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Abstract: Deep Learning (DL) drives academics to create models for cancer diagnosis using medical image processing because of its 
innate ability to recognize difficult-to-detect patterns in complex, noisy, and massive data. The use of deep learning algorithms for real- 
time cancer diagnosis is explored in depth in this work. Real-time medical diagnosis determines the illness or condition that accounts 
for a patient’s symptoms and outward physical manifestations within a predetermined time frame. With a waiting period of anywhere 
between 5 days and 30 days, there are currently several ways, including screening tests, biopsies, and other prospective methods, that 
can assist in discovering a problem, particularly cancer. This article conducts a thorough literature review to understand how DL 
affects the length of this waiting period. In addition, the accuracy and turnaround time of different imaging modalities is evaluated 
with DL-based cancer diagnosis. Convolutional neural networks are critical for real-time cancer diagnosis, with models achieving up 
to 99.3% accuracy. The effectiveness and cost of the infrastructure required for real-time image-based medical diagnostics are 
evaluated. According to the report, generalization problems, data variability, and explainable DL are some of the most significant 
barriers to using DL in clinical trials. Making DL applicable for cancer diagnosis will be made possible by explainable DL. 
Keywords: artificial intelligence, AI, machine learning, DL, CNN, healthcare, real-time diagnosis, classification, image processing, 
elastography, feedforward neural network

Introduction
Applications across a wide range of industries, including healthcare, climate change,1 agriculture,2 etc. are being 
revolutionized by DL. Computers can perform tasks like picture categorization, object identification, and landmark 
location better than trained human operators. Experts agree that Machine Learning (ML) is a revolutionary technology 
with the potential to revolutionize how imaging data are interpreted. However, the application of such potent technol-
ogies to medical imaging is still in its infancy. Medical imaging will facilitate finding therapies suited to each person’s 
needs and assist with the limited medical competence accessible in developing countries.

In a professional context, there are two ways to detect cancer: through a biopsy, the findings known in a few days, or 
invasive surgery. Without invasive testing, AI can identify cancer in minutes. In3 and,4 wireless capsule endoscopy is 
used to obtain medical images. Convolutional neural network (CNN) are the foundation of the majority of AI-based 
methods for cancer detection.5

Several neural network models are being developed and employed to attain the best outcomes in medical diagnostics 
due to the increased innovation in DL. Specifically, the most common models used are GoogleNet, ResNet50, AlexNet, 
SegNet, VGG, Inception, and Xception.

The paper begins with a brief introduction to AI. It emphasizes current developments in DL research that have 
practical applications for or could have future implications for cancer research. Cancer research was chosen because it 
offers the most significant potential for DL for medical image processing. With this narrative literature review,

• This paper aims to increase public knowledge of DL’s existing contributions to cancer research and its potential. 
Readers in various professions unfamiliar with such technology’s technical details will find this interesting.
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• In this work, DL approaches were exclusively evaluated. DL techniques are being considered since, in recent times, 
DL has proven to be more suitable for image categorization. Further, it was explored to perform image-based cancer 
diagnosis, and the emphasis is mainly on deep-learning techniques.

• From this paper, the readers will clearly understand the best image modality for a particular type of cancer 
diagnosis, its pros and cons, and the recent clinical trials carried out.

• Applicability of different pre-trained models for various cancer diagnoses, that too in real-time is verified and 
highlighted.

• This paper also highlights the Expected accuracy of existing methods and possible improvements for the existing 
techniques.

Methods
The protocols used to find, collect, and evaluate the state of the art being studied are described in this section. The 
potential for real-time cancer detection analysis was looked at first, followed by the efficacy and accuracy of several 
models used in cancer detection. The PRISMA diagram for the systematic review conduction is shown in Figure 1.

Search Strategy
The following supplementary queries were also considered.

• Which approach was used?
• Which models were used in the approach?
• Is the approach able to generate real-time results?
• If a real-time analysis is impossible, why is it not possible?
• What was the accuracy of the models involved?
For this systematic review, the search criteria defined for the selection of articles are as follows:

Figure 1 PRISM flow diagram of the systematic review conducted. 
Notes: *Records were identified from PubMed and Google Scholar. **Records included only if they mentioned all or one of the most common types of cancer (top 6). 
***Most common imaging techniques alone were considered. Example, CT, MRI, X-RAY, Mammography.
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● Domain
○ Cancer Detection
○ Real-Time Cancer Detection
○ Secure Transmission of Medical Data

● Metrics
○ Possibility of real-time analysis and detection
○ Accuracy of models
○ Categorization
○ Target organs covered

● Techniques Used
○ DL and its types

● Time of Research and Publication
○ Articles published in 2018 or later

DL Models
Based on the above observations, this paper shall study the techniques and infrastructure used in 22 of 25 cited references 
where real-time cancer detection was possible. DL includes techniques like CNNs, Long Short Term Memory Networks 
(LSTMs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), Radial Basis Function 
Networks (RBFNs), Self-Organizing Maps (SOMs) and Deep Belief Networks (DBNs) and their use based on3 is 
comprehensively given in Table 1. Table 2 summarizes the CNN techniques used for cancer diagnosis with images as 
input.

Imaging Modalities in Cancer Diagnosis
Radiological imaging is one of the most often utilized image modalities for cancer diagnosis. As per,35 in cancer disease, 
when the tumor is apparent in radiological imaging, a body tissue of 1 cm3 in size will include approximately 1 billion 
cancer cells. Detection at this point would be too late because phenotypic alterations might already be underway. Early 
molecular cancer identification is crucial for effective treatment.36 This is where molecular-level nuclear imaging is 
superior. To perform early diagnosis, ascertain the stage of the disease, comprehend fundamental pathological processes, 
predict the course of the disease, and administer customized medication, nuclear imaging takes non-invasive photographs 
of the pathophysiologic state and provides information on specific molecular changes. In Table 3, Imaging modalities for 
different types of cancer are highlighted based on37–42 and.42–48

Table 1 Suitability of DL Techniques for Cancer Detection

Technique Suitable for Cancer Detection using Images? Real-Time?

LSTM No. Image data input not suitable Yes

CNN Yes, especially with images Yes

SOM No. Clusters of nodes are used but individual nodes use CNN Yes

DBN No. Ideal for image generation only Yes
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Table 2 Convolution Neural Network Models for Cancer Detection

Organ(s) 
Targeted

Underlying 
Technique

Remarks Real-Time? Accuracy Reference

Barrett’s 

Esophagus

CNN Camera inside Esophagus, 

Global prediction 

(classification), Dense 
prediction for segmentation

Possible 89.9% 

Classified as EAC if 

prediction > 90%

[6]

Pancreas Invasive 
Exome 

Analysis

PancSeq protocol: (Invasive), 
DNA Sequencing, Exome 

Analysis, Mutational Signature 

Analysis of WES data, RNA 
sequencing. Mutation calling 

uses the MuTect algorithm

Not possible. 
Real-time DNA Sequencing 

and exome analysis are 

possible. However, in the 
biopsy, some pieces of tissues 

may need processing of 29– 

39 days.

>90% [7]

Colon: CNN CNN based on SegNet 
Colonoscopy sequentially 

warped into a binary image 

1: Polyp 
0: No polyp

Possible Sensitivity 94.38% 
Specificity 95.92%

[8]

Prostate gland Shear Wave 
Elastography

Ultrasound, Vibration 
elastography, 

Acoustic radiation force, 

Shear wave elastography

Possible Sensitivity varies from 65 to 
85% 

Specificity varies from 33 to 

82%

[9]

Colon: CNN AI-doscopist 

The exact source code 
requires a license to use. 

Regression-based CNN 

structure, ResNet50, 
YOLOv2

Possible 

Results are generated on- 
site, instead of the patient 

having to wait 2 weeks.

Polyp-based 

Sensitivity: 96.875% 
Specificity: 92.9%

[10]

Oesophagus CNN CAD systems 
CNN for classification; 

results on the heat map. 

