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Abstract: The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the 
interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction 
of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease 
(IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments 
specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies 
that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and 
the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed 
therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and 
organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the 
function of the intestinal barrier as a treatment for IBD. 
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Introduction
Inflammatory bowel disease (IBD) represents a chronic, non-specific inflammation stemming from autoimmune disorders 
that predominantly impact the gastrointestinal (GI) tract. Typically, IBD manifests in two principal forms: Crohn’s 
disease (CD) and ulcerative colitis (UC). While the exact etiology of IBD remains elusive, several factors have been 
confirmed to be associated with the disease processes, including environmental factors, genetic susceptibility, intestinal 
microbiota, and mental health problems.1,2

Significant distinctions exist between CD and UC, spanning systematic manifestations to molecular levels. For 
instance, UC primarily targets the colon, causing superficial mucosal inflammation that extends proximally in 
a continuous pattern. Conversely, CD can non-contiguously affect different segments of the digestive tract, characterized 
by transmural inflammation.3 However, both CD and UC share dysfunctional or premature death of epithelial cells, 
a diminishing mucus layer, and dysregulated underlying intestinal immunity, resulting in compromised barrier 
protection.4 The compromise of barrier integrity not only manifests clinically in IBD but also contributes to various 
alimentary diseases. This underscores a potential therapeutic avenue: the restoration of intestinal barrier integrity.5
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The components of the intestinal barrier typically include three sections: the mucus layer, the mucosa, and the 
underlying mucosal immune system.6 The intestinal epithelium comprises a single layer of epithelial cells interconnected 
with tight junctions (TJs), playing a crucial role in regulating interactions among intestinal contents (eg, microbiota), the 
immune system, and other components.3,7 The diverse intestinal epithelial cells, each with unique functions, maintain 
intestinal health, and any reduction in their quantity or diversity weakens the epithelium’s protective and digestive 
capacity.

The mucus barrier functions as a crucial protective layer in the GI tract, serving as the initial defense against bacterial 
invasion.8,9 Goblet cells are the principal producers of mucus.10 Beneath the epithelial layer, the intestinal immune 
system provides defensive capabilities. A multitude of immune cells resides within the GI tract, either in organized 
anatomical structures such as Peyer’s patches and mesenteric lymph nodes or dispersed throughout the intestinal 
epithelium and lamina propria.11 Unlike the immune systems of other organs, the intestinal immune system autono-
mously down-regulates immune reactions to sustain an anti-inflammatory environment in a healthy state.3 In the unique 
environment of the intestine, filled with exogenous antigens (eg food antigens), the intestinal immune system must 
defend against pathogen invasion while preventing excessive immune damage to its tissues.12 Consequently, intestinal 
immunity maintains a dynamic balance.3 Typically, effector immune cells produce inflammatory factors to prevent 
infection, while regulatory cells inhibit inflammation.13 In a healthy state, intestinal macrophages produce large amounts 
of the anti-inflammatory interleukin (IL)-10 when exposed to bacteria, and dendritic cells (DCs) produce retinoic acid 
and transforming growth factor β (TGF-β) to promote the generation of regulatory T cells (Tregs).3

To uphold the integrity of the barrier, heightened attention must be directed towards the molecular mechanisms 
governing barrier function in IBD, particularly focusing on epithelial cell junctions. Cell junctions establish connections 
between adjacent epithelial cells and the extracellular matrix (ECM), unifying the epithelium. They also regulate the 
selective permeability of the epithelium, enabling it to control paracellular transportation.6 Among various types of 
junctions, TJs play a pivotal role in determining cell junction function.6,14 Consequently, the absence of TJs significantly 
compromises defense, a common characteristic observed in IBD (Figure 4).

Furthermore, the process of intestinal mucosal healing is intricate, involving the migration and proliferation of 
intestinal epithelial cells (IECs) and the regulation of intestinal microbial peptides, such as mucins, growth factors, and 
defensins, along with the involvement of various molecules.15,16 Simultaneously, the complex mechanisms underlying 
mucosal repair offer diverse therapeutic targets for restoring intestinal integrity. However, current IBD therapies 
predominantly focus on inflammation suppression, with no disease-modifying therapies available targeting the restoration 
of epithelial barrier integrity.17 Consequently, there is promising potential for further investigation into the intestinal 
barrier to propose more effective alternative therapies for IBD.

This review aims to elucidate the components of the intestinal barrier and their respective roles, along with 
delineating the changes occurring in the barrier within the context of IBD. Subsequently, we delve into the self-repair 
process of the intestinal barrier and the involved mechanisms. In the course of this exploration, we pinpoint therapeutic 
targets unearthed in the repair program, thereby prompting the contemplation of potential strategies aimed at reinstating 
both the function and integrity of the intestinal barrier in the treatment of IBD.

Components and Mechanisms of the Intestinal Barrier
Epithelium
The intestinal epithelium, constituting the innermost layer of the intestinal barrier, forms the lining of the GI tract. 
Comprising six specialized cell lineages, enterocytes (absorptive cells), microfold cells (M cells), goblet cells, Paneth 
cells, hormone-producing enteroendocrine cells (EECs), and stem cells (Figure 1).17 The epithelium plays a crucial role 
in maintaining barrier function. Enterocytes and M cells primarily facilitate absorption, while goblet cells, Paneth cells, 
and EECs are in charged of secretory mission.18 Enterocytes, the most abundant cells in the intestinal epithelium, 
significantly expand the surface area to enhance nutrient absorption.19 Another differentiated cell type, tuft cells, 
resemble enterocytes and are primarily responsible for sensing and responding to various signals involved in immune 
responses, particularly type 2 mucosal immunity.20,21
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M cells play a pivotal role in sampling gut contents and facilitating the transportation of luminal antigens to immune 
cells located in Peyer’s patches.22 Goblet cells, crucial in producing a protective mucus layer and secreting IgA to resist 
pathogens, also serve as antigen couriers conveying signals from the intestinal lumen to the underlying immune 
system.10,23 This initiates time-specific and location-specific processes to induce adaptive immune responses.10,24 

Paneth cells contribute to the production of antimicrobial peptides (AMPs), including alpha-defensins, lysozyme, and 
secretory phospholipase A.3 Notably, the higher concentration of negatively charged phospholipids in bacterial cell 
membranes enables defensins to selectively and preferentially bind to them25. EECs synthesize and secrete different 
hormones to regulate digestive movement.26 Intestinal stem cells (ISCs), residing at the base of the crypts, give rise to all 
absorptive and secretory cells (Table 1).27,28 In the context of IBD, both the functionality and quantity of epithelial cells 

Figure 1 Illustration of the structure and functions of intestinal barrier. The intestinal barrier consists of a chemical barrier and a physical barrier. The epithelial cells form 
a physical barrier consisting of tight junction-associated proteins, including occludin, claudin; JAM: junctional adhesion molecule. These tight junction protein components 
close off the paracellular pathways and function as gates and fences. The mucus layer is a chemical barrier consisting of a dense inner layer and a lax outer layer that is 
essential for prevent invading microorganisms and the host. The skeleton that makes up the mucus layer is primarily MUC2. Immune cells are also involved in the immune 
response and host tolerance to external substances. Damage to the intestinal barrier leads to infiltration of intestinal microorganisms from the lumen into the lamina 
propria, inducing immune stress in host immune cells.

Table 1 Cell Types and Their Functions in the Composition of Intestinal Epithelium

Cell Lineage Type Main Function

Enterocytes Absorptive cells Promote absorption, expand surface area for efficient nutrient absorption

Microfold cells (M cells) Absorptive cells Play a vital role in sampling gut contents, facilitate transportation of luminal antigens
Tuft cells Absorptive cells Sense and respond to signals involved in immune responses, especially type 2 mucosal 

immunity

Goblet cells Secretory cells Produce mucus layer, secrete IgA for pathogen resistance, convey signals for immune 
responses

Paneth cells Secretory cells Produce antimicrobial peptides (AMPs) like alpha-defensins, lysozyme, and secretory 

phospholipase A
Enteroendocrine cells (EECs) Secretory cells Synthesize and secrete hormones to regulate digestive movement

Stem cells Stem cells Reside at the base of crypts, give rise to all absorptive and secretory cells

Abbreviations: M cells, Microfold cells; EECs, Enteroendocrine cells; AMPs, antimicrobial peptides;
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are compromised, resulting in a weakened protective function of the epithelium. This impairment highlights a significant 
aspect of IBD pathology.

Cell Junction
The epithelial barrier’s functionality hinges on both a contiguous layer of cells and the existence of paracellular space 
between these cells. Cell junctions play a crucial role by binding epithelial cells into a cohesive unit and regulating 
selective paracellular transportation.6 In an inflammatory state, the contiguous layer breaks down, accompanied by an 
upregulation in paracellular conductance, indicating the involvement of TJ dysfunction. Within the intestinal epithelium, 
intercellular junctions include TJs, adherens junctions (AJs), and desmosomes, collectively referred to as the apical 
junctional complex (Figure 1).29

TJs form an apical belt-like structure around IECs and are integral in maintaining the integrity of the epithelium and 
restricting material exchange.29 Destruction of TJs has been identified in IBD, leading to barrier leakage that permits the 
passage of bacteria.25 Therefore, restoring the quantity and function of TJs has become a promising therapeutic strategy 
for IBD.

TJs consist of a complex network of specialized proteins, broadly categorized into transmembrane proteins, cytosolic 
plaque (scaffolding) proteins, and regulatory proteins.6,30 Transmembrane proteins include claudin, occludin, and 
junctional adhesion molecule (JAM), with claudin being particularly crucial.31,32 Claudins form pores by connecting 
with corresponding claudins on adjacent cells, regulating the selectivity of TJs.5 For instance, studies have revealed that 
claudin-2 constructs pores with ion selectivity, and its absence increases paracellular ion conductance without 
a concomitant increase in the flux of larger molecules.33–35 Gates of these pores exist in a dynamic state of opening 
and closing, similar to transmembrane ion channels, presenting a potential target for regulating barrier function.34 

Occludins, tetraspanning proteins located at the cell-cell surface membrane, are phosphorylated by myosin light chain 
kinase (MLCK)-1, triggering their endocytosis and increasing TJ permeability.30,36 JAMs facilitate TJ assembly and 
leukocyte transmigration, and their absence increases susceptibility to inflammation.6,37 Cytosolic plaque proteins like 
ZO proteins directly interact with transmembrane TJ proteins and the actin cytoskeleton, regulating junction assembly.38

AJs comprise cadherin adhesion receptors and associated cytoplasmic proteins, such as actin filaments.39 E-cadherins 
form adhesive dimers at cell-cell boundaries, and their interaction with p120 catenin and β-catenin on the cytoplasmic 
side, followed by α-catenin binding to β-catenin, establishes the cadherin–catenin core complex.39–41 AJs connect 
adjacent cells and the actin cytoskeleton, establishing a robust cell-cell connection. In vitro studies suggest that AJs 
facilitate TJ assembly through E-cadherin and α-catenin.42,43 Furthermore, AJs are dynamic structures regulated by the 
cytoskeleton, enabling tissues remodeling in response to damage.39

Three pericellular pathways exist in TJs: pore, leak, and unrestricted pathways.44 Pore pathways, regulated by claudin 
proteins, are high-capacity, charge- and size-selective routes.45–47 Leak pathways are size-selective and regulated by 
occludin, tricellulin, ZO-1, and perijunctional actomyosin.44 In healthy gut conditions, these pathways reflect TJ 
permeability.44 However, in severe UC, particularly at sites of extensive epithelial damage, the unrestricted pathway 
allows the passage of massive ions, macromolecules, and even whole bacteria through the intestinal barrier.5 Complex 
mechanisms regulate these pathways, offering potential therapeutic targets to reduce barrier permeability. For instance, 
casein-kinase-2 can induce the phosphorylation of occludins, and inhibiting this process accelerates the assembly of the 
TJ complex while restricting passage through claudin-2 pores.48 As a result, cell junctions hold the potential to identify 
pericellular permeability-regulating mechanisms, representing future therapeutic targets for IBD.

Mucus Layer
Mucus, a crucial component of the intestinal barrier, is composed of materials originating from the epithelium, 
predominantly produced by goblet cells. Key constituents include mucin-2 (MUC2), Fcγ binding protein (FCGBP), 
calcium-activated chloride channel regulator1 (CLCA1), and others (Figure 1).10,49,50 The mucus core is primarily 
comprised of MUC2, a densely glycosylated protein that serves as a skeleton, forming a multimeric and crosslinked 
network.10,51,52 Upon secretion into the intestinal lumen, the alkaline environment and the removal of calcium ions cause 
the unfolding of MUC2, leading to its expansion and the formation of a net of stratified mucus gel.53,54 Na+/H+ 
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exchanger 3 (NHE3), a reverse transport protein expressed on the apical surface of IECs, constructs an acidic environ-
ment beneath the outer mucus layer. This acidic environment may contribute to the formation of the compact inner mucus 
layer by maintaining the tight structure of MUC2.55,56

Electron microscopy has revealed the predominantly reticular three-dimensional structure of mucus, featuring minute 
pores.57 This unique structure, along with its electrostatic properties, selectively blocks the movement of substances.10,58 

The outer mucus layer is loose, allowing bacteria to enter and colonize, and is easily cleared out. In contrast, the inner 
layer is tightly structured, preventing bacterial penetration.23,52,53 Nevertheless, the permeability of the inner layer is not 
uniform across all regions, influenced by two types of goblet cells that produce distinct mucus. Goblet cells residing in 
the intestinal crypts secrete a dense mucus effective against bacteria, whereas inter-crypt goblet cells on the colonic 
epithelial layer produce a relatively penetrable mucus.58 The distinct properties of different mucus types enable the inner 
layer to prevent bacterial invasion while facilitating substance exchange.58

Mucus is secreted in response to damage factors, such as mechanical stress, elevated levels of microbial ligands, or 
ischemia.49,59–62 The mucus layer can execute rapid self-recovery after a certain level of injury. However, when the 
extent of mucosal injury surpasses a threshold or when damage factors persist, the self-repair capacity becomes 
insufficient to compensate. This situation is comparable to mucus dysfunction observed in IBD.55,63

The mucus layer serves as a multifunctional protective barrier in the intestine, forming a physical shield that covers 
the intestinal wall and encapsulates fecal matter. This barrier prevents direct contact between harmful substances and the 
epithelium.10,64,65 Additionally, mucus provides lubrication, facilitating the smooth passage of gut content and reducing 
the risk of mechanical damage.9,10,66 With its sticky texture and multi-layered net structure, mucus can effectively trap 
pathogens and undergo constant renewal through coordinated muscular contractions, thereby expelling trapped pathogens 
from the gut.67–69

Vitally, mucus plays a crucial role in maintaining gut microbiota homeostasis.6,8 The mucus layer includes specific 
carbohydrates that serve as an energy source for certain commensal bacteria, fostering the growth of beneficial symbiotic 
bacteria and hindering the colonization of invasive pathogens.70,71 Consequently, strategies focused on restoring mucus 
and its function have the potential to alleviate IBD. This emphasizes the significance of regarding mucus as a therapeutic 
target for interventions in IBD.

The Self-Repair Mechanism of a Healthy Intestinal Epithelium
Apart from the previously mentioned protective barrier, the self-renewal capability for restoring intestinal integrity plays 
a crucial role in defending against damaging factors (Figure 1). The healthy epithelium undergoes updates every four to 7 
days.72,73 When the epithelium is damaged, adjacent epithelial cells gradually lose their columnar morphology, migrate 
toward the damaged area, and subsequently cover the wound in a process known as “epithelial restitution”.27 In the 
regeneration process, LGR5+ stem cells serve as the “origin” of the repair process. LGR5+ stem cells, a subtype of ISCs, 
express the LGR5 protein and possess high regenerative and differentiation potential.28,74–76 Primarily located at the 
crypt base of the small intestine and colon, these cells undergo programmatic activation, migrating upwards along the 
crypt-villus axis. During this process, ISCs undergo proliferation and differentiation and ultimately fill the gaps in 
epithelial damage.77 The intricate molecular mechanisms regulating this process highlight its complexity.

The repair process relies on signaling originating from the microenvironment, which is constructed by various cells, 
ECM, and more.77 Mesenchymal cells residing below the epithelium in the lamina propria secrete various factors into the 
microenvironment, playing essential roles in the repair process.3,78 For instance, FOXL1+ telocytes and GLI1-expressing 
mesenchymal cells, acting as important sources of Wnts, activate the Wnt/β-Catenin signaling pathway, promoting the 
proliferation of ISCs and transit amplifying cells.79,80 Fibroblasts produce IL-33, which directly acts on LGR5+ cells and 
promotes their differentiation towards the secretory lineage by suppressing Notch signaling.81 CD34+ Gp38+ fibroblasts 
upregulate the expression of Grem1, Rspo1, Wnt2b, and several chemokines, cytokines, and epithelial growth factors, 
participating in immune response and wound repair.82–84 Enteric glial cells (EGCs) enhance wound repair by promoting 
the spreading of IECs through pro-epidermal growth factor (EGF) secretion.85 Paneth cells, located at the base of the 
niche adjacent to ISCs, provide essential signals such as Delta-like 1/4, EGF, and Wnt to support ISC homeostasis.86,87 
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Additionally, the ECM can activate mechanical sensors, such as Yes-associated protein (YAP) and Tafazzin (TAZ), 
suppressing adult stem cell markers and reprogramming them into a primitive state.88

Moreover, studies have demonstrated that the underlying immune system regulates barrier restoration, with immune 
cells secreting cytokines with distinct protective effects.77 IL-6 can activate STAT3 and YAP to promote epithelial 
regeneration.89 Group 3 innate lymphoid cells (ILCs) secrete IL-22 in response to damage, inducing the phosphorylation 
of STAT3 in CBCs, subsequently enhancing organoid growth without activating the Wnt or Notch pathway.90,91 IL-10, 
rapidly secreted by macrophages upon intestinal injury, promotes epithelial proliferation through epithelial cAMP 
response element-binding protein (CREB) signaling and subsequent WNT1-inducible signaling protein 1 (WISP-1) 
secretion.92 Additionally, the host’s nutritional state also affects the repair process, as calorie restriction and a high-fat 
diet can induce the expansion of the ISC pool.93 In summary, given the epithelial damage in IBD, studies focused on the 
mechanisms involved in the repair process can identify therapeutic targets with the potential to facilitate epithelium 
restoration.

Intestinal Barrier Dysfunction in IBD Disease
The integrity of the intestinal barrier is significantly compromised in the context of IBD. This impairment can be 
primarily attributed to abnormalities in five key elements: epithelial cells, cell junctions, the mucus layer, the intestinal 
immune system, and commensal microbiota. Due to the complex interactions among these defenders, their dysfunctions 
can mutually exacerbate each other, potentially establishing a vicious cycle. Consequently, interrupting this cycle at an 
intermediate stage becomes crucial for controlling the progression of the disease.

Interplay of IEC Death and Immune Dysregulation in Barrier Disruption
During the active phase of IBD, an upregulation of programmed cell death within the intestine significantly compromises 
the integrity of the intestinal barrier. The premature death of stem cells has particularly serious consequences, inherently 
weakening the regenerative capacity of the epithelium.84,94 Common forms of programmed cell death include anoikis, 
apoptosis, necroptosis, and pyroptosis.84 In a healthy state, IECs undergo regular self-renewal, with cells shedding 
through apoptosis without triggering an inflammatory response.95

In individuals with IBD, there is an excessive apoptosis of IECs attributed to the synergistic effects of genetic 
susceptibility and environmental damaging factors.96 Macrophages, unfortunately, are unable to promptly clear these 
cells, resulting in secondary necrosis and pyroptosis, thereby triggering inflammation. The sustained and excessive 
release of inflammatory factors can fuel an overactive immune response, thereby contributing to the progression of 
autoimmune diseases such as IBD.97 In a healthy intestine, apoptotic IECs are engulfed by macrophages. Subsequently, 
macrophages undergo M2 polarization and metabolic switching, generating eicosanoids such as prostaglandins (PGs) and 
resolvins. These substances promote tissue repair and angiogenesis and suppress the immune system.84 Simultaneously, 
DCs sense cellular debris, transition to a tolerogenic state, and migrate to the mesenteric lymph nodes. There, regulatory 
T cells (Tregs) are activated and proliferate, suppressing effector T cell responses.84

In contrast, necroptotic or pyroptotic cell death, followed by the release of damage-associated molecular patterns 
(DAMPs), induces M1 polarization of macrophages and a pro-inflammatory transition of DCs.98 M1 macrophages 
secrete pro-inflammatory cytokines (IL-1β, IL-36, etc.), activating effector T cells in the lymphoid node and fibroblasts.99 

DCs migrate to the mesenteric lymphoid node and present antigens, activating naive T cells (Tn) while inhibiting the 
activation of Tregs.84

The therapeutic potential of macrophage state switching in IBD has gained significant attentions recently. A recent 
study has found that turmeric-derived nanovesicles (TNVs) alleviate colitis-related symptoms by restoring the intestinal 
epithelial barrier. TNVs can suppress the expression of CD16/32 and increase the expression of CD206 in the colonic 
lamina propria, promoting the conversion of M1 to M2 macrophages.100 Additionally, CS-IGF-1C hydrogel has been 
found to alleviates inflammatory responses through PGE2-mediated polarization of M2 macrophages.101 Moreover, it has 
found that the HA/CS/Dex nanoparticles (HCD NPs) could be internalized by macrophages, thereby regulating the 
polarization from M1 to M2 macrophages and exerting anti-inflammatory effects.102 This mechanism provides a safe, 
feasible, and effective approach for treating ulcerative colitis.100
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In the context of IBD, the progression of inflammation encompasses several crucial steps. The initial stage involves 
the activation of the inflammatory cell death pathway by environmental signals, culminating in pyroptosis or necrosis of 
IECs and the subsequent release of DAMPs. Pattern recognition receptors (PRRs) on both epithelial and immune cells 
identify specific stimuli, such as signals of tissue damage or infection.103–106 Once recognized, these receptors form 
inflammasomes with adaptor proteins and pro-caspases, activating caspases.107 Activated caspases cleave and translocate 
gasdermin D (GSDMD) to the cell membrane, creating pores that lead to the leakage of DAMPs into neighboring 
tissues.104,108 Simultaneously, inflammasomes mature pro-inflammatory cytokines (such as pro-IL-1β and pro-IL-18) and 
release them into surrounding tissues through cell membrane pores.95,99,109

As cell death advances, GSDMD molecules undergo cleavage, subsequently forming pores. This process leads to 
membrane rupture and the release of cellular contents into the surrounding tissue.110 DAMPs represent a class of 
molecular motifs typically released as endogenous molecules when cells are damaged or dead.111 Recognized by the 
immune system, these molecules can induce inflammatory responses.111 Under normal circumstances, these molecules 
are selectively expressed and sequestered within the nucleus, mitochondria, and cytoplasm, avoiding direct interaction 
with the immune system.105,112 Examples include double-stranded DNA (usually confined to the cell nucleus), ATP 
(commonly found in the cytoplasm), and various molecules existing at high concentrations exclusively within the 
mitochondria.105 In addition to releasing molecules typically sequestered inside cells, DAMPs may also encompass 
modified components of the ECM, such as hyaluronic acid (HA).105

The second step involves the activation of immune cells and the release of pro-inflammatory factors. DAMPs are 
recognized by PRRs on sentinel cells, including macrophages, DCs, and ILCs. This recognition prompts these 
sentinel cells to produce pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, IL-1, histamine, 
nitric oxide (NO), reactive oxygen species (ROS), PGs, and leukotrienes.105,106,113 Ultimately, the uncontrolled 
release of pro-inflammatory cytokines triggers adaptive immune dysregulation, resulting in dysfunction of the 
immune system and loss of tolerance to normal tissues and organs.96 In this scenario, autoantibodies and self- 
reactive T cells may erroneously attack the intestinal tissues, contributing to the progression of IBD 
inflammation.12,97,114–116

As research progresses, numerous therapeutic targets have been identified in this process. In patients with IBD, 
particularly those with UC, an increased expression of GSDMD has been observed in the intestinal mucosa.99 This 
heightened expression can stimulate IECs to release IL-1β, thereby enhancing the inflammatory response. Experimental 
evidence also indicates that mice with GSDMD defects exhibit reduced inflammation in response to dextran sulfate 
sodium (DSS) induction.99

Studies have found that SETDB, a histone methyltransferase, safeguards genome stability. In patients with IBD, its 
decreased expression leads to genome instability of ISCs and induces Z-DNA binding protein 1 (ZBP1)-mediated 
necroptosis.117,118 Therefore, interfering with the sensing of endogenous retrovirus (ERV) RNA by ZBP1 may hold 
potential therapeutic benefits for patients with IBD.117 Additionally, upregulated TNF-α has been found to promote 
necroptosis of ISCs, especially active LGR5+ ISCs sensitive to acute injury. Prostaglandin E2 (PGE2) has a potential 
targeted therapeutic effect, as it can facilitate the expansion of LGR5+ ISCs via EP2-mediated signaling.119 

Furthermore, it has been discovered that XBP1 deletion triggers endoplasmic reticulum (ER) stress, heightening the 
sensitivity of IECs to cell death and subsequently contributing to the spontaneous apoptosis of differentiated Paneth 
and goblet cells.120

Mitochondrial metabolism dysbiosis has also been identified as relevant to IBD. Prohibitin 1 (PHB1), a major 
component of the inner mitochondrial membrane, is absent in ISCs, leading to spontaneous ileal inflammation, which can 
be reversed with a mitochondrial-targeted antioxidant.121 Studies have also discovered that deletion of heat shock protein 
60 (Hsp60) in ISCs induces mitochondrial dysfunction, resulting in reduced LGR5+ expression and then inhibiting the 
differentiation of LGR5+ cells into Paneth cells.122 Dichloroacetate (DCA) regulates mitochondrial disorders by 
diminishing glycolysis and improving mitochondrial respiration, presenting the potential to prevent IBD recurrence.122 

Thus, therapies aimed at enhancing epithelial renewal ability or inhibiting cell death provide therapeutic modalities 
for IBD.
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Increased Barrier Permeability
In the context of IBD, an increase in barrier permeability and abnormalities in cell junctions have been observed.25,123 

These manifestations in IBD are associated with the upregulation of inflammatory factors, such as TNF-α, IFN-γ, and 
interleukin.124,125 TNF-α, for instance, facilitates the phosphorylation of the myosin light chain (MLC), leading to 
a decrease in occludins, and an increase in conductance through the leak pathway.36,126–130 Simultaneously, the Th2 
cytokine IL-13 induces the expression of claudin-2, resulting in increased pore pathway flux.6,94,128 IFN and TNF 
synergistically affect TJs by upregulating each other’s receptors.131,132 High doses of TNF and IFN can reduce zonula 
occludens (ZO), further compromising the protective function of TJs.133,134 In CD, there is a predominant increase in IFN 
and TNF levels, while in UC, the primary elevation is observed in IL-13 and TNF, leading to a significant increase in 
claudin-2 (Figure 2).94,128,135

Active CD patients exhibit distinctly impaired intestinal barrier function. Despite the presence of localized 
epithelial lesions, freeze-fracture electron microscopy reveals that discontinuous TJ strands contribute to the dysfunc-
tion of the intestinal barrier.94 In the active state of IBD, there is a significant decline in the expression of claudin 5 and 
claudin 8, which inhibits cation permeability, whereas there is a notable upregulation of claudin 2, which forms 
pores.94

During the remission phase of CD, TJ proteins are almost restored, and cell necrosis is basically under control, 
leading to normalized barrier function.94 Unexpectedly, some research has indicated that certain patients still exhibit 
distinct increased intestinal permeability.136,137 Further studies have subsequently demonstrated that the upregulated 
permeability is caused by increased transcellular transport, primarily mediated by immune-epithelial interactions, rather 
than ascending pericellular conductance.138 For example, CD23, a low-affinity receptor for IgE, is overexpressed at the 
apical surface of intestinal cells in CD, leading to increased transcellular transport of IgE-allergen immune complexes 
from the intestinal lumen to the lamina propria, subsequently triggering mast cell degranulation and allergic inflammatory 
responses in the subepithelial immune system.139 IIn general, in the inflamed region, the transportations through both 
pericellular and transcellular pathways increase, resulting in excessive stimulation to the local intestinal immune system, 
which, in turn, promotes inflammation.25,139 This process ultimately forms a vicious spiral, inducing the deterioration of 
barrier function.

Figure 2 The molecule diverts a key signaling molecule away from the intercellular junctions that regulate the intestinal barrier, preventing the immune system from 
disrupting the barrier.
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Mucus Layer Alterations
The protective capability of the mucus layer is weakened in patients with IBD, contributing to increased bacterial 
penetrability.49,140,141 Tissue biopsies of UC patients reveal that the mucus layer becomes thinner and even absent in 
certain areas, and this change is independent of local inflammation.49,142 However, this phenomenon is not absolute. In 
IL-10 knockout mice, an unexpected increase in mucus layer thickness has been observed, possibly as a compensatory 
response to the weakened function of the mucus barrier.141 However, the quality of the mucus secreted in compensation 
is often inferior.52 The mechanisms underlying the thinner and poor-quality mucus layer are complex.

The primary underlying factor is the malfunction of mucus producers in IBD. Examination of tissue biopsies from 
patients experiencing active IBD reveals a distinct reduction in mature goblet cells, likely stemming from a combination 
of factors such as excessive mucus release, diminished mucus storage, altered goblet cell differentiation, and increased 
apoptosis.49,143 Substantial support for this hypothesis is provided by the noticeable decline in sentinel cells.49,53 In the 
case of patients with remission in UC, biopsies indicate a decrease in mitochondrial β-oxidation, potentially disrupting 
goblet cell differentiation.144 Although the overall number of goblet cells remains relatively constant during the 
remission period, specific subtypes experience a reduction.141 For instance, inter-crypt goblet cells are prematurely 
shed during the remission phase, resulting in the absence of inter-crypt mucus. This suggests a potential link between 
defective inter-crypt mucus and the initiation of IBD.10,58

Moreover, the antibacterial protein WFDC2, secreted by goblet cells, is dysregulated in IBD. Given that WFDC2 
inhibits the activity of serine and cysteine proteases, preventing the premature conversion of the inner mucus layer to the 
outer layer, its deficiency can lead to abnormal mucus layer formation, facilitating bacterial invasion.145 Additionally, 
electron microscopy has revealed the accumulation of incompletely synthesized or misfolded MUC2 mucin in the ER, 
indicating heightened ER stress in goblet cells.146 Recent studies suggest that elevated ER stress has the potential to 
inhibit the production of MUC2, thereby triggering the progression of IBD in the early stages.53,147–149

Mucus barrier dysfunction stems from structural irregularities and disrupted formation of the mucus layer. The 
aberrant mucus demonstrates reduced glycosylation, shortened oligosaccharide side chains, diminished sulfation, and 
a decrease in core mucus proteins.49,150,151 Additionally, early investigations have pinpointed the downregulation of the 
chloride anion exchanger SLC26A3 and the malfunction of sodium-hydrogen exchangers in IBD, both pivotal in mucus 
layer formation.56,152–154

Moreover, emerging research highlights the impact of dietary habits and the dysbiosis of the intestinal microbiota in 
the IBD process. Dietary fibers serve as the primary energy source for the microbiota in the lower GI tract.155 Certain 
microbial species, such as Bacteroides thetaiotaomicron, Bifidobacterium bifidum, Ruminococcus gnavus, Ruminococcus 
torques, and Akkermansia muciniphila, can utilize glycans for mucus barrier formation.53,156,157 Chronic and intermittent 
dietary fiber deficiency amplifies the survival competitiveness of bacteria dependent on mucins as a food source. As these 
bacteria proliferate, mucins are continually depleted, leading to a gradual thinning of the mucus layer.53 Consequently, 
the diminished mucus layer becomes more susceptible, facilitating bacterial penetration.

Dysbiosis in the GI Microbiomes
A noticeable alteration in the density and composition of intestinal bacteria has been identified, contributing to 
microbiota dysbiosis in individuals with IBD.53 In healthy individuals, the predominant bacterial phyla include 
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria.158 The microbiota in the lower GI tract primarily utilize 
dietary fiber as their energy source.155 Fibrolytic bacteria break down polysaccharides into smaller carbohydrates, 
subsequently fermenting them into short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate.159 

SCFAs exhibit immunomodulatory properties and stimulate the proliferation of Tregs in the intestine.160–164

Particularly noteworthy is butyrate’s ability to induce the expression of the actin-binding protein synaptopodin 
(SYNPO), promoting the repair of intestinal epithelium. Butyrate also serves as the primary energy source for 
colonocyte.39,163–165 Research has demonstrated a reduction in SCFA-producing bacteria in the context of IBD, leading 
to a gradual loss of the protective effects provided by SCFAs.25,162,166
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Although these dysfunctions have been identified in the IBD process, the causality linking the onset of IBD to these 
dysfunctions, along with the intricate interplay among different dysfunctions, still requires clarification. Further research 
is essential to illuminate the pathogenesis of IBD, pinpoint suitable therapeutic targets, and subsequently devise effective 
treatment approaches aimed at restoring barrier integrity.

Current Therapeutic Strategies That Improve Barrier Dysfunction
Current therapies for IBD can be broadly categorized into two groups: untargeted treatments, including amino salicylates, 
glucocorticoids, and immunosuppression, and targeted biologic therapies, such as anti-TNF, anti-IL-12/IL-23, anti-α4β7 
integrin, IL-10, and IL-22.15,167–170 Although biological therapies demonstrate efficacy for a substantial number of 
patients, around 30% do not respond to initial treatment, and up to 50% experience a loss of response over time.171 

Notably, certain medications, especially steroids and immunomodulators, exert broad immunosuppressive effects, 
elevating the risk of infectious and neoplastic events.15,171 Consequently, there is a growing interest in therapies focused 
on restoring intestinal barrier integrity (Figure 3).

Stem Cells Transplantation
Promoting the proliferation and differentiation of stem cells emerges as a promising therapeutic strategy, with three 
noteworthy methods outlined below. Firstly, the engraftment of ISCs has been explored.172 Early research indicates that 
the therapeutic efficacy of enema-based transplantation of ISCs is notably limited and becomes apparent primarily in the 
presence of persistent damaging factors.173 However, transplantation of mesenchymal stem cells (MSCs) and hemato-
poietic stem cells (HSCs) has demonstrated effectiveness.174,175 The second approach involves the culture and 

Figure 3 Possible therapeutic strategies to improve the intestinal barrier function.
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transplantation of organoids.176 Organoids, possessing a structure and cellular composition akin to the intestinal 
epithelium in the body, prove beneficial.87 This property facilitates the engraftment of intestinal organoids at damaged 
mucosal sites, thereby accelerating the healing of inflamed mucosa.173,177 Additionally, through the in vitro expansion 
and transplantation of autologous ISCs, the risk of rejection can be effectively minimized.168,174 The third strategy aims 
to enhance epithelial expansion. EGF and R-spondin-1 play crucial roles in epithelial growth.6 Activation of the EGF 
receptor has a protective effect against TNF-induced apoptosis. Recent studies have indicated that R-spondin-1 can 
mitigate inflammation in colitis models characterized by epithelial damage.178,179

Inhibition of Intestinal Epithelium Permeability
Lowering intestinal epithelium permeability holds the potential for controlling the progression of inflammation. As 
mentioned earlier, the phosphorylation of MLC can induce an increase in pericellular permeability regulated by TJs.36 

A novel oligopeptide, PIK, has been reported to inhibit MLCK, resulting in the reversible increase of transepithelial 
resistance and down-regulation of pericellular permeability.127 It is noteworthy that various subtypes of MLCK play 
unique and crucial roles. For instance, the smooth muscle isoform of MLCK is pivotal in intestinal contraction, airway 
constriction, and blood pressure regulation.180 However, all MLCK subtypes share the same catalytic domain. Therefore, 
unless drugs specifically targeting long MLCK are developed, the clinical application of MLCK inhibitors may not be 
feasible.6,126

Furthermore, PIK demonstrates significant efficacy in alleviating mild intestinal permeability defects but falls short in 
reversing severe damage induced by higher doses of IFN-γ and TNF-α.127 Additionally, occludin and claudin-2 present 

Figure 4 (a) Structural and functional modulation of the intestinal epithelial barrier under IBD will provide new ideas for the development of therapies for such chronic 
diseases. (b) The cell junctions of intestinal epithelium are disrupted in inflammatory bowel disease, providing potential targets for treatment.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S470520                                                                                                                                                                                                                       

DovePress                                                                                                                       
5399

Dovepress                                                                                                                                                            Kong et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


potentially druggable targets.6 For example, intestinal alkaline phosphatase (IAP) can down-regulate the expression of 
vascular endothelial growth factor and claudin-2, thereby reducing intestinal permeability.25

Mucus Layer Restoration
The restoration of the mucus layer holds the potential to enhance intestinal barrier function. In the remission phase of 
IBD, increasing dietary fiber intake may reduce microbial consumption of mucins, facilitating the restoration of the 
mucus layer and thereby extending the remission period.53 However, during the active phase of IBD, excessive secretion 
of MUC2 leads to increased ER stress in goblet cells.53 In such instances, the application of exogenous mucins can be 
considered to supplement the deficient mucus barrier function, alleviate ER stress, and promote the recovery of goblet 
cells.53

Gut Microbiota Homeostasis
Reestablishing microbiota homeostasis stands out as a promising alternative for IBD therapy, given the crucial role of the 
gut microbiota in maintaining the integrity of the intestinal barrier.7,181 SCFAs, protective factors produced by commen-
sal microbiota, decrease during the course of IBD. Studies have indicated that SCFAs can stimulate the differentiation 
and proliferation of epithelial cells in vivo.182,183 Therefore, supplementing exogenous SCFAs holds the potential to 
promote epithelial repair in the treatment of IBD.182

Additionally, fecal microbiota transplantation (FMT) represents a straightforward yet effective method for modulating 
gut microbiota.53 Research has demonstrated that FMT can rapidly reduce mucosal permeability, improve intestinal 
barrier integrity, and decrease colonic inflammation. Consequently, FMT can be employed to inhibit the progression of 
IBD and prevent the recurrence of UC.184 However, the optimal treatment frequency of FMT and the identification of 
beneficial bacterial strains require further investigation in future studies.

Molecular Target
Regulating the molecular mechanisms within the cell emerges as a valuable therapeutic strategy worthy of attention. In 
chronic inflammation associated with IBD, there is a distinct decrease in BRG1 expression. BRG1 has been proposed to 
function as an autophagy checkpoint linked to colitis, playing a role in maintaining the homeostasis of IECs. However, 
the deficiency of BRG1 results in impaired autophagy, leading to the production of excessive ROS and compromising 
barrier integrity.185 Intriguingly, the antioxidant N-acetyl-L-cysteine (NAC) has been shown to reverse this process 
partially.185

Furthermore, mitochondria constitute another critical therapeutic target in IBD treatment.186 In IBD patients, there is 
a decreased expression of PHB1, an abundant inner mitochondrial membrane protein that stabilizes mitochondrial DNA- 
encoded proteins, regulates mitochondrial fusion, and maintains optimal electron transport chain activity.187,188 

Consequently, PHB1 deficiency leads to loss of viability in the ISC niche and Paneth cell defects.189 Mitochondria- 
targeted antioxidants, such as Mito-Tempo or MitoQ, can alleviate this damage.190,191 During the active phase of UC, the 
release of mitochondrial DNA into cells serves as a trigger, prompting neutrophils in the peripheral circulation to secrete 
IL-8 and thereby exacerbating inflammation. Consequently, strategies to prevent the release of mitochondrial DNA 
present a promising therapeutic avenue for IBD.186 Treatments that specifically target mitochondria are particularly 
significant for Paneth cells, where mitochondrial dysfunction precipitates defects in these cells.186 Given that Paneth cell 
defects arise before the onset of severe inflammation, they serve as predictive markers for early relapse and molecular 
indicators of incipient inflammation.186

Others
In addition to the previously mentioned treatment strategies, several alternative therapeutic approaches show promise for 
restoring intestinal epithelial integrity. Early studies suggest that mannose treatment improves lysosomal integrity, 
reduces the release of cathepsin B, and prevents mitochondrial dysfunction, thereby inhibiting MLCK-induced disruption 
in colonic inflammation.192 Amino acids such as arginine, histidine, and glutamine can promote enterocyte proliferation 
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and reduce mucosal permeability by regulating TJ proteins.193,194 Matrix metalloproteinases play a role in ECM 
remodeling, promoting cell migration, and driving the intestinal epithelial regeneration process.195

Moreover, the regulation of actin and microtubule cytoskeleton contraction holds the potential for promoting 
epithelial repair. For example, fidgetin-like 2 (FL2), a microtubule-severing enzyme, promotes successful wound repair 
in mice by regulating microtubule contraction and organizing the microtubule cytoskeleton.196 Various actin-remodeling 
proteins have also been identified as potential new targets for improving wound healing.165 Additionally, sacral nerve 
stimulation (SNS) shows promise as a specific therapeutic method by enhancing mucosal barrier function, with case 
reports supporting its use in treating IBD.197

The development of nanosystem targeting technology represents a significant advancement over traditional therapies, 
offering new perspectives for IBD treatment. The potential of nanozymes in treating IBD has garnered increasing 
attention. Recent studies have demonstrated that oxidized cerium nanozyme (D-CeO2), CeO2@PDA-PEG, and dopa-
mine nanoparticles coupled with mCRAMP, can effectively clear ROS and alleviate colonic inflammation.198–201 

Additionally, nano-medicines encapsulating antioxidant enzymes, such as superoxide dismutase (SOD) and catalase 
(CAT), have shown promise. Through the co-delivery of CaO2 (a CAT substrate) and dopamine, this nanosystem 
facilitates CAT-catalyzed oxygen generation and in-situ polymerization of dopamine to form a thin and integrated 
polydopamine (PDA) coating. Due to the high adhesive properties of PDA, it can cover the intestinal barrier, thereby 
limiting intestinal leakage and exhibiting a favorable anti-inflammatory effect.202 These nanoformulations exhibit high 
biocompatibility and demonstrate inflammatory targeting properties, anti-inflammatory effects, and positive modulation 
of gut microbiota, offering novel strategies for intervening in and treating colitis.198–201

In addition, the colon-targeted quercetin delivery system, COS-CaP-QT, targets the colon via pH-dependent release, 
regulating Th2 cells and ILC3s proliferation through the Notch pathway and reshaping the inflammatory 
microenvironment.203 HA-modified poly lactic-co-glycolic acid nanoparticles exert potent therapeutic effects in UC by 
modulating intestinal IEC/stem cell regeneration, angiogenesis, and inflammation improvement, leading to transcriptional 
reprogramming of immune response genes in colonic tissues.204 Ginger polysaccharides alleviate intestinal inflammation 
by inhibiting pro-inflammatory cytokine levels to regulate intestinal inflammation, up-regulating occludin-1 and ZO-1, 
and modulating gut microbiota.205 Nanocrystalline cellulose effectively treats UC by regulating the MAPK pathway of 
MUC2 and the relative abundance of Akkermansia and Odoribacter, without causing bodily harm as mucin substitutes.206 

LBL-CO@MPDA specifically accumulates onto positively charged inflamed colon lesions through electrostatic interac-
tions. CO@MPDA improves inflammatory conditions via MPDA-mediated ROS scavenging and CO-mediated immu-
nomodulation. CO delivery activates heme oxygenase-1, leading to macrophage M2 polarization via the Notch/Hes1/ 
Stat3 signaling pathway, while suppressing inflammation by downregulating the p38 MAPK and NF-κB (p50/p65) 
signaling pathways.207

HA holds potential in the treatment of IBD. Research indicates that HA enhances intestinal barrier integrity by 
increasing epithelial cell adhesion proteins and inhibiting the transcription of inflammatory factors, thereby reducing 
intestinal permeability.208 Specifically, HA enema plays a crucial role in suppressing intestinal inflammation, possibly by 
modulating cell growth and cytoskeletal rearrangement via epithelial cell adhesion signaling (eg, E-cadherin). Additionally, 
HA enema activates the LXR/RXR pathway, further inhibiting the NF-kB pathway of mucosal inflammation.208 However, 
limitations exist in its clinical application, including the lack of specific colitis models and testing in chronic or large animal 
models.208 Future investigations should focus on exploring HA’s mechanisms in intestinal inflammation and considering its 
combination with other therapeutic drugs for more effective treatment strategies.208

Dietary interventions also play a significant role in the treatment of IBD. Dietary therapy can alleviate IBD through 
the following four key steps: managing nutritional needs, influencing disease activity, controlling disease complications, 
and preventing disease in offspring.209 The Crohn’s Disease Exclusion Diet aims to limit harmful dietary components for 
gut microbiota, though concerns exist about potential long-term negative nutritional and psychosocial effects.209–211 In 
contrast, the Specific Carbohydrate Diet reduces inflammation by avoiding specific carbohydrates but may lead to 
nutritional deficiencies, particularly in calcium intake.212 The Paleo Auto-Immune Protocol eliminates potentially 
inflammatory foods, yet its safety is questioned due to lacking nutritional support and high meat consumption.209,213 

On the other hand, the Plant-based diet emphasizes increased prebiotic intake for beneficial gut bacteria and is relatively 
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safer, reducing the risk of nutritional inadequacies.209,214 The Mediterranean diet, with its anti-inflammatory properties 
from plant-based foods, aligns with healthy eating guidelines and is generally safer.212

While other approaches like CD-TREAT, low-sulfur diet, low-emulsifier or carrageenan diets, low-fat diet, low-meat 
diet, and Novel UC exclusion diet offer unique features, uncertainties remain regarding their safety and nutritional 
support.209,215–219 Therefore, selecting an appropriate dietary therapy should consider its characteristics, safety, and 
impact on nutritional intake to achieve the best treatment outcomes.

Finally, recent scientific studies have reported several alternative treatments for IBD, including ZINC40099027 
(ZN27), phosphatidylcholine (LT-02), the PDE4 inhibitors Apremilast, Mongersen GED0301, STNM01, Alicaforsen, 
Momordica charantia (MCh), and others.220–223 While these approaches collectively propose numerous promising 
therapeutic strategies for IBD treatment, as of now, specific targeted drugs have not yet been discovered (Table 2).

Table 2 Methods and Their Specific Principles for Restoring Intestinal Barrier

Treatment Method Treatment Approach Key Aspects and Effects

Stem Cells 
Transplantation

Engraftment of ISC Limited therapeutic effect when damaging factors exist.

Transplantation of MSCs and HSCs Proven effectiveness.

Culture and transplantation of organoids Accelerates healing of inflamed mucosa.
Healing cytokines EGF and R-spondin-1 promote self-repair and protect against TNF- 

induced apoptosis.

Inhibition of intestinal 
epithelium 
permeability

Inhibition with PIK PIK inhibits MLC kinase, increasing transepithelial resistance and down- 
regulating pericellular permeability.

Limitation: Unique roles of MLCK subtypes, requiring specific drug 

targeting.
Targeting occludin and claudin-2 IAP reduces intestinal permeability by down-regulating expression of 

vascular endothelial growth factor and claudin-2.

Mucus layer 
restoration

Dietary fiber intake during remission Reduces microbial consumption of mucins, promoting mucus layer 
restoration.

Exogenous mucins during active phase Supplements deficient mucus barrier function, alleviates ER stress, and 

promotes recovery of goblet cells.
Gut microbiota 
homeostasis

Supplementing SCFAs SCFAs stimulate differentiation and proliferation of epithelial cells.

Fecal microbiota transplantation (FMT) Effectively reduces mucosal permeability, improves intestinal barrier 

integrity, and reduces colonic inflammation.
Molecular target 
regulation

Increasing BRG1 expression BRG1 serves as an autophagy checkpoint associated with colitis. 

Antioxidant NAC partially reverses impaired autophagy.

Targeting mitochondria Mitochondria-targeted antioxidants (Mito-Tempo, MitoQ) alleviate 
damage caused by PHB1 deficiency. - Preventing release of mitochondrial 

DNA is a promising approach.

Other therapeutic 
approaches

Mannose treatment Improves lysosomal integrity, reduces release of cathepsin B, and inhibits 
MLCK-induced disruption.

Amino acids (arginine, histidine, 

glutamine)

Promote enterocyte proliferation, reduce mucosal permeability by 

regulating TJ proteins.
Matrix metalloproteinases Regulate extracellular matrix remodeling, promote cell migration, and 

drive intestinal epithelial regeneration.

Regulation of actin and microtubule FL2 promotes successful wound repair by regulating microtubule 
contraction and organizing the microtubule cytoskeleton.

Sacral nerve stimulation (SNS) Enhances mucosal barrier function. - Case reports indicate potential use 

in treating IBD.
General note Various alternative treatments ZINC40099027 (ZN27), phosphatidylcholine (LT-02), PDE4 inhibitor 

Apremilast, Mongersen GED0301, STNM01, Alicaforsen, Momordica 

charantia (MCh), etc.

Abbreviations: ISC, intestinal stem cells; MSCs, mesenchymal stem cells; HSCs, hematopoietic stem cells; PIK, membrane permeant inhibitor of MLC kinase; SCFAs, short- 
chain fatty acids; FMT, Fecal microbiota transplantation; SNS, Sacral nerve stimulation; EGF, epidermal growth factor; MLCK, myosin light chain kinase; IAP, intestinal alkaline 
phosphatase; BRG1, Brahma-related gene1; NAC, N-acetyl-L-cysteine; PHB1, Prohibitin 1; TJ, tight junction; FL2, fidgetin-like 2; IBD, inflammatory bowel disease; ZN27, 
ZINC40099027; LT-02, phosphatidylcholine; PDE, Phosphodiesterase-4; MCh, Momordica charantia.
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Conclusion and Perspectives
This review initiates by scrutinizing the components and mechanisms of the intestinal barrier, covering the epithelium, 
cell junctions, mucus layer, and the self-repair capacity of the intestine. Next, we explore the vicious cycle created by 
dysfunction of these defenders in IBD. Finally, we provide an overview of therapeutic strategies and targets for restoring 
intestinal barrier integrity (Table 3. Comparison of Different Therapies).

Previous studies have highlighted the negative side effects of non-targeted therapies, particularly immunosuppressive 
agents. However, technological advancements and a deeper understanding of IBD inflammation and intestinal self-repair 
have revealed new therapeutic targets for restoring epithelial integrity. Recent research has identified targets in the 
crosstalk between IEC death and the immune response, including ISC proliferation and differentiation, stem cell 
transplantation, and organoid culture. While growth factors are used for short bowel syndrome, their application in 
IBD remains unexplored.15 Restoring cell junction and mucus layer function, regulating the immune system, and 

Table 3 Comparision of Different Therapies

Therapy Strengths Weaknesses

Stem Cell Transplantation Promotes proliferation and 

differentiation of ISCs 
Effective in some clinical trials 

Potential for autologous transplantation

Severe adverse events 

Risk of malignant transformation 
Requires further research on immunomodulatory 

properties 

Risk of cancer
Organoid Culture Mimics intestinal epithelium structure 

Can be expanded in vitro 

Potential for gene editing

Limited by severe epithelial damage 

Challenges in identifying optimal clinical outcomes 

Retains epigenetic features
Growth Factors (eg, EGF, R-spondin-1) Promotes epithelial growth 

Mitigates inflammation in colitis models

Risk of cancer 

Not yet explored for IBD in clinical applications

Molecular Targets (eg, MLCK 
inhibitors, BRG1)

Potential to reduce intestinal 
permeability 

Antioxidants can mitigate damage

No specific MLCK inhibitors available 
Partial efficacy in severe cases

Microbial Metabolites (eg, tryptophan) Enhances gut barrier integrity 
Promising in reducing intestinal 

permeability

Variation in individual microbiota 
Requires further study on human concentrations and 

mechanisms

Polysaccharide Nanoparticles Navigates mucus layer 
Controlled drug release 

Enhances therapeutic efficacy

Complex composition 
Challenges in simulating IBD conditions 

Issues with encapsulation efficiency

AI and Big Data Analytics Identifies complex disease patterns 
Enhances precision of drug development 

Predicts treatment outcomes

Requires extensive dat 
Dependent on algorithm accuracy

Gut Microbiota Homeostasis (eg, FMT, 
SCFAs)

Rapidly reduces mucosal permeability 
Improves barrier integrity 

Decreases inflammation

Requires further investigation for optimal treatment 
frequency 

Need to identify beneficial bacterial strains

Mucus Layer Restoration Enhances barrier function 
Reduces microbial consumption of 

mucins

Exogenous mucins needed during active IBD 
ER stress in goblet cells

Dietary Interventions Influences disease activity 
Manages nutritional needs 

Can prevent disease complications 

Prevent disease in offspring

Need for careful selection based on individual 
requirements

Nanozymes High biocompatibility 

Targets inflammation 

Modulates gut microbiota

Challenges in precise targeting 

Requires further research on long-term effects

Abbreviations: EGF, epidermal growth factor; BRG1, Brahma-related gene1; FMT, fecal microbiota transplantation; SCFAs, short-chain fatty acids; ISC, intestinal stem cells; 
IBD, inflammatory bowel disease; MLCK, myosin light chain kinase; ER, endoplasmic reticulum.
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rebuilding the intestinal microbiota are also promising approaches. Treatments targeting molecular mechanisms, such as 
blocking MLCK, show potential for IBD therapy.

While restoring the barrier integrity is an ideal option for IBD, its clinical application faces unresolved issues. 
Hematopoietic stem cell transplantation (HSCT) has shown certain efficacy in treating IBD in clinical trials. However, 
the occurrence of frequent severe adverse events has sparked a controversial debate on whether HSCT can be considered 
an alternative treatment for IBD.224 Screening for gene mutations associated with colorectal cancer is deemed necessary 
during the isolation of ISCs in IBD therapy due to an increased risk of post-transplantation malignant transformation.174 

Injection of embryonic stem cell-derived MSCs derived from fetal sources can alleviate intestinal inflammation by 
increasing IGF-1 levels, upregulating IGF1R-PI3K-AKT expression, promoting cell proliferation, and reducing 
apoptosis.225 However, the therapeutic mechanism requires further clarification, particularly regarding its immunomo-
dulatory properties. Additionally, MSCs derived from embryonic stem cells may face challenges in large-scale cultivation 
and production.225

Stem cells hold great promise in the treatment of IBD, particularly through the study of the intricate and complex 
interactions between stem cells and immune cells.174 Past research has shown that T cells and ILCs significantly impact 
the fate and function of stem cells. Additionally, cytokines can directly promote or restrict the proliferation, differentia-
tion, and apoptosis of stem cells, making them crucial mediators in maintaining or disrupting the intestinal epithelial 
barrier.85,174 However, the interaction between stem cells and immune cells is highly complex, requiring further in-depth 
research.174 Considering the connections between stem cells and immune cells, the integration of biologic agents and 
stem cell transplantation may revolutionize the future treatment of IBD patients.174

Gene editing holds the potential to correct genetic defects in organoids, contributing to the high sensitivity of IBD.226 

However, uncertainties persist regarding the precise identification of these defects and whether edited organoids can 
withstand future IBD-related damage.168,226 Evidence suggests that, despite significant plasticity, transplanted tissues 
may retain epigenetic features of their original tissue source.227 In vitro culture protocols for ISCs also require further 
refinement to maximize ISC yield.228 In the clinical realm, optimal indicators for evaluating the clinical outcomes of 
organoid transplantation remain uncertain, and it’s undetermined which types of IBD patients would derive the greatest 
benefits from these therapies.174 Additional clinical data collection is imperative.174 Notably, in some patients, the 
severity of the original damage to the epithelium may hinder the establishment of robust organoid cultures, necessitating 
alternative treatment approaches.168 Nonetheless, other therapeutic strategies also confront challenges preventing their 
clinical application. For instance, EGF and R-spondin-1 can reduce TNF-induced cell apoptosis by activating the Wnt 
pathway, though this may also contribute to cancer.6 Moreover, since a specific drug targeting MLCK has not yet 
emerged, MLCK inhibitors also cannot be used in clinical applications.

Recent research has highlighted the current challenges in repairing the intestinal barrier through various mechanisms 
and outlined promising future directions for development. Microbial tryptophan metabolites show great promise in 
treating IBD, though they come with challenges.229 Studies indicate that metabolites like IEt, IPyA, and I3A enhance gut 
barrier integrity by acting through the aryl hydrocarbon receptor (AhR), inhibiting actin-regulating proteins MyoIIA and 
ezrin, thereby reducing intestinal permeability.229 However, the exact concentrations and mechanisms of these metabo-
lites in humans need further study. The variation in gut microbiota among individuals also affects metabolite 
production.229 While AhR’s role is crucial, the effects on different immune cells and pathways require more research. 
Future research should focus on understanding these metabolites’ mechanisms, personalizing treatments based on 
individual microbiota differences, and developing accurate human disease models, such as patient-derived organoids, 
to better study IBD.229

Polysaccharide nanoparticulate drug delivery systems show promise in treating IBD, overcoming the adverse 
effects associated with traditional targeted therapies.207 These nanoparticles can navigate through the mucus layer, 
adhere to inflamed areas as a protective layer, and release drugs in a controlled manner, enhancing therapeutic 
efficacy.230 However, several challenges persist in polysaccharide-based drug delivery. Polysaccharides are complex, 
varying in composition due to extraction conditions. Improved in vitro methods are needed to accurately simulate IBD 
conditions.230 Animal IBD models inadequately represent human IBD, necessitating more precise alternatives.230 

Additionally, issues such as low encapsulation efficiency and premature drug release need addressing through 
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strategies like smart-responsive drug-polysaccharide conjugates.230 Future research should focus on refining produc-
tion methods, exploring new drug targets, and developing smart-responsive systems for targeted drug delivery in IBD 
treatment.230

The advancement of artificial intelligence (AI) offers a new perspective for developing IBD therapies. By employing 
computational algorithms to analyze vast datasets such as transcriptomics, AI constructs gene co-expression networks 
(GCNs) to unravel the complexity of human diseases, aiding in the prioritization and validation of treatment targets.231 

These networks simplify intricate multi-cellular processes, identifying patterns beyond human analysis and thereby 
enhancing prediction accuracy. AI can simulate the progression of complex diseases like IBD, improving the precision of 
drug development.231 Looking ahead, With continuous advancements in AI technology and the ongoing integration of 
big data analytics, researchers can anticipate more accurate predictions, new target discoveries, and improved treatment 
outcomes.231

Therefore, despite the appeal of restoring barrier integrity as a therapy, implementing these treatments in clinical 
practice requires further research into the underlying pathogenesis of IBD, particularly the causative relationships among 
different dysfunctions. Additionally, a comprehensive understanding of the mechanisms behind these therapeutic 
strategies is necessary to identify and minimize potential side effects.
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