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Objective: This study aims to identify differentially expressed genes (DEGs) in neuroblastoma (NB) through comprehensive 
bioinformatics analysis and machine learning techniques. We seek to elucidate these DEGs’ biological functions and associated 
signaling pathways. Furthermore, our objective extends to predicting upstream microRNAs (miRNAs) and relevant transcription 
factors of pivotal genes, with the ultimate goal of guiding clinical diagnostics and informing future treatment strategies for 
Neuroblastoma.
Methods: In this study, we sourced datasets GSE49710 and TARGET from the GEO and UCSC-XENA databases, respectively. 
Differentially expressed genes (DEGs) were identified using the R language “limma” package. Subsequent Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of these DEGs were conducted using the “clusterProfiler” 
package. We employed Weighted Gene Co-expression Network Analysis (WGCNA) to isolate the most significant modules associated 
with death and MYCN amplification, specifically MEpink and MEbrown modules. These modules were then cross-referenced with the 
DEGs for further GO and KEGG pathway analyses. LASSO regression analysis, facilitated by the “glmnet” package, was utilized to 
pinpoint three hub genes. We performed differential analysis on these genes and constructed Receiver Operating Characteristic (ROC) 
curves for disease diagnosis purposes. Immune infiltration analysis was conducted using the “GSVA” package’s ssGSEA function. 
Additionally, single-gene Gene Set Enrichment Analysis (GSEA) on the hub gene was carried out based on Reactome and KEGG 
databases. Upstream miRNA and transcription factors associated with the hub gene were predicted using RegNetwork, with visual 
representations created in Cytoscape. Furthermore, to validate the three identified markers in neuroblastoma tissues, quantitative Real- 
Time Polymerase Chain Reaction (qRT-PCR) analysis was conducted.
Results: We identified 483 differentially expressed genes (DEGs) in neuroblastoma. These genes predominantly function in protein 
translation, membrane composition, and RNA transcription regulation, and are implicated in multiple signaling pathways relevant to 
neurodegenerative diseases. Utilizing LASSO regression analysis, we pinpointed three hub genes: VGF, DGKD, and C19orf52. The 
Receiver Operating Characteristic (ROC) curve analysis yielded Area Under Curve (AUC) values of 0.751 and 0.722 for VGF, 0.79 
and 0.656 for DGKD, and 0.8 and 0.753 for C19orf52, respectively. Our immune infiltration analysis revealed significant correlations 
among monocytes, follicular helper T cells, and CD4+ T cells. Notably, in the death group, we observed heightened infiltration levels 
of activated CD4+ T cells, macrophages, and Th2 cells. C19orf52 exhibited a close association with the infiltration of monocytes, 
CD4+ T cells, and Th2 cells, with P-values less than 0.05. Furthermore, qRT-PCR analysis corroborated the upregulation of VGF in 
neuroblastoma tissues, further validating our findings.
Conclusion: The hub genes (VGF, DGKD, and C19orf52) of neuroblastoma are screened. VGF, one of the hub genes, may have 
a high diagnostic value and is involved in the immune cell infiltration in neuroblastoma tissue, which may be used as a biomarker for 
the diagnosis of neuroblastoma and provides a new direction for clinical prognosis prediction and management improvement.
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Introduction
Neuroblastoma, predominantly affecting children under the age of 5, is the most common form of cancer in infants, 
accounting for about 50% of all cancer cases in this demographic and 7–10% of pediatric cancers.1 Annually, 
approximately 650 cases are diagnosed in the United States. Notably, in China, neuroblastoma and ganglioneuroblastoma 
are the primary cancers in infants under one year, accounting for 14.35% of cases in girls and 15.84% in boys.2 This 
neuroendocrine tumor, primarily arising from neural crests of the sympathetic nervous system, commonly occurs in the 
adrenal glands but can also manifest in the pelvis, abdomen, chest, and neck. Despite representing only 8% of childhood 
cancers, neuroblastoma is responsible for 15% of pediatric cancer-related deaths.3 The clinical presentation of individuals 
with neuroblastoma is varied. Some affected individuals undergo spontaneous degeneration or differentiation into benign 
ganglioma, while others can present with an aggressive disease with metastatic dissemination leading to death.4,5 

