24 hours as described previously.51 The fatty 

acids were separated on a gas chromatography system 

equipped with an auto sampler, flame ionizing detector 

(GC2010; Shimadzu Corporation, Kyoto, Japan), and a 

Zebron ZB-WAX plus column (100 m, 0.25 mm ID, 0.25 m; 

Phenomenex, Torrance CA). The oven temperature increased 

from 30°C (2 minute hold) to 180°C at 20°C/minute (2 minute 

hold) to 207°C at 4°C/minute (3 minute hold) to 220°C at 

2°C/minute (2 minute hold) to 240°C at 2°C/minute (2 minute 

hold). The flame ionization detector was used at 250°C to 

detect the resolved fatty acids peaks, which were identified 

using authentic standards (Restek Corp, Bellefonte, PA). 

Data was analyzed with Shimadzu’s GC solutions software 

(v2.30.00).

Prostaglandin D2 and E2 EIA assay
Prostaglandin D

2
 and E

2
 content in the culture media were 

measured using the competitive EIA kit from Cayman Chemi-

cal (Ann Arbor, MI). The assay was carried out according 

to the manufacturer’s protocol. Briefly, THP-1 differentiated 

macrophages (3 × 104) or Langerhans cells (4 × 104) were 
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treated with DHA, EPA, and OLA in 96 well plates in dupli-

cate for 24 hours in RPMI-1640 containing 5% FBS and 1% 

penicillin-streptomycin-antimycotic (100X) at 37°C and 

5% CO
2
. After washing with PBS containing 0.1% bovine 

serum albumin, the cells were treated with varying concentra-

tions of niacin for 30 minutes. The supernatant (50 µl) was 

then analyzed for the presence of prostaglandins.

Niacin receptor expression
THP-1 differentiated macrophages (1 × 106) were treated with 

DHA, EPA, or OLA for 24 hours. The cells were scraped 

with a rubber policeman and washed in PBS containing 

0.5% bovine serum albumin and finally resuspended in 

50 µl of this labeling buffer. Cells were then labeled with 

0.5 µg phycoerythrin-conjugated GPR109A antibody for 

45 minutes. The cells were washed twice with PBS containing 

0.5% bovine serum albumin. To ensure specificity of the 

antibody, an isotype control was established for each sample. 

Analysis was performed on a FACSCalibur flow cytometer 

(Becton Dickenson, San Jose, CA) at a 488 nm wavelength. 

The results indicate the mean fluorescent intensity of the 

THP-1 cells.

Determination of calcium mobilization
THP-1 macrophages, treated with fatty acids for 24 hours, 

were loaded with fura-2 acetoxy-methyl ester (fura 2-AM). 

Briefly, cells (1 × 107) were incubated in Hanks’ balanced 

salt solution (HBSS) in the presence of 5 µM fura-2 acetoxy-

methyl ester for 15 minutes at 37°C. After incubation, cells 

were washed twice with modified (Ca2+ and Mg2+ free) 

HEPES-buffered (1 mg/ml) HBSS (pH 7.2) and finally 

resuspended in the same buffer (prewarmed at 37°C). 

Cells (1 × 106) were preincubated for 1 minute in modified 

HEPES-buffered HBSS in a temperature-controlled Perkin-

Elmer LS50B luminescence spectrometer (Perkin-Elmer 

Ltd, Beaconfield, England) to determine baseline excitation 

fluorescence 340/380 nm ratios (R) at 510 nm emission. 

Cells were stimulated with niacin (3 mM) to determine rela-

tive alterations in R due to intracellular release of calcium 

by continuously monitoring (5 minutes) at 340 and 380 nm 

excitation.

Western blot analysis  
of phosphorylated-cPLA2
Lysates of  THP-1 macrophages treated with varying 

concentrations of niacin were prepared in radioimmuno-

precipitation assay lysis buffer (Millipore, Temecula, CA) 

containing 2.5 mM diisopropyl fluorophosphate, 100 mM 

sodium fluoride and protease inhibitors cocktail (Roche, 

Indianapolis, IN). Proteins in the samples were separated 

by sodium dodecyl sulfate page electrophoresis and trans-

ferred onto nitrocellulose membranes. The membranes 

were blocked with 10% western blocking reagent (Roche, 

Indianapolis, IN) in 1× Tris-Buffered Saline-Tween at room 

temperature for 1 hour. The membranes were then incubated 

overnight at 4°C with the phospho-cPLA
2
 primary antibody 

(Cell Signaling Technologies, Danvers, MA) at 1:1000 in 

1× Tris-Buffered Saline-Tween. Blots were developed using 

biotinylated secondary antibodies linked to horse radish 

peroxidase (GE Healthcare, Little Chalfont, UK) and the 

signal was detected using enhanced chemi-luminescence 

plus western blocking detection reagents (Amersham, Little 

Chalfont, UK).

COX activity EIA assay
The total COX activity and COX-1 and COX-2 content in the 

culture media were measured using the fluorescent activity 

assay kit from Cayman Chemical. THP-1 differentiated 

macrophages (1.5 × 106) were treated with 50 µM DHA, 

EPA, or OLA for 24 hours at 37°C and 5% CO
2
. Cells 

were scraped using a rubber policeman. The cells were 

sonicated in 100 mM Tris HCl (pH 7.5) containing protease 

inhibitors (Sigma). The lysate was centrifuged at 10,000 ×g 

for 15 minutes at 4°C and the supernatant was transferred 

to another micro-centrifuge tube. 10 µl of each sample was 

transferred to a 96 well plate and the assay was carried out 

according to the manufacturer’s protocol. The plate was 

analyzed using a fluorescent well plate reader (Perkin-Elmer). 

The total COX, COX-1 and COX-2 activities were determined 

against a standard curve and using the COX-1 inhibitor 

SC-560 and the COX-2 inhibitor DuP-697.

Results
Fatty acid treatment and cell growth
To ensure cell survival during experiments, THP-1 macrophages 

were exposed to 0–100 µM DHA, EPA, and OLA. DHA 

treatment at concentrations below 50 µM did not induce any 

substantial effect on cell viability; however, concentrations 

at 75–100 µM showed a reduction in cellular viability by 

20%–25% (P . 0.05) when compared to the non-treated 

control (data not shown). EPA-treatments showed less impact 

on THP-1 viability, with less than a 10% decrease (non-

significant) at 100 µM. The OLA-treatment resulted in only 
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,2% decrease in cell viability at the highest concentration of 

100 µM. Based on these results, the authors performed most 

subsequent experiments at 50 and 75 µM fatty acids.

Omega-3 PUFAs reduced niacin-induced 
PgD2 and PgE2 production
To test the effect of the omega-3 PUFAs on niacin induced 

PGD
2
 and PGE

2
 release in macrophages, THP-1 cells were 

treated with DHA, EPA, and OLA prior to exposure to 

increasing concentrations of niacin. Niacin increased both 
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and (C) OlA for 24 hours before being exposed to varying concentrations of niacin 
for 30 minutes. Concentration of PgE2 in the medium was determined using an EIA 
kit as per manufacturer’s instructions (Cayman Chemical, Ann Arbor, MI). Values 
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PGD
2
 and PGE

2
 formation in a dose dependent manner. 

PGD
2
 formation was greatly increased by 2–7-fold in a dose 

dependent manner on niacin-treatment (Figure 2), whereas 

the effect of niacin on PGE
2
 formation resulted in only a 

moderate 1.5–2 fold increase (Figure 3). Both DHA and EPA 

reduced basal as well as niacin-induced increases in PGD
2
 

and PGE
2
formation (Figure 2A and B and Figure 3A and B, 
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respectively). In contrast, OLA treatment resulted in further 

enhancement of basal, as well as niacin-induced PGD
2
 and 

PGE
2
 formation (Figures 2C–3C).

Omega-3 PUFAs alter FA profile
The authors next examined the incorporation of fatty acid in 

THP-1 cells. An analysis of membrane fatty acid composition 

suggested that DHA treatment increased the incorporation 

of DHA in the phospholipids in a dose dependent manner 

(2 to 168 µg/mg protein). Furthermore, the increased DHA 

levels in phospholipids occurred at the expense of AA, 

whose levels decreased from 24 to 13 µg AA/mg protein 

(Figure 4A). EPA-treatment subsequently increased EPA 

incorporation in phospholipids in a dose dependent  manner 

(2 to 190 µg/mg protein) (Figure 4B). EPA incorporation 

into membrane phospholipids also occurred at the expense 

of AA and resulted in its reduction from 25 to 9 µg AA/mg 

protein (Figure 5). Although basal levels of OLA were 

substantially greater than DHA or EPA, OLA amounts sig-

nificantly increased in a concentration dependent manner 

(51 to 391 µg/mg protein); however, OLA incorporation 

had a minimal effect on AA displacement (Figure 4C).

Omega-3 PUFAs down regulate  
the gPR109A receptor
The authors analyzed the effects of DHA, EPA, and OLA on 

the expression of the niacin receptor, GPR109A, using flow 

cytometry. Data in Figure 5 indicate that DHA-treatment at 

50 µM showed a 60% decrease in GPR109A expression, 

while 75 µM DHA further decreased the expression to 75% 

fewer receptors than compared to the control. 50 µM EPA 

reduced GPR109A receptor expression by 67%; however, 

75 µM EPA did not further reduce its expression. In contrast, 

OLA treatment did not result in a significant reduction of 

niacin receptor expression.

Effect of omega-3 PUFAs on cellular 
calcium release
The authors further analyzed the effect of niacin on down-

stream calcium mobilization (Figure 6). In untreated cells 

niacin increased intracellular calcium (red line) in a time 

dependent manner. However, niacin-induced intracellular cal-

cium increases were not observed when cells were  pretreated 

with DHA (blue line), EPA (green line), or OLA (pink line).

Niacin induces cPLA2 activation
One of the downstream targets for Ca2+ is cPLA

2,
 whose 

activity causes the release of AA, a substrate for PGD
2
 and 

PGE
2
 synthesis. Therefore, the effect of niacin treatment 

on cPLA
2
 activity was measured. Earlier experiments 

(Figure 4) indicate that DHA and EPA incorporated into 

phospholipids at the expense of AA. As a result, it was 

realized that measuring AA release by niacin in DHA and 

EPA-treated cells is not an appropriate assay for PLA
2
 activity. 

Hence, the phosphorylation of PLA
2
 by niacin was used as a 

measure of PLA
2
 activity. Results shown in Figure 7 indicate 

that niacin at 1.5 mM caused a maximal 2-fold increase in 

cPLA
2
 phosphorylation at 30 minutes of incubation. Higher 
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Figure 4 Fatty acid incorporation into phospholipids of THP-1 macrophages. 
Notes: THP-1 macrophages were treated with increasing concentrations of 
(A) DhA, (B) EPA or (C) OlA for 24 hours. lipids were isolated and fatty acid 
concentrations were determined by gas chromatography as described in the text. 
Notes: Values are the mean ± the standard deviation of triplicates. Results are 
analyzed using Student’s t test. *P , 0.01 compared to non-supplemented cells. 
Abbreviations: AA, arachidonic acid; DhA, docosahexaenoic acid; EPA, eico-
sapentaenoic acid; PgD2, prostaglandin D2; OlA, oleic acid.
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concentration of niacin at 3 mM also induced a 2-fold increase 

in phosphorylation of cPLA
2
 at 10 minutes of incubation 

which did not change on a longer incubation (30 minutes).

Effect of omega-3 PUFAs  
on COX activity
The authors observed that niacin itself has no effect on COX-1 

activity (Table 1). DHA treatment alone slightly reduced 

COX-1 activity, which was further decreased when DHA-

treated cells were stimulated with niacin. EPA treatment alone 

had no effect COX-1 activity; however, activity was decreased 

when EPA-treated cells were stimulated with niacin. OLA 

also had no effect on COX-1 activities, and this activity was 

also decreased when OLA-treated cells were stimulated with 

niacin. THP-1 cells also showed very little COX-2 activity that 

was not affected by niacin or fatty acid treatment (Table 1).
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Omega-3 PUFAs also regulate niacin-
induced PgD2 and PgE2 production  
in Langerhans cells
After the initial completion of this study of THP-1 cells, 

the authors evaluated the effects of omega-3 PUFAs in the 

more disease relevant epidermal Langerhans cells. Data in 

Figure 8 show that untreated Langerhans cells exhibited a 

dose-dependent increase in PGD
2
 production with increas-

ing concentrations of niacin. When treated with 50 µM 

DHA, the PGD
2
 production decreased to 71% and 42% 

at 1.5 and 3 mM concentrations of niacin, respectively. 

EPA decreased PGD
2
 production to 53% and 85% at 1.5 

and 3 mM concentrations of niacin, respectively. PGE
2
 

production showed very little change with both concentra-

tions of niacin (data not shown).

Discussion
Several studies have reported that niacin’s receptor-mediated 

enhanced release of PGD
2
 from tissue macrophages causes 

flushing, particularly by epidermal Langerhans dendritic 

cells.22,24,25,30,49,52 Several mechanisms have been proposed 

to reduce flushing in patients on niacin treatment, including 

reducing absorption of niacin, blocking DP1 receptors, and 

preventing production of prostaglandins.53 Initial attempts 

to make slow release niacin, which effectively reduced 

flushing, failed because of its hepatotoxicity.54,55 Conversely, 

an extended- release niacin (rates between immediate release 

and slow release niacin) formulation (Niaspan, Abbott 

Park, IL) improved CHD outcome and had no hepatotoxic 

effects, but continued to cause flushing in patients when given 

higher doses (1–2 g/day) in combination with statins.56–58 

A selective DP1 antagonist, laropiprant, was developed to 

further mitigate the niacin-induced flushing and has shown 

promise to allow 1–2 g/day dosing regimen of niacin.59 

Although laropiprant is a potent inhibitor of DP1, it does 

not eliminate flushing in all patients,9 suggesting that other 

pathways may be involved in the residual flushing. Inhibition 

of prostaglandin synthesis by blocking the activities of COX 

enzymes with aspirin,60–62 indomethacin,63 ibuprofen,53 and 

naproxen23 has also been shown to decrease niacin-induced 

flushing. In the present study, another approach was used to 

prevent production of prostaglandins. Since prostaglandins 

are synthesized directly from AA, an omega-6 PUFA, it was 

hypothesized that replacing cellular content of AA by ome-

ga-3 PUFAs (DHA and EPA) would reduce niacin-induced 

PGD
2
 synthesis. The effects of omega-3 PUFAs were tested 

in differentiated THP-1 macrophages, as these were easy to 

maintain in culture and also reported to respond in a similar 

fashion as that of the epidermal Langerhans cells.49 OLA, an 

omega-9 monounsaturated fatty acid, was also included to 

demonstrate the specificity of omega-3 PUFA effects.

This study’s data has shown that EPA and OLA did not 

significantly impact THP-1 macrophage growth; however, 

DHA did exhibit modest growth inhibition of these cells at 

higher concentrations ($75 µM). As previously reported 

by several investigators, the data also clearly demonstrated 

that niacin induced PGD
2
 synthesis in a dose-dependent 

manner. Furthermore, both DHA and EPA effectively 

reduced basal, as well as niacin-induced PGD
2
 synthesis. 

In contrast, OLA alone stimulated PGD
2
 release, which 

was further enhanced in the presence of niacin. The effect 

of niacin on PGE
2
 synthesis was also measured. The extent 

of PGE
2
 synthesis by niacin was substantially lower than 

that of PGD
2
 synthesis. However, both DHA and EPA were 

able to reduce niacin-induced PGE
2
 synthesis, whereas 
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Figure 6 Effect of fatty acids on calcium mobilization in THP-1 macrophages. 
Notes: Macrophages were treated with 50 µM DhA, EPA, and OlA for 24 hours. Cells were labeled with Fura 2-AM, and the change in ratio of fluorescence intensity at 
340/380 (R) was monitored as described in the text. Results show a representation from three experiments. 
Abbreviations: DhA, docosahexaenoic acid; EPA, eicosapentaenoic acid; OlA, oleic acid.
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OLA had a stimulatory effect. Production of eicosanoids 

can be regulated by the availability of their substrate, AA, 

in phospholipids.Therefore the effect of fatty acids on AA 

content in membrane phospholipids was measured. The data 

clearly indicated that both DHA and EPA incorporated into 

cellular phospholipids at the expense of AA. This result is 

consistent with the authors46 previous reports that omega-3 

PUFAs effectively decrease cellular AA content. However, 

it is notable that OLA, despite its substantial incorporation 

into phospholipids, had no effect on AA levels and exhibited 

a stimulatory effect on PGD
2
 and PGE

2
 synthesis. The data 

indicates (not shown) that OLA mostly incorporated at the 

expense of stearic and palmitic acid (18:0 and 16:0, respec-

tively), and therefore has no impact over AA incorporation. 

Furthermore, OLA is not a substrate for the COX pathway 

and, therefore, it does not compete with AA for eicosanoid 

generation. It is not clear from the present investigation why 

OLA had a stimulatory effect on PGD
2
 and PGE

2
 synthesis. 

It is possible that the released stearic and/or palmitic acid 

induced COX-1 or -2 activities. Clearly, further investigation 
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Figure 7 Niacin induces cPLA2 activation in THP-1 macrophages. 
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is needed to understand the effect of OLA on PGD
2
 and 

PGE
2
, which was beyond the scope of this study.

Enrichment of omega-3 PUFAs in cellular membranes 

often results in changes in the surface expression of mem-

brane proteins, including receptors.46,48 Therefore, the surface 

expression of GPR109A, a niacin receptor, was examined. 

The authors found that both DHA and EPA reduced sur-

face expression of the niacin receptor, whereas OLA was 

 ineffective. Diminished GPR109A expression could result 

in a reduction in niacin-induced flushing. The present study 

did not investigate if the reduced expression of GPR109A is 

due to reduced synthesis at the transcriptional or translational 

level, or if it is due to reduced translocation to the surface 

from intracellular storage. It is likely that omega-3 PUFAs 

reorganize lipid rafts48 and therefore affected the translo-

cation of the receptor. The downstream events to niacin 

receptor were then examined. As previously reported,25 

niacin induced an increase in cytosolic calcium, which was 

effectively blocked by both DHA and EPA as well as by 

OLA. Stimulation of cells with niacin caused a gradual rise 

in calcium in the absence of a rapid initial rise. This suggests 

that the rise in calcium was due to influx from extracel-

lular sources rather than release from intracellular stores. 

L-type voltage gated calcium channels that regulate influx 

of calcium from extracellular sources have previously been 

shown to be inhibited by omega-3 PUFAs.64–66 It is therefore 

likely that omega-3 PUFAs inhibited calcium influx through 

inhibiting L-type calcium channels. Other unsaturated fatty 

acids have been shown to act on these channels67 and it is 

therefore possible that OLA also inhibited L-type calcium 

channels in the present study. One of the targets for rising 

cytosolic calcium is activation of cPLA
2
, which releases AA 

for PGD
2
 and PGE

2
 synthesis. The effect of niacin on cPLA

2
 

activity was accessed by measuring its  phosphorylation. 

The results clearly indicate that niacin-treatment of 

THP-1 cells resulted in cPLA
2
 phosphorylation, indicating 

that niacin induces PGD
2
 and PGE

2
 formation by liberating 

AA from phospholipids. However, when AA is replaced 

by DHA or EPA, niacin-induced cPLA
2
 activity releases 
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Figure 8 Effect of fatty acids on niacin-induced PgD2 secretion in Langerhans cells. 
Notes: langerhans cells were treated with 50 µM fatty acids for 24 hours before a 30 minute exposure to 1.5 or 3 mM niacin. Concentrations of PgD2 in the medium were 
determined using an EIA kit as per manufacturer’s instructions (Cayman Chemical, Ann Arbor, MI). Values are the means ± the standard deviations of triplicate experiments 
from one preparation of Langerhans cells. 
Abbreviations: EIA, enzyme immunoassay.

Table 1 Effect of fatty acids on COX-1 activity in THP-1 
macrophages

COX-1 activity 
(nM/min/mg protein)

COX-2 activity 
(nM/min/mg protein)

Niacin Niacin
0 3 mM 0 3 mM

Vehicle 15.5 ± 2.1 16.1 ± 4.2 16.7 ± 6.7  6.9 ± 1.7
DHA 12.7 ± 2.9  9.7 ± 3.8  8.5 ± 5.1  5.3 ± 3.5
EPA 16.0 ± 3.8 10.2 ± 0.6  7.9 ± 4.5 11.8 ± 1.0
OLA 14.9 ± 2.9 11.6 ± 0.8 11.9 ± 2.2 10.3 ± 5.0

Notes: Macrophages were treated with 75 µM DhA, EPA, and OlA for 24 hours 
prior to a 30 minute exposure to 3 mM niacin. COX-1 and -2 activities were 
measured according to the kit manufacturer’s specifications. Values are the mean ± 
the standard deviation of triplicates. Results are analyzed using Student’s t-test. No 
statistical difference is found in any treatment group compared to niacin-treated 
controls. 
Abbreviations: COX-1 and-2, cyclooxygenase-1 and-2; cPlA2, cytosolic phospholipase 
A2; DhA, docosahexaenoic acid; EPA, eicosapentaenoic acid; OlA, oleic acid.
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DHA or EPA. Both DHA and EPA compete with AA for 

downstream COX-1 activity.68–71 During the present inves-

tigation, none of the fatty acids had any significant effect 

on COX-1 activity. It is therefore possible that inhibition 

of PGD
2
 and PDE

2
 synthesis by DHA or EPA is, to some 

extent, due to a reduction of their substrate, AA. However, 

the effect of EPA and DHA on GPR109A expression, and 

inhibition of niacin-induced calcium release also play a 

role in the reduction of niacin-induced flushing response by 

omega-3 PUFA. Furthermore, it is also possible that DHA 

and EPA directly induced anti-inflammatory effects through 

GPR120, a specific omega-3 fatty acids receptor expressed 

on macrophages;72 however, it is not known if EPA and DHA 

mediated effects through GPR120 regulate pro-inflammatory 

prostaglandin synthesis.

In order to correlate these studies to relevant primary cell 

line, the effect of DHA, EPA, and OLA on niacin-induced 

PGD
2
 and PGE

2
 synthesis was also measured in Langerhans 

dendritic cells. Both DHA and EPA were able to inhibit 

niacin-induced PGD
2
 synthesis, whereas OLA was not effec-

tive. The authors also noticed that EPA and OLA caused a 

basal increase in PGD
2
 synthesis. The reason for this increase 

is not clear. One possibility is variation in the incorporation 

and metabolism of EPA in the different cell types. In contrast, 

niacin did not increase PGE
2
 synthesis and fatty acid-treat-

ments had variable responses. However, this study’s results 

are consistent with other studies where niacin enhanced 

only PGD
2
 production in Langerhans dendritic cells.25,26 

These data suggest that PGD
2
 plays key a role in mediating 

niacin-induced flushing responses. It is unclear why PGE
2
 

production is stimulated by niacin in THP-1 cells but not in 

Langerhans cells. Perhaps a second co-factor is required for 

niacin stimulation that is not present in the Langerhans cells. 

Further investigation is required to determine this.

It is important to note that the outcome from the recent 

AIM HIGH study reduces enthusiasm for the use of niacin 

and statin combination therapy; however, it is possible that 

use of omega-3 fatty acids with a combination therapy of 

niacin and statins may be advantageous in improving cardiac 

events. As mentioned above, long term use of omega-3 fatty 

acids would have added benefits on improving LDL/HDL 

ratios and reducing triglycerides. Several pharmaceutical 

companies are aggressively marketing omega-3 fatty 

acids preparations for cardiac benefits. For example, 

preparations such as Crystal EPA-TG (Equateq, Scotland), 

Omevital TG, Omevital TG-Gold, Omevital –TG-ultra and 

Omevital-90%TG (Cognis, UK), Incromega (Croda, Goole, 

UK), and algal-DHA (Martek, Columbia, MD) have been 

developed that have substantially improved contents of 

omega-3 fatty acids than that of commercially available 

menhaden fish oils. In addition to this prescription grade 

omega-3, supplements containing ethyl esters of DHA + EPA 

(Lovaza, GlaxoSmithKline, London, UK) are also available. 

More recently pure ethyl ester preparations of EPA (AMR101, 

Amarin Corporation, Bedminster, NJ) were developed to 

treat patients for high or very high triglyceride levels. These 

preparations supply enriched quantities of omega-3 fatty 

acids higher than typically present in over-the-counter fish 

oil supplements.

Conclusions
The data indicated that omega-3 PUFAs can effectively 

inhibit niacin-induced synthesis of PGD
2
 and PGE

2
, the 

key mediators of flushing caused by niacin intake. The 

possible inhibitory mechanisms appear to be diminished 

niacin receptor expression and reduced availability of AA, 

a substrate for PGD
2
 and PGE

2
 synthesis. These effects are 

mediated within cellular membranes and are based on the 

enhanced incorporation of omega-3 PUFAs into membrane 

phospholipids. Therefore, this study suggests that regular 

intake of fish, fish oil supplements, prescription grade DHA 

and EPA formulation (GlaxoSmithKline) or other com-

mercially available DHA-, and EPA-enriched preparations, 

will not only be beneficial in reducing the flushing response 

of niacin, but also provide several known cardio-beneficial 

effects.73
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