Yellow -> high probability of 
cancerous lesion, blue -> 

non-cancerous lesion

Possible Image datasets – 98.04% 
sensitivity, 95.03% specificity

[11]

Liver CNN Image Fusion Techniques 

DL models include CNN, 

Convolutional Sparse 
Representations, Stack 

Autoencoders, Image Fusion 

Indicators 
Data shortage could be 

a problem. A proposed 

solution is to augment the 
data using techniques like 

GAN

Possible US Modal + CT/MRI: 98.7% 

(only 1.3% of inconspicuous 

lesions). Combining PET and 
MRI can boost liver cancer 

diagnosis rates from 94.4% to 

100%

[12]

(Continued)
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Table 2 (Continued). 

Organ(s) 
Targeted

Underlying 
Technique

Remarks Real-Time? Accuracy Reference

Barrett’s 
oesophagus

CNN CNN model using feature 
extraction and classification, 

YOLOv2 dataset used

Possible Dysplasia detection: 95.414% 
accuracy (437 of 458 true 

predictions from given 

confusion matrix)

[13]

Upper 

gastrointestinal 
tract

CNN Reduction of blind spot rate 

during EGD in the diagnosis 
of upper gastrointestinal 

lesions. Image categorization 

was the primary technique.

Possible In actual EGD videos, 

WISENSE accurately 
detected blind areas with 

a 90.4% accuracy rate.

[14]

Thyroid Ultrasound + 

Shear Wave 
Elastography

96 individuals with 97 thyroid 

nodules who had pathology 
results underwent 

conventional B-mode 

ultrasonography, 2D SWE, 
and 3D SWE.

Possible With a sensitivity of 0.881, 

NPV of 0.788, an accuracy of 
0.804 (80.4%), and Youden’s 

index of 0.57, B-mode 

ultrasound plus 2D SWE 
produced the best results.

[15]

Gastrointestinal 
Tract

CNN On the Kvasir dataset, 
benchmark CNN models 

including GoogleNet, 

ResNet50, and AlexNet were 
pre-trained.

Possible AUC was 99.98%, sensitivity 
was 96.8%, specificity was 

99.20, and accuracy was 97% 

for AlexNet.

[16]

Colon CNN Mask-RCNN with ResNet50 
and ResNet101 backbones,

Possible Segmentation results of 
66.07% IOU on the ETIS- 

LARIB dataset, 69.04% IOU 

on the CVC-Colon dataset

[17,18]

Prostate Gland RTSE + 
CETRUS

CETRUS (Ultrasound), Real- 
Time Strain Elastography

Possible Sensitivity: 92.1% 
Accuracy: 86.2% 

Negative Predictive Value: 

84.6%

[19]

Gastrointestinal 

Tract

CNN Five CNN models were 

trained: VGG, ResNet, 
MobileNet, Inception-v3, and 

Xception. 

Training on Google Colab; 
Keras was used for neural 

networks

Possible Accuracies are as follows: 

VGG: 98.3% 
ResNet: 92.3% 

MobileNet: 97.6% 

Inception-v3: 90% 
Xception: 98.2%

[20]

Lower 

Gastrointestinal 

Tract

FFNN FFNN is based on hybrid 

features of GoogleNet, LBP, 

GLCM, and FCH

Possible Accuracy: 99.3% 

Precision: 99.2% 

Sensitivity: 99% 
Specificity: 100% 

AUC: 99.87%

[21]

(Continued)
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Table 2 (Continued). 

Organ(s) 
Targeted

Underlying 
Technique

Remarks Real-Time? Accuracy Reference

Gastrointestinal 
Tract

CNN Training using the VGG-19 
CNN dataset, 

Logistic Regression and 

Ensemble of extracted 
features were best for 

validation.

Possible 83% accuracy, F1 score of 
0.821

[22]

Gastrointestinal 

Tract

CNN VGG-16, ResNet-18, and 

DenseNet-201 combined for 

an ensemble of deep features 
as a singular feature vector, 

Feature extraction based on 

SVD for optimization

Possible Accuracy: 97% [23]

Breast MRI/ 

Ultrasound 
CNN + 

Augmented 

reality + 
optical 3D 

sensor

MRI for detecting the lesion 

and creating a tumor model, 
Optotrak system for 3D 

location of the lesion

Possible The error values of the 

three-dimensional views 
were 0.75, 0.99, and 0.80 

respectively

[24]

Breast CNN The model were created by 

fusing the Tensorflow and 

Keras Python libraries, and 
the Curated Breast Imaging 

Subset of the DDSM Digital 

Database for Screening 
Mammography (CBISDDSM) 

was used in this work

Possible The final models, “model 1” 

and “model 2”, respectively, 

attained AUCs of 0.785 and 
0.774.

[25]

Knee CNN MRI of the knee 3D deep 

neural network model for 

ACL injuries.

Possible ROC-AUC values of 0.983 

0.006, and 0.983 are obtained 

with standard knee dataset

[26]

Lung CNN Two CNN architectures are 
used for testing. Named VGG 

and ResNet. More precisely 

VGG16 and ResNet50. And 
is trained on Automatic 

Cancer Detection and 

Classification in Whole slide 
Lung Histopathology 

(ACDC@LUNGHP) dataset.

Possible ResNet has higher accuracy 
when the ImageNet dataset is 

used (75.2% vs 70.5% for 

Top-1 accuracy and 93% vs 
91.2% for Top-5 accuracy). 

Results showed that CNN 

can be used for lung cancer 
detection but efforts are 

required to increase 

classification accuracy.

[27]

(Continued)
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Table 2 (Continued). 

Organ(s) 
Targeted

Underlying 
Technique

Remarks Real-Time? Accuracy Reference

Skin CNN Human Against Machine 
(HAM) 10000 dataset is used 

for the classification of skin 

cancer. VGG16, VGG19, and 
a Deep CNN model are 

implemented, trained, and 

evaluated.

Possible The DCNN has given 
superior results compared to 

VGG16 and VGG19. Having 

training accuracy of 99 
(VGG16: 98 and VGG19: 96), 

testing accuracy of 99 

(VGG16: 96 and VGG19: 94), 
training loss of 0.03 (VGG16: 

0.12 and VGG19: 0.19) and 

testing loss of 0.02 (VGG16: 
0.16 and VGG19: 0.20).

[28]

Skin CNN Human Against Machine with 
10000 training images 

(HAM1000) dataset is used. 

Different CNN architectures 
along with a few standard 

ways for comparison are 

used.

Possible Better results were obtained 
using CNN trained and 

testing accuracy was 83.11% 

with precision 0.81 and recall 
0.80. Fscore obtained was 

0.82.

[29,30]

Breast ROI-based 

DL for CAD 
and multi- 

fractal 

dimension, 
feature 

fusion

Applying ROI-based DL on 

digital mammogram images to 
extract relevant features

Possible The area under the curve will 

be a problematic issue in 
diagnosis. But with multi- 

fractal dimension approach 

and feature fusion, this can be 
handled better.

[31,32]

Breast Transfer 

Learning

Modified Xception Model 

helps achieve better results

Possible Accuracy: 99% 

Precision: 99.003% 

Recall: 98.995% 
Sensitivity: 98.55% 

Specificity: 99.14%

[33,34]

Table 3 Various Image Modalities and Cancer Affected Organs

Cancer affected 
organs

Suitability of Image Modality

Breast Popular Image Modalities: 
Digital Breast Tomosynthesis (DBT); Mammography (MMG); MRI; Dedicated CT; positron emission mammography; 

Dynamic contrast-enhanced MRI; ultrasound imaging; 

Suitability: 
MMG has the highest accuracy of 87.3%

Ophthalmology Popular Image Modalities: 
Optical coherence tomography (OCT); Retinal Fundus Photographs (RFP) 

Suitability: 

RFP has the best accuracy of nearly 100%

(Continued)
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Image Pre-Processing
Images can be gathered after an imaging modality is selected for a specific disease type. It might be impossible to extract 
the information required for medical analytics for illness diagnosis from the image data in its raw format. Pre-processing 
for the photos must be done in stages. Image pre-processing methods for cancer illness identification are highlighted in 
this subsection. Pre-processing includes a five-step procedure: background removal, identification of the bounding box, 
enlarging the bounding box, normalizing image intensity, and image resizing. Table 4 shows the pre-processing 
techniques used for various types of cancer.49–55

Immunotherapy and DL Models
The field of immunotherapy is becoming more and more popular for treating cancer. There are numerous immunotherapy 
strategies available,56,57 and it is necessary to determine which therapy is best for each individual patient. For accurate 
therapy, these identifications should also be made in real-time with diagnostics. DL methods like those in58,59 are applied 
to increase the precision. The use of ML and DL methods as an immunotherapy modality is covered in full in.59

Challenges
With the prevalent use of image processing for medical diagnosis, the following challenges are encountered for real-time 
use.

• To ensure that image processing aids in real-time medical diagnosis, scalable algorithms and cutting-edge 
parallelization approaches must be created. With the development of scalable algorithms and more advanced paralle-
lization approaches in recent years, a sustainable ecosystem for image-based medical diagnostics is still required. 
Every tool and method for accessing everywhere should be present in this ecosystem. This might be disseminated in 
a cloud setting.

Table 3 (Continued). 

Cancer affected 
organs

Suitability of Image Modality

Respiratory Popular Image Modalities: 
CT scans, chest X-rays (CXR) 

Suitability: 

CT has the highest accuracy of 88.7%

Ovary Popular Image Modalities: 

Optical Imaging; CT; MRI 
Suitability: 

Optical has the highest accuracy of 86%

Leukemia Popular Image Modalities: 

Fluorodeoxyglucose with Positron Emission Tomography (FDG-PET); MRI; Positron emission tomography-computed 

tomography (PET-CT) Scans; Ultrasound Imaging 
Suitability: 

Even though it is extremely difficult to detect leukemia, MRI is the most suitable

GI tract Popular Image Modalities: 

Ultrasound (US); CT; MRI Imaging; PET 

Suitability: 
FDG Pet with 90% accuracy

Gliomas Popular Image Modalities: 
Computed Tomography, MRI, Hyperstereoscopy Image, MR Spectroscopy 

Suitability: 

98% accuracy for classification is achieved using MR images
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• Real-time image processing for medical diagnostics requires a High-Performance Computing (HPC) environment 
like a GPU, TPU, or FPGA. Additionally, a computerized process and analog microscopes for examination necessitate 
significant infrastructure investments. Global attention must be paid to the availability of this infrastructure in rural 
areas, emerging countries, and underdeveloped countries for these technologies to be used worldwide. Rural places 
with limited equipment and experience, particularly those with imbalanced medical expertise, will profit from these 
developments.

• Due to network capacity limitations, transmitting breast cancer pathology images will be complex. Moreover, there 
is no guarantee that highly qualified cancer specialists at big city hospitals will always be accessible for online diagnosis. 
Making an automated version that is on par with human expertise in making informed decisions is necessary.

• Even though the cloud environment is faster, edge devices in the health care centers could become a bottleneck. 
Edge devices must have faster processing power. When possible, computations should be performed entirely on edge 
devices, with the least amount of data being uploaded or downloaded to or from the cloud.

Discussions
This section highlights the essential findings in the current work made during the literature survey to provide a real-time 
medical diagnosis of diseases like cancer.

Computer-assisted diagnosis (CAD) is used to help diagnose early esophageal squamous cell carcinomas (ESCCs) 
and precancerous lesions in real-time are done in.12,60–73 It is crucial to find cancer early. However, endoscopic 
examination quality control and the general need for skilled endoscopists are significant issues on a global scale. For 
automating to enable a CAD system to function as “a second observer” during an endoscopic examination and help non- 
experts diagnose cancer and reduce missed diagnoses, high-performance DL models are required. In theory, there are 
proofs for high-performance deep-learning models that can detect cancer in an automated manner. In the real-time 
diagnosis of cancer and spinal illnesses, execution speed is just as crucial as accuracy. In,74 Rapid findings are available 
from the IdyllaTM EGFR Mutation Test three hours after the request. This study sought to evaluate the results of the 
IdyllaTM EGFR Mutation Test in comparison to those from the most recent standardized testing.

Table 4 Pre-Processing Techniques for Various Types of Cancer

Cancer Type Image Pre-Processing Techniques used

Breast Cancer Mean filter or average filter; Median filter, Wiener filter; Adaptive median filter. The adaptive Median Filter is the one that 
provides the best accuracy.
● Maximum accuracy with Pre-processing: 95.42%
● Maximum accuracy with Pre-processing: 98.34%

Lung Cancer Enhancement; Noise/background removal; contrast optimization
● Maximum accuracy with Pre-processing: 92%
● Maximum accuracy with Pre-processing: 86%

Skin Cancer CHC-Otsu algorithm; Otsu Thresholding. In addition to showing improvement in accuracy, these techniques also reduced the 

execution time.
● Maximum accuracy with Pre-processing: 93.3%
● Maximum accuracy with Pre-processing: 92.1%

GI Tract 
Cancer

Augmentation approaches; Gaussian noise; salt and pepper noise; Poisson noise removal
● Maximum accuracy with Pre-processing: 93.3%
● Maximum accuracy with Pre-processing: 92.1%

Gliomas The maximum accuracy achieved for detecting cancerous brain tumors is 98%.
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Possibility of Real-Time Analysis and Detection
Millions of AI/DL models for cancer and spinal illness detection were never used in clinical settings.75–83 This is due to 
several factors. One is that, until recently, there needed to be more relevant regulatory agency instruction regarding the 
procedures required for regulatory approval. This has recently begun to alter. One significant and occasionally under-
appreciated impediment to the application of AI in healthcare settings is the unavailability of user-friendly software. With 
many advancements in DL models for exascale computing in the cloud, it becomes a reality to have real-time medical 
diagnostics in remote and rural areas in the absence of experts and costly equipment.

The first step in applying DL in clinical practice is digitization. While pathology has been reluctant to adopt 
digitization, radiography has already undergone this change. Since more than 20 years ago, there have been tools for 
digitizing pathology samples, but advancements have needed to be faster. The speed of digital images has significantly 
increased recently, and cloud storage is now widely available. An additional innovation is required to make this 
technology more user-friendly, affordable, and accessible in environments with limited resources.

One of the main problems in medicine is communication. Pathologists currently dictate reports entered into electronic 
health records and distributed to clinicians. “How AI will function in this communication system” is unclear. 
Furthermore, it is unclear how the doctor would receive the AI reports and what they will contain. Finally, it is unclear 
how the clinician will apply this knowledge to the patient’s clinical management. DL experts will need to address some 
of these problems collaboratively with pathologists and physicians.

Accuracy of Models in Real-Time
When data to train AI models is more easily accessible, one imagines that DL models predicting response to medicines 
will develop and perform well enough to be integrated into clinical. In the long run, DL models may be used to create 
precise medication based on the distinct profiles of each patient. DL models can be used to find individualized strategies 
for lowering risky behaviors (such as smoking and binge eating) that increase a person’s likelihood of acquiring cancer. 
DL models, which will soon be a standard toolset for comprehending extensive experimental results, can be used to 
understand gene expression and genetic programs in cancer diagnosis and treatment. With high accuracy, it can be used 
to model the response to cancer treatment and create therapeutics. Large datasets and DL models will increase our 
understanding of cancer biology and cancer immunology, which will ultimately help us identify the pattern and 
correlation of different features in images for cancer diagnosis.

Clinical Trials, DL, and Roadblocks for Computer-Aided Cancer Diagnosis
DL in cancer diagnosis aspires to eventually automate an activity currently performed by humans with improved speed or 
accuracy. A comparison is needed between human decisions or another “ground truth” set of diagnoses or classifications 
to determine the effectiveness of a DL model. This section explains the current literature analysis for any work on the 
clinical usage of a deep-learning cancer diagnosis. A supervised mode of DL is used in all the clinical applications 
discussed here. In,84 Coudray et al developed a model to detect lung cancer with an accuracy of 97%. Here the model 
was tested in a clinical workflow with tile-based slide images. When the same model was used for the whole slide image, 
the accuracy dropped to 83%. In,85 local gene expression was done using histopathology images from 23 breast cancer 
patients. ST-Net was used to do the modeling and achieved better accuracy. In86 and,87 DL based model for treating gut 
cancer was proposed and analyzed for its clinical efficiency. In,66 intraoperative cancer diagnosis based on a DL model is 
proposed with an accuracy of 94.6%. Many CNN models are increasingly being used in clinical trials for aiding cancer 
diagnosis using medical image diagnostics. Even though complete automation of cancer diagnosis using DL in the 
clinical workflow is not possible currently, many clinical trials use DL capabilities to understand the statistics better and 
make better decisions.

Explainable DL: Road Ahead for DL in Clinical Cancer Diagnosis
Studying the biological patterns or processes revealed by DL could increase our knowledge and contribute to the medical 
community’s trust in such systems. DL clinical applications currently suffer from scalability and customizability 
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difficulties. Explainable DL models88–91 can ensure doctors that the DL system is performing as expected. To comply 
with health regulatory norms, this is necessary. Patients may also utilize it to understand how their diagnosis and 
treatment are being carried out and if they feel the need to contest the results. The clinical study in92 explains that using 
an explainable DL model in lung cancer diagnosis achieved more than 98% accuracy. A detailed review of explainable 
DL for medical diagnosis is done in.93 In,94,95 comprehensive frameworks for cancer diagnosis using pre-trained CNN 
models are proposed. These models have better computationally cost and accuracy.

Regulatory-Approved DL for Clinical Cancer Diagnosis
The discipline of radiology is a trailblazer for regulatory-approved devices/techniques available in the market. This is 
likely because DL technology intensely loves imaging, and radiology is an image-intensive field. Regulatory-approved 
devices are increasingly available, with many developed countries adopting Software as a Medical Device (SaMD). As 
explained in this paper, autonomous cancer diagnostics is possible through imaging techniques, and many of these 
devices are already regulatory-approved. ML/DL-based SaMD are strongly tied to each nation’s industrial and cultural 
histories; a development concentrated on each nation’s advantages can result in increased global competitiveness. 
Additionally, considering each nation’s advantages and building a framework for more operational improvements are 
necessary to maximize DL’s healthcare possibilities.

Future Directions
The automated real-time diagnosis of medical conditions will increase by deploying new DL techniques across scientific 
research, inquiry, and healthcare support. The data and computational resources available will determine the growth rate 
and application scope. Further, DL-driven efforts will be made in these areas, for example, to guide and plan the use of 
radiation and systemic therapy and to forecast cancer patients’ reactions using multimodal data dynamically. The hope 
and enthusiasm around AI will continue to be fueled by such initiatives. However, clinical translation will not advance 
until a rigorous statistical foundation, regulatory infrastructure, and standards for benchmarking to ensure quality control 
and validation. The first will be DL tools that focus on workflow efficiencies.

Conclusions
The main objective of this systematic review was “Can DL models automate medical diagnosis (particularly for cancer 
illnesses) in real-time?” It was found that automated cancer diagnosis is only possible with a high-performance DL 
model, high-performance infrastructure, and sophisticated governance mechanism.96 The literature was examined to find 
DL models that can conduct precise medical diagnoses utilizing photos without a specialist’s assistance. High- 
performance DL models with this kind of potential have been found.97,98 The next step is to confirm that these models 
can be used in a way that allows for real-time outcomes. These kinds of high-performance DL models have been 
discovered. The next stage is to verify that these models can be applied in a fashion that allows for real-time results. 
Real-time results depend on the model’s efficiency and the availability of high-performance infrastructure. The high- 
performance infrastructure includes

• advanced input devices (AR/VR-based radiography instruments),
• high-performance processing units (GPU, TPU, and FPGA), and
• a high-speed communication medium with incredibly swift edge devices.
Even though such high-performance infrastructure is only accessible in far-off places, it is via widespread use that 

a sustainable digital healthcare system will be created. A sophisticated governance framework, protocols for utilizing 
high-performance DL models and high-performance infrastructure must all be designed. This last criterion is still a work 
in progress. Society can only have a fully automated, real-time-delivering DL model if all three conditions are met.

For DL to be practically used in cancer diagnosis, the biological relevance of explainability must be thoroughly 
studied. Explainability will help receive regulatory approval and make DL a diagnostic tool. Medical imaging comprises 
cross-validating clinically significant regions discovered by DL against pathology analysis. The best guess method of DL 
will not be sufficient for clinical usage in diagnosing cancer. Probabilistic DL to quantify prediction uncertainty will be 
crucial in aiding DL to be a better diagnostic tool.
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