Neuroblastoma patients can be categorized into low, medium, and high-risk groups based on a variety of factors, such 
as the biological features and clinical presentation of the tumor, including age, histopathological features, disease stage, 
presence of MYCN amplification, and others.3,6 The surgical and chemotherapeutic response of the individuals in the 
medium and low-risk groups is better, leading to an above 90% long-term survival rate.7 On the other hand, high-risk 
patients often present with widespread metastatic lesions. Despite receiving aggressive treatment, including high-dose 
chemotherapy in combination with surgery, autologous bone marrow stem cell transplantation, and radiotherapy, they 
still present a below 50% long-term survival rate.8–10 Boosting the rate of long-term survival and cure rate of high-risk 
neuroblastoma patients is crucial for the improvement of the overall prognosis and represents a pressing challenge in both 
basic research and clinical therapy. As such, the identification of new and effective targets for neuroblastoma diagnosis 
and treatment is a vital step toward addressing this issue.
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While traditional research methodologies have provided insights into the disease, there remains a need for more 
comprehensive approaches. Prediction of gene connections and molecular pathways can be facilitated by bioinformatics 
analysis.11,12 This methodology is particularly suited to address the intricate nature of neuroblastoma due to its ability to 
analyze and interpret large-scale biological data. We aim to identify key molecular and genetic factors contributing to the 
disease. This includes the analysis of differentially expressed genes (DEGs), signaling pathways, and potential biomar-
kers that are crucial in the progression of neuroblastoma. The Gene Expression Ontology (GEO) serves as an interna-
tional public repository for archiving and freely distributing various forms of high-throughput functional genomic data, 
including microarrays and next-generation sequencing.13 UCSC Xena (http://xena.ucsc.edu/) is a comprehensive gen-
ome-related database that offers numerous functionalities for tumor research and provides visual data analysis tools for 
public data centers. The Weighted Correlation Network Analysis (WGCNA) is an R package designed for conducting 
weighted correlation network analysis. It can serve both as a data exploration tool and a method for ranking genes to 
identify clusters or modules of highly correlated genes.14 In recent years, machine learning (ML)-based techniques have 
gained popularity in addressing a significant challenge in genetic data analysis: the extraction of meaningful genes. Since 
different studies have identified varying sets of key genes, there is still room to improve the confidence of gene 
identification using ML and statistics-based bioinformatics models. Once the hub gene is determined, pathway enrich-
ment and immune cell infiltration analyses are carried out. The regulatory mechanism is further explored by examining 
the interaction mode of miRNA to assess whether miRNA plays a mediating role in real gene expression behaviors. 
While there have been numerous studies exploring the genetic and molecular aspects of neuroblastoma, our research 
represents a pioneering effort in applying a combined approach of bioinformatics, and machine learning to thoroughly 
analyze gene expression and immune cell infiltration in neuroblastoma. To the best of our knowledge, this comprehensive 
methodology has not been previously employed in neuroblastoma.

In summary, this study was based on the analysis of detailed information from large data sets. Hence, it is expected to 
find some biomarkers on the prognosis of neuroblastoma. These can be further utilized in the diagnosis and prognosis of 
NB patients, thus helping them to overcome the clinical heterogeneous disorder and providing a new direction for the 
research concerning clinical prognosis, diagnosis, and treatment of neuroblastoma.

Materials and Methods
Data Acquisition and Differential Gene Screening
The gene chip data set GSE49710 containing 498 neuroblastoma samples was accessed at the GEO database, and the gene 
chip data set TARGET with 150 neuroblastoma samples was retrieved from the UCSC-XENA database. The two groups of 
samples were homogenized and standardized using the R language “preprocessCore” software package, which is capable of 
adjusting for batch effects in the data analysis. The differentially expressed genes (DEGs) were filtered out through the 
R language “limma” package15 to correct the screening conditions of p<0.05 and | log2FC |>0.5. The volcano and heat maps 
were drawn through R to visualize differential genes. “Venny” (https://bioinfogp.cnb.csic.es/tools/venny/index.html), 
a network analysis tool, was utilized for analyzing DEG intersections.

Gene Function Enrichment and Pathway Analysis
The R language “clusterprofiler” package16 was utilized to execute GO (http://www.geneontology.org), KEGG (http://www. 
genome.jp/kegg/pathway.html), and Reactome (http://reactome.org/) enrichment analysis on DEGs. GO is a widely used 
annotation tool for genes and gene products, including cellular components (CC), biological processes (BP), and molecular 
function (MF). Genome sequencing and other high-throughput experimental technologies produce large-scale molecular data 
sets that are integrated and interpreted by KEGG. KEGG pathway17 is a collection database of metabolic pathways, enriched 
to correct p<0.05. The Reactome18 was employed to correct p<0.05 as an enrichment term.

Weighted Gene Co-Expression Network Analysis (WGCNA)
“WGCNA” package14 in R language was employed to identify modules significantly associated with mortality and 
MYCN amplification within the GSE49710 dataset. Cluster analysis was performed using the package’s dedicated 
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functions, with the “pickSoft Threshold” function being particularly instrumental in determining an optimal soft thresh-
old value of 5. This analysis also involved the use of the ‘blockwise Modules’ function to generate gene modules, each 
containing a minimum of 50 genes and based on a merging threshold of 0.25. We specifically focused on modules 
showing a high correlation with mortality and MYCN amplification for subsequent Module Membership (MM) and Gene 
Significance (GS) analysis. Furthermore, to identify overlapping genes, differential genes, and those within the most 
pertinent modules related to death and MYCN amplification were mapped using R language and visualized in “Venny”.

LASSO Regression Analysis
The least absolute shrinkage and selection operator (LASSO) regression is a simplified model obtained by constructing a penalty 
function, which can be used to process a large number of collinear sample data. The variable can be reduced by adjusting the 
penalty coefficient λ. When λ is bigger, the punishment is stronger. Thereby, the independent variable with a large influence on 
the dependent variable can be found. This research utilized the R language “glmnet” package19 to carry out regression analysis on 
GSE49710 and TARGET data sets to further narrow the gene range and obtain 29 and 36 variables, respectively.

ROC Diagnostic Analysis of Hub Gene
The receiver operating characteristic curve (ROC) can be utilized to directly determine the diagnostic efficacy of each 
diagnostic index. The larger the area under the curve (AUC), the more diagnostic value it has. The R language “pROC” 
package20 was employed to draw the ROC curve of the obtained hub gene and screen the biomarkers with diagnostic 
potential according to the AUC value.

Immune Infiltration Analysis
The GSE49710 data set was analyzed through the function ssGSEA of the R language GSVA (version 3.6) package,21 

and the “ggplot2”package22 was used for mapping. To analyze the infiltration of immune cells in neuroblastoma, 
compare the variation in immune cell infiltration between the survival group and the death group, and assess the link 
between the selected neuroblastoma hub gene and the rate of immune infiltration in neuroblastoma tissue.

Construction of TF-miRNA-Hub Co-Regulatory Network
RegNetwork (https://regnetworkweb.org/) was utilized for the prediction of the miRNA and transcription factors 
upstream of the hub gene. Cytoscape23 software was employed for visualization of the TF-miRNA-hub co-regulatory 
network to further verify the relationship between the hub gene and neuroblastoma at the molecular level.

Clinical Specimens
The Formalin-fixed paraffin-embedding samples of 4 NB tissues and 4 non-NB tissues (lymph nodes) were collected 
from Anhui Children’s Hospital (Hefei, China) without chemotherapