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Background: Primary Sjögren’s syndrome (pSS) is an autoimmune condition marked by lymphocyte infiltration in the exocrine 
glands. Our study aimed to identify a novel biomarker for pSS to improve its diagnosis and treatment.
Methods: The gene expression profiles of pSS were obtained from the Gene Expression Omnibus (GEO) database. The specific 
differentially expressed genes (DEGs) were screened by the Least Absolute Shrinkage and Selection Operator (LASSO), Random 
Forest (RF), and Recursive Feature Elimination with Support Vector Machines (SVM-RFE). A biomarker was picked out based on 
correlation and diagnostic performance, the connection between the biomarker and clinical traits and immune infiltrating cells was 
explored, and the biomarker’s protein expression level in the serum of pSS patients was detected by enzyme-linked immunosorbent 
assay (ELISA). The competitive endogenous RNA (ceRNA) network regulated by the biomarker was predicted to verify the reliability 
of the biomarker in diagnosing pSS.
Results: IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6 showed prominent diagnostic ability, with the high accuracy (AUC = 0.859) 
and significance (R ≥ 0.8) of IFI44 within the training dataset. IFI44 strongly exhibited a negative correlation with resting NK cells, 
macrophages M0, and eosinophils, and a positive correlation with activated dendritic cells, naive B cells, and activated CD4 memory 
T cells. Furthermore, IFI44 was significantly positively correlated with clinical traits such as IgG, SSA, SSB, ANA, and ESSDAI, with 
its protein expression level in the serum of pSS patients being notably elevated compared to controls (p < 0.001). Finally, the ceRNA 
regulatory network showed that hsa-miR-944, hsa-miR-9-5p, hsa-miR-126-5p, and hsa-miR-335-3p were significantly targeted IFI44, 
suggesting that IFI44 may serve as a dependable biomarker for pSS.
Conclusion: In this study, we dug out IFI44 as a biomarker for pSS, systematically studied the potential regulatory mechanism of 
IFI44, and verified its reliability as a biomarker for pSS.
Keywords: primary Sjögren’s syndrome, machine learning, immune cell infiltration, biomarker, IFI44

Introduction
Primary Sjögren’s syndrome (pSS) is a complicated and heterogeneous autoimmune disorder with clinical symptoms 
characterized by exocrine gland dysfunction1 and immunopathogenesis involving infiltration of T and B lymphocytes,2 

which will lead to symptoms such as xerostomia, xerophthalmia, fatigue, joint pain, and potentially resulting in serious 
complications such as lymphoma.3 The prevalence of pSS ranges from 0.03% to 5% across different countries, while, it 
is about 0.33–0.77% in China,4,5 and the standard death rate is 3.63.6 However, the precise biological mechanisms 
underlying pSS remain unclear, with no definitive diagnostic markers that are both sensitive and specific. Understanding 
the pathophysiology linked to pSS is essential for diagnosing and treating patients experiencing dryness symptoms, 
fatigue, and joint discomfort, thereby enhancing their quality of life.

Because of the clinical heterogeneity of pSS, the current diagnostic method relies on minor salivary gland biopsy 
(MSGB)7,8 in conjunction with clinical symptoms and autoimmune serology.9,10 Typical diagnostic markers for pSS 
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include anti-Ro/SSA, anti-La/SSB, antinuclear antibodies, rheumatoid factor, etc.11,12 However, MSGB, an invasive test, 
may lead to uncomfortable symptoms and complicating disease13 and the diagnosis may be influenced by the subjective 
decision of the observer.14 Anti-Ro/SSA antibodies may suggest a more advanced disease stage, and depending solely on 
it for diagnosis may result in insufficient detection of early pSS.15 Furthermore, patients with primary biliary cholangitis 
(formerly called primary biliary cirrhosis) are frequently anti-SSA antibody positivity, but autoimmune liver disease and 
primary biliary cholangitis are rarely associated with pSS.16 Importantly, also patients with HCV liver disease may 
develop autoantibodies and autoimmune phenomena including secondary SS.17 Similarly, anti-SSB antibodies can also 
be detected positively in other autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, and 
secondary SS.18–20 Therefore, it is necessary to find a sensitive, specific, and accurate non-invasive diagnostic method to 
aid in the early diagnosis of pSS. Previous studies11,12 have provided many serum, salivary, and histologic biomarkers, 
such as C-X-C motif chemokine 13 (CXCL13), histone S, interleukin (IL)-4, IL-5, and certain genes stimulated by type 
I and type II IFNs. However, there is no single laboratory, clinical, pathologic, or radiologic feature that can reach the 
“gold standard” for the diagnosis of pSS.21 Scientists continue to explore novel disease biomarkers to advance simpler 
and quicker diagnostic approaches for pSS.

In recent years, the development of gene microarray and high-throughput technology has enabled the rapid and 
effective screening of differentially expressed genes (DEGs), clarifying pathogenic mechanisms, and identifying potential 
targets for therapy through bioinformatics analysis.22 A range of machine learning algorithms have been extensively 
utilized for disease model prediction, with improving accuracy and advancing applicability and validity in risk prediction, 
disease diagnosis, and outcome prediction.23 It has become one of the important analytical tools in the medical field. Our 
previous study24 screened cluster-specific DEGs through WGCNA and then identified the machine learning model with 
the highest accuracy to predict 5 hub genes, which mainly focused on the association between cuproptosis and pSS, as 
well as its possible role in pSS. Our study aimed to recognize the most accurate biomarker related to immune infiltration 
for pSS diagnosis with high effectiveness by machine learning algorithms. Finally, the reliability of the biomarker was 
verified in various aspects such as external validation datasets, clinical traits, and enzyme-linked immunosorbent assay 
(ELISA).

Materials and Methods
Data Collection and Pre-Processing
In the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), the search term “primary 
Sjögren’s syndrome” was utilized to explore gene expression profiles, with the restriction type set as “series”, the 
assay/data classification as “expression profiling by array”, and the organism as “Homo sapiens”. Four eligible datasets 
were picked out: GSE51092, GSE66795, GSE84844, and GSE40611 (Table 1). The probe names in each dataset were 
converted to gene symbols according to the annotation files. The combat function of the “SVA” package of the 
R software (version 4.1.2) was applied to merge GSE51092 and GSE66795, and after eliminating the batch effect, 
they were employed as the training dataset. Three hundred and twenty-one pSS samples and 61 control samples were 
performed analysis for differential expression by the “limma” package. GSE84844 and GSE40611 served as the 
validation dataset independently. DEGs thresholds were defined as samples with adjusted false positive rates of p < 0.05.

Table 1 Eligible Gene Expression Datasets

DATASET Platform pSS Patients Controls Sample

GSE51092 GPL6884 190 32 Peripheral blood

GSE66795 GPL10558 131 29 Peripheral blood
GSE84844 GPL570 30 30 Peripheral blood

GSE40611 GPL570 17 18 Parotid gland tissue
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Data Processing and DEG Screening
Based on the annotation information of the platform file, the analysis commenced by transforming the probe matrix into 
a gene matrix. The final expression value of each gene was decided by calculating the average of multiple probes 
corresponding to a single gene. After data normalization, adjusted p < 0.05 and |logFC| > 1 were set as the filtering 
conditions, and the DEGs between pSS patients and controls were analyzed via the “limma” package, and “ggplot2” was 
utilized to generate a volcano plot.

Screening Specific DEGs by Machine Learning
We applied three machine learning algorithms to screen for DEGs, which are named Least Absolute Shrinkage and 
Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination Algorithm (SVM-RFE), and 
Random Forest (RF), and then the overlap of the screening consequences of the three algorithms was taken to identify 
the specific DEGs of pSS. A 10-fold cross-validation of the LASSO regression analysis was conducted using the 
“glmnet” package to optimize the parameters through penalization. As a dimensionality reduction method, LASSO 
regression shows better performance in evaluating high-dimensional data and uses regularization to improve prediction 
accuracy.25 RF, a supervised machine learning algorithm noted in decision tree methods, was designed to address both 
regression and classification tasks. Feature importance was decided by the average decrease in the Gini index computed 
by RF.26 SVM-RFE, evaluated based on the average false positive rate by the “e1071” package,27 can rank features 
recursively to mitigate overfitting.28 We used the “limma” “ggpubr” packages to draw the line chart of the expression 
levels of the specific DEGs of pSS and violin plots of differential analysis, plotted the receiver operating characteristic 
(ROC) curves, and utilized the “pROC” package to evaluate the predictive ability of the specific DEGs.29 When the area 
under the curve (AUC) > 0.700, it indicated that the models or genes were accurate in diagnosing the disease.

Validation of Diagnostic Performance of Specific DEGs
ROC curves for the specific DEGs were generated in the validation dataset using “glmnet” “pROC”, and evaluated based 
on their results, and the AUC was computed to measure the diagnostic performance of specific DEGs.

Functional Annotation Analysis
The specific DEG with the highest diagnostic performance was selected as the biomarker, and the training dataset 
samples were categorized into low- and high-expression groups based on the biomarker’s expression levels. The median 
was used as the critical value of each gene so that the differences in gene expression between the low-expression group 
and the high-expression group were computed, and these differential genes’ connection was examined and graphically 
shown. Single-gene enrichment analysis based on the biomarker was performed by “clusterProfiler”, “colorspace”, 
“ggpolt2”, “enrichplot”, “stringi”, etc. GO and KEGG entries with significant enrichment were screened out and 
generated visualization results.

Evaluation of Immune Cell Infiltration
The CIBERSORT algorithm, a dependable machine learning technique based on linear support vector regression (SVR), 
is commonly applied to evaluate the relative abundance of 22 immune cells and the dynamic regulatory processes and is 
excellent in identifying human immune cell phenotypes concerning handling noise and unknown mixed content. We 
uploaded the gene matrix to the CIBERSORT database (https://cibersortx.stanford.edu/) and estimated the relative 
abundance of 22 immune cells in the LM22 feature matrix. Monte Carlo sampling was employed in CIBERSORT to 
calculate the p-value of the inverse ploidy product for each sample. p < 0.05 for the immune cell component was 
considered accurate. Each sample’s predicted immune cell type scores added up to one. Correlation heatmaps of 22 
immune cell infiltration levels were drawn using the “corrplot” package, box plots of differences in immune cell 
infiltration were plotted in the “ggplot2” package, and differences in immune cell function were analyzed between the 
low- and high-expression groups.
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Correlation Analysis Between the Biomarker and Infiltrating Immune Cells
Spearman correlation coefficient was calculated with the filter condition set to p < 0.05, to obtain the correlation and 
p-values between the biomarker expression and the proportional distribution of immune cells, and to generate a scatter 
plot.

Correlation Analysis Between Clinical Traits and the Biomarker
The Nephroseq V5 tool (https://nephroseq.org/) was used to assess the relationship between the biomarker and clinical 
traits such as IgG, SSA, SSB, ANA, and ESSDAI in pSS patients, and the “ggplot2” package was applied to create 
a scatter plot.

Construction of Biomarker-Targeted Competitive Endogenous RNA (ceRNA) 
Regulatory Network
The miRWalk website (http://mirwalk.umm.uni-heidelberg.de/) miRanda, miRDB, and TargetScan software were utilized 
to predict miRNAs targeting the biomarker (screening criteria: CLIP-DATA ≥ 1). Then, we aligned the predicted 
miRNAs with differential expression miRNAs to screen for key miRNAs with opposite expression trends to the 
biomarkers. Similarly, the StarBase database (http://starbase.sysu.edu.cn/) was employed to predict lncRNAs targeting 
miRNAs in identical relational pairs and retained lncRNAs with contrary trends of expression to the key miRNAs. 
Eventually, the lncRNA-miRNA-mRNA network was depicted using the “Cytoscape” package (v3.7.2).

Clinical Specimens
At the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (Tianjin, China), 36 pSS patients and 
30 controls were recruited for the study. The following were the criteria for inclusion of patients with pSS: compliance with 
the 2002 European criteria proposed by the American-European Consensus Group;30 pSS duration of less than 10 years; 
and the treatment was restricted to disease-modifying antirheumatic drugs (DMARDs) and non-steroidal anti-inflammatory 
drugs (NSAIDs). The criteria for inclusion of the controls: Undergo an examination at our hospital’s Department of 
Physical Examination and voluntarily participate in the study; No history of SS; Aged over 18 years; Physical examination, 
routine blood test, liver and kidney function tests are within normal range. The Ethics Committee of the First Teaching 
Hospital of Tianjin University approved the clinical trial (TYLL2018[K]026). All participants provided their formal, 
informed, and written consent, expressly agreeing to donate serum samples for the study. These samples were processed to 
separate serum, and stored at −80°C.

ELISA
IFI44 ELISA kit (TW-0215) was sourced from SHANGHAI TONGWEI BIOTECHNOLOGY CO., LTD (Shanghai, China). 
The test was conducted following the instructions provided by the manufacturer.

Statistical Analysis
The statistical analyses were carried out using SPSS 20.0 software. Categorical variables were reported in percentages, 
while quantitative data were presented as means ± SD. χ²-test was employed to compare the categorical variables 
between the two groups. In quantitative data, an independent-sample t-test was conducted for variables with a normal 
distribution. Otherwise, we also use a nonparametric test (Mann–Whitney U–test) for the data analysis. For statistical 
significance, p < 0.05 was the threshold.

Results
Results of DEG Screening
The detailed study design is illustrated in a flow chart in Figure 1. We analyzed 321 pSS samples and 61 control samples 
of the training dataset and merged them to remove the batch effect (Figure 2A) during the study period. A total of 29 

https://doi.org/10.2147/JIR.S477490                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 5726

Wei et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://nephroseq.org/
http://mirwalk.umm.uni-heidelberg.de/
http://starbase.sysu.edu.cn/
https://www.dovepress.com
https://www.dovepress.com


DEGs were obtained (Figure 2B), among which 28 DEGs were up-regulated and 1 DEG was down-regulated, and the 
results were shown in the volcano plot (Figure 2C).

Results of Specific DEG Screening
Using the LASSO regression algorithm, 15 candidate-specific DEGs were selected (Figure 2D and E). The optimal number of 
decision trees was derived as 29 by the RF algorithm, which served as candidate-specific DEGs (Figure 2F and 2). And 10 
candidate-specific DEGs were identified with the SVM-RFE algorithm (Figure 2H and I). The overlap genes produced in the 
three machine learning techniques served as specific DEGs, named IFI44, XAF1, GBP1, EIF2AK2, IFI27, IFI6, and MYOM2 
(Figure 2J). Their expression levels in the training dataset were shown in Figure 3A, with IFI44, XAF1, GBP1, EIF2AK2, IFI27, 
and IFI6 all overexpressed in pSS (p < 0.001) (Figure 3B–G), while MYOM2 was significantly reduced (p < 0.001) (Figure 3H).

Diagnostic Performance of Specific DEGs in the Training Dataset
The ROC analysis demonstrated that IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6 showed a favorable diagnostic ability 
(AUC > 0.700), with AUCs of 0.859 (0.816–0.900), 0.858 (0.810–0.899), 0.848 (0.793–0.892), 0.844 (0.797–0.889), 0.833 

Figure 1 Flow chart of the study.
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(0.790–0.874), and 0.782 (0.724–0.837), respectively; whereas MYOM2 was excluded because of its low diagnostic ability 
(AUC = 0.681) (Table 2).

Diagnostic Performance of Specific DEGs in the Validation Dataset
In the validation dataset GSE84844, the overall AUC of the predictive model reached 0.978, and the AUC values of 
IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6 were 0.887, 0.784, 0.817, 0.811, 0.812, and 0.879, respectively, all 
showing favorable diagnostic ability (AUC > 0.700) (Figure 4A and B). And the expression levels of the specific DEGs 
were all significantly elevated (p < 0.001) (Figure 4C–H). In another validation dataset GSE40611, the AUC of the 
predictive model was 0.905, and the AUC values of IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6 were 0.892, 0.899, 
0.814, 0.879, 0.804, and 0.781, all showing favorable diagnostic ability (AUC > 0.700) (Figure 4I and J), and the 
expression levels of the specific DEGs were all significantly elevated (p < 0.01) (Figure 4K–P).

Single-Gene Enrichment Analysis Based on IFI44
The correlations between IFI44 and other specific DEGs were all greater than 0.8 (p < 0.05), with the highest correlation 
with XAF1 (R = 0.91), the lowest correlation with GBP1 (R = 0.8) (Figure 5A), and IFI44 was selected as a biomarker 
for pSS because of the highest AUC value (0.859) in the training dataset. The 21 differential genes between the high- and 
low- IFI44 expression groups were screened based on |logFC| ≥ 1 and adjusted p < 0.05 (Figure 5B), of which 20 
differential genes were found to be positively correlated with IFI44 (R ≥ 0.8, p < 0.05), such as IFI44L, RSAD2, etc. 

Figure 2 Screening of specific DEGs. (A) Results of removing batch effects before and after merging. (B) Heatmap of DEGs. (C) Volcano plot of DEGs. (D and E) Diagram 
illustrating the regression coefficient path and cross-validation curves in the LASSO regression. (F and G) RF-based feature importance identification. (H and I) Curves 
depicting variations in predicted true and error values for each gene in the SVM-RFE algorithm. (J) Screening results of three machine learning algorithms.
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(Figure 5C). GO enrichment analysis highlighted that the differential genes were predominantly involved in biological 
processes related to viral interaction, including response to virus, defense response to virus, defense response to 
symbiont, and virus genome replication (Figure 5D). The KEGG enrichment analysis results indicated that the 
differential genes were primarily enriched in the pathway associated with Influenza A, Hepatitis C, and Coronavirus 
disease - COVID-19 signaling pathways (Figure 5E).

Evaluation of Immune Cell Infiltration
Using CIBERSORT to calculate the percentage of 22 types of immune cells in the training dataset and plotting the stacked 
histograms (Figure 6A) to compare the differences in immune cell infiltration levels between pSS and controls, it was found 
that the levels of resting CD4 memory T cells and activated dendritic cells were significantly increased in pSS (p < 0.05) 
(Figure 6B). Whereas correlation analysis among immune cells revealed a significant positive correlation (p < 0.05) 
between CD8 T cells and activated NK cells (R = 0.49), B memory cells, and T regulatory cells (Tregs) (R = 0.36). Activated 
dendritic cells and M0 Macrophages (R = −0.42), CD8 T cells and Monocytes (R = −0.40), and activated NK cells and 

Figure 3 Expression levels of the specific DEGs. (A) Line chart of the expression levels of the 7 specific DEGs. (B–H) Expression differences of the 7 specific DEGs in pSS and controls. 
Notes: ***p < 0.001.
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resting NK cells (R = −0.39) were significantly negatively correlated (p < 0.05) (Figure 6C). The high- and low-IFI44 
expression groups exhibited significant differences (p < 0.05) in 21 immune cell-related functions such as T cell subtypes, 
pro-inflammatory response, and IFN response (Figure 6D).

Figure 4 Evaluating the diagnostic performance of the 6 specific DEGs in the validation dataset. (A and B) ROC curves of the specific DEGs in GSE84844. (C–H) Expression 
differences of the specific DEGs in GSE84844. (I and J) ROC curves of the specific DEGs in GSE40611. (K–P) Expression differences of specific DEGs in GSE40611. 
Notes: **p < 0.01, ***p < 0.001.

Table 2 Diagnostic Performance of 7 Specific DEGs in Identifying pSS

Gene AUC (95% CI) Cutoff Sensitivity Specificity PPV NPV

IFI44 0.859 (0.816–0.900) 9.58 0.69 0.92 0.98 0.36
XAF1 0.858 (0.810–0.899) 9.55 0.67 0.90 0.97 0.34

GBP1 0.848 (0.793–0.892) 9.32 0.79 0.80 0.95 0.42

EIF2AK2 0.844 (0.797–0.889) 10.33 0.73 0.84 0.96 0.37
IFI27 0.833 (0.790–0.874) 8.78 0.66 0.92 0.98 0.34

IFI6 0.782 (0.724–0.837) 10.43 0.64 0.84 0.95 0.31

MYOM2 0.681 (0.608–0.749) 7.42 0.70 0.61 0.90 0.28

Notes: PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, 
confidence interval. Data were analyzed by Wilcoxon test or Student’s t-test.
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Correlation Analysis Between IFI44 and Immune Infiltrating Cells
The findings from immune cell correlation analysis (Figure 7A) showed that IFI44 was significantly positively correlated (p < 
0.05) with activated dendritic cells (R = 0.73), naive B cells (R = 0.19), and activated CD4 memory T cells (R = 0.11) 
(Figures 7B–D), and significantly negatively correlated (p < 0.05) with Eosinophils (R = −0.15), resting NK cells (R = −0.23), 
and Macrophages M0 (R = −0.33) (Figures 7E–G).

Correlation Between IFI44 and Clinical Traits of pSS
In GSE84844, there was a significant positive correlation (p < 0.05) between IFI44 and IgG (R = 0.58), SSA (R = 0.83), 
SSB (R = 0.57), ANA (R = 0.47), and ESSDAI (R = 0.43) (Figures 8A–E).

Validation of Protein Expression Levels of IFI44 in Serum of pSS Patients
The contrast of clinical characteristics between pSS patients and controls was shown in Table 3. pSS patients exhibited 
elevated levels of anti-SSA, anti-SSB, RF, and ESR compared to controls. Moreover, we confirmed the IFI44 protein 
expression in serum samples. The findings indicated that pSS patients had serum levels of the IFI44 protein that were 
noticeably greater than those of controls (p < 0.001) (Figure 8F).

The IFI44-Targeted ceRNA Network
Through the miRWalk website, miRanda, miRDB, and TargetScan software were used to predict the miRNAs of IFI44, and 7 
miRNAs were predicted. In addition, IFI44-miRNA pairs exhibiting contrasting expression trends were also chosen, with 
four matching miRNAs, that are hsa-miR-944, hsa-miR-9-5p, hsa-miR-126-5p, and hsa-miR-335-3p. Likewise, six miRNA- 
lncRNA pairs exhibiting contrasting expression trends were predicted in the StarBase website, named has-miR-944 binding 
to RP5-1077H22.2, has-miR-9-5p binding to RP11-397O4.1, has-miR-126-5p binding to RP11-164O23.8 and RP11- 
517O13.1, and has-miR-335-3p binding to SLC8A1-AS1, CTA-392E5.1, RP11-146D12.2, RP11-335L23.4, LINC01122, 

Figure 5 Single-gene enrichment analysis based on IFI44. (A) The correlations between IFI44 and other specific DEGs. (B and C) Differential genes and their correlation 
between the high- and low-IFI44 expression groups; Red represents a positive correlation, blue signifies a negative correlation, and correlation coefficients were denoted by 
the size of each segment in the pie chart. (D) Bubble plot of enriched GO terms. BP, biological process; CC, cellular component; MF, molecular function. (E) Chord diagram 
of enriched KEGG terms.
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and RP11-96K19.4. Finally, the network consisted of 15 nodes and 14 edges. Cytoscape provides visualization for the 
ceRNA network, showing that IFI44 is crucial in pSS and able to act as a disease diagnostic biomarker (Figure 9).

Discussion
pSS is a chronic inflammatory disease characterized by impaired secretory gland function, marked by B and 
T lymphocyte infiltration,2 and around 20%–40% of pSS patients may have extra-glandular involvement,3 with 
lymphoma being the main cause of death.31 Because of the heterogeneity of various etiologies and clinical phenotypes, 
identifying key biomarkers is crucial for understanding the complex mechanism of pSS. Therefore, this study utilized 
bioinformatics approaches to identify potential biomarkers of pSS, explore the characterized genes closely linked to the 
development of pSS, and explore intervention targets, aiming to offer new insights into early diagnosis and treatment 
of pSS.

In recent years, Li32 and Zhong33 et al revealed biomarkers in salivary glands and blood of pSS patients, respectively. 
We extended and further studied biomarkers for pSS: Firstly, we used three better machine learning methods with 

Figure 6 Immune cell infiltration analysis. (A) Histogram of immune cell infiltration. (B) Box plot of immune cell infiltration. (C) Heatmap of correlation analysis between 
immune infiltrating cells. (D) Correlation between specific DEGs and the functional level of immune cells. 
Notes: *p < 0.05, **p < 0.01, ***p < 0.001.
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stronger biomarker recognition ability. Secondly, parotid gland samples can reflect the disease more accurately, whereas 
blood samples are more readily available and more likely to be duplicated in subsequent clinical monitoring. We 
validated our predictions in blood samples and parotid gland samples separately. Finally, we merged 2 large sample- 
size datasets, which made the biomarkers we screened more credible, precise, and versatile. In addition, innate immune 
response and type I IFN signaling pathway included in our enriched pathways are common pathways associated with 
pSS. This suggested that the biomarker dug out in DEGs may be a credible biomarker for the pSS.

In this study, we found 29 DEGs in the training dataset of pSS patients and controls. To screen for potential diagnostic 
biomarkers of pSS, we applied machine learning with three different algorithms (LASSO, RF, and SVM-RFE) to analyze 
these 29 DEGs and identified 6 genes (IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6) as specific DEGs. IFI44 
(Interferon-induced protein 44), correlated with immune cell infiltration, can emerge as a favorable diagnostic marker for 

Figure 7 Correlation between IFI44 and immune infiltrating cells. (A) Correlation bubble plot. (B–G) Correlation scatter plot between the biomarker and immune cell 
infiltration levels.
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SS and may be a new diagnostic and therapeutic target for SS.34 IFI44, a type I IFN characteristic gene, which is 
overexpressed in CD14 monocytes of pSS patients.35 Type I IFN in monocytes is associated with higher ESSDAI, 
autoantibody production, B cell-activating factor (BAFF) gene expression, rheumatoid factor, serum IgG, and lower C3 

Figure 8 Clinical relations of IFI44. (A–E) Correlation between IFI44 and IgG, SSA, SSB, ANA, ESSDAI. (F) The protein expression levels of IFI44 in serum of pSS patients and controls. 
Notes: ***p < 0.001.

Table 3 Comparison of Clinical Characteristics Between pSS 
Patients and Controls

Characteristics Control (n = 30) pSS (n = 36) P-Value

Age, years 49.93 ± 6.59 52.64 ± 11.18 0.471

Male, n (%) 8 (26.67%) 7 (19.44%) 0.486
RBC (×1012/L) 4.24 ± 0.68 4.29 ± 0.60 0.782

WBC (×109/L) 5.61 ± 1.97 5.24 ± 1.45 0.620

PLT (×109/L) 223.97 ± 55.43 246.28 ± 50.97 0.094
HGB (g/L) 128.57 ± 7.80 131.83 ± 12.66 0.204

ALT (U/L) 19.94 ± 4.66 18.94 ± 8.09 0.086

AST (U/L) 20.38 ± 5.35 21.62 ± 6.63 0.549
Urea (mmol/L) 4.60 ± 1.58 5.03 ± 1.21 0.211

CR (μmol/L) 66.66 ± 12.30 67.57 ± 12.41 0.747

CRP (mg/L) 3.92 ± 1.52 4.49 ± 2.70 0.081
ESR (mm/h) 7.53 ± 3.40 40.06 ± 26.20 0.000***

RF (IU/mL) 6.43 ± 2.67 40.92 ± 37.03 0.000***

Anti-SSA, n (%) 0 (0.00%) 35 (97.22%) 0.000***
Anti-SSB, n (%) 0 (0.00%) 27 (75.00%) 0.000***

Notes: RBC, red blood cell; WBC, white blood cell; PLT, platelet; HGB, hemoglo-
bin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CR, creatinine; 
CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; RF, rheumatoid 
factor. ***p < 0.001.

https://doi.org/10.2147/JIR.S477490                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 5734

Wei et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


complement levels.36 The expression level of XAF1 (XIAP-associated factor 1) elevates in SS patients and has been 
considered to be a possible hub gene in SS.36,37 IFN-stimulated genes revealed the most significant differences between 
SS patients and healthy controls in a microarray screen, and IFI27 (interferon alpha-inducible protein 27, mitochondrial) 
showed elevated expression levels in the peripheral blood of patients with SS.38 Meanwhile, THP-1 cells were stimulated 
with pSS serum in the presence of a blocking IFN-α/β receptor antibody or isotype control showed significantly higher 
levels of IFI27 expression.39 IFI44, XAF1, IFI27, and IFI6 (interferon alpha-inducible protein 6) are IFN-stimulated 
genes, mainly produced by plasmacytoid dendritic cells (pDC).36,38 There is ample evidence indicating that type I IFN 
plays a significant role in the pathogenesis and progression of pSS through immune dysregulation.40 For instance, it can 
affect the immune system to pSS, participate in the antiviral response activation, and regulate the immune response by 
interacting with the relevant receptors.41 GBP1 (Guanylate-binding protein 1) is a type II IFN-stimulated gene produced 
by T lymphocytes, natural killer (NK) cells, and natural killer T (NKT) cells. NKT cells and immunohistochemistry of 
salivary gland epithelial cells revealed that GBP1 protein expressed significantly higher in the SG of SS patients than in 
the non-SS group.42 EIF2AK2 (interferon-induced, double-stranded RNA-activated protein kinase) gene in chromosome 
2, can encode the improved protein kinase R (PKR), an IFN-induced double-stranded RNA-activated protein kinase.43 

Research has shown that EIF2AK2 is a pSS diagnostic gene,44 and the gene encoding PKR is linked to the treatment of 
pSS, verifying EIF2AK2 plays a crucial role in the development of pSS,45 and RT-qPCR further confirmed the significant 
elevation of EIF2AK2 in clinical PBMC samples from pSS patients.46 ROC curves have shown the high accuracy (AUC 
= 0.859) and significance (R ≥ 0.8) of IFI44 to identify pSS samples from non-pSS samples, which were validated in 
both blood samples and parotid gland samples. Therefore, IFI44 was served as a biomarker for pSS.

Figure 9 The mRNA-miRNA-lncRNA network targeting IFI44. Red ovals indicate the biomarker, green triangles indicate miRNAs and blue diamonds indicate lncRNAs.
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We also analyzed the association between IFI44 and immune-infiltrating cells, and IFI44 showed a positive correla-
tion with activated dendritic cells, naive B cells, and activated CD4 memory T cells, while negatively correlated with 
Eosinophils, resting NK cells, and Macrophages M0. T lymphocytes are deemed crucial in the immunopathogenesis of 
pSS, while the activation of B cells can expedite disease progression and lead to specific disease manifestations.47 

Studies have found that CD4+ T cells migrate to tissues from the blood of pSS patients, resulting in a reduction of CD4+ 

T cells in the blood.48,49 CD4+ T cells release a variety of cytokines and contribute to autoantibody production, 
lymphocyte infiltration, and even the development of lymphomas in pSS.49–51 Type I IFN plays a critical role in 
stimulating immune activation, thereby influencing the production and control of pro-inflammatory cytokines and 
other mediators.52 Monocytes, when stimulated by type I IFNs, differentiate into dendritic cells. These dendritic cells 
then induce the expression of chemokines and co-stimulatory molecules in immature dendritic cells, facilitating their 
migration to secondary lymphoid organs, which ultimately activates adaptive immunity.53 Besides, IFN stimulates 
macrophages to enhance phagocytosis. Monocytes upregulate BAFF expression following stimulation by type I and 
type II IFNs, which promote B-cell activation and participate in the pSS pathogenesis.54 Apart from monocytes, dendritic 
cells, macrophages, and salivary gland epithelial cells also upregulate BAFF expression upon stimulation by IFNs.55,56 

This implies that IFNs (especially type I IFN) contribute to the progression of pSS through induction of inherent 
immunity, activation of acquired immunity, and modulation of inflammatory cytokine and levels of antibody, corrobor-
ating the reliability of the type I IFN-inducible gene, IFI44, as a biomarker for pSS.

In recent years, studies have focused on the regulatory role of miRNAs in disease development, especially in the 
physiopathological processes of inflammatory responses. miRNA molecules are non-coding RNAs, which function in 
cells mainly by inhibiting the translation or promoting the degradation of specific target mRNAs, thereby regulating gene 
expression.57 miRNAs have crucial roles in numerous biological processes covering cell proliferation, differentiation, 
and apoptosis, as well as being closely linked to various disease processes including cancer and inflammatory 
responses.58–61 The predictions of this study showed that IFI44 was closely associated with hsa-miR-944, hsa-miR 
-9-5p, hsa-miR-126-5p, and hsa-miR-335-3p. Hsa-miR-944 is located in the tumor protein p63 (TP63) ‘s fourth intron in 
chromosome 3q28 region.62 It is aberrantly giving expression to cancers of multiple systems, including endocrine, 
neurological, reproductive, respiratory, and digestive systems, and participates in the cancer cell behaviors regulation 
such as growth, cycle, proliferation, cancer cell invasion, epithelial-mesenchymal transition (EMT) and metastasis, and is 
associated with the Jak-STAT3 pathway, the Wnt/β-catenin pathway and the PI3K-Akt pathway.63 Previous research has 
also shown the involvement of hsa-miR-9 in ischemic stroke. The expression of Hsa-miR-9 is up-regulated in serum 
exosomes of patients with acute ischemic stroke, which predicts an adverse outcome for the patients, and is closely 
associated with IL-6 production,64,65 which has been discovered to be a putative biomarker of diabetes mellitus 
exacerbated by stroke.66 Hsa- miR-126 participates in immune cell development and function, and hsa-miR-126 
deficiency significantly enhances CD4 T cell activation and proliferation as well as IFN-γ secretion in vitro and in vivo.67 

Studies have shown that miR-126a-5p stimulates the differentiation of naïve CD4 T cells in mice through the DLK1- 
mediated Notch1 signaling pathway.68 Hsa-miR-335-3p promotes cardiac mesodermal and stem cell differentiation, and 
is highly expressed in the mature heart.69,70 The involvement of these miRNAs in the progression of pSS needs further 
in-depth study.

However, our study has some limitations. The reliability of gene expression was verified by bioinformatics 
analysis of early research, which laid a theoretical basis for quick detection of IFI44 expression in peripheral blood 
and diagnosis of pSS. Meanwhile, the diagnostic efficacy, drug-targeting outcomes, and regulatory network of IFI44 
are only initial findings from bioinformatics studies and predictions at this point. It is essential to proceed with larger- 
scale research on a wider range of patient groups and subsequent animal experiments to verify its safety, effective-
ness, and stability. In addition, the number of clinically validated patients is small, and there is a need for real-world 
data from more clinical samples to validate the mechanisms of interaction between immune cells and crucial genes. 
Despite the difficulties, progress in genomics provides a rare opportunity to better understand the pathological 
mechanisms of pSS and formulate new therapeutic strategies, and further research on pSS may lead to innovative 
treatments.
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Conclusion
In summary, this study screened specific DEGs (IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6) in the training dataset 
through three machine learning models and evaluated their expression levels and accuracy in diagnosing pSS. Their role 
in distinguishing pSS samples from control samples can be demonstrated by ROC curves. In addition, the high accuracy 
(AUC = 0.859) and significance (R ≥ 0.8) of IFI44 were validated in both blood samples and parotid gland samples. 
Subsequently, we investigated the correlation between IFI44 and immune infiltrating cells as well as clinical traits of pSS, 
argued for the importance of IFI44 in pSS, and applied ELISA to detect the protein expression level of IFI44 in the serum 
of pSS patients. Finally, an IFI44-regulated ceRNA regulation network was created to investigate the molecular 
mechanism of these genes in a preliminary manner, which suggests that IFI44 could serve as a dependable biomarker 
for pSS.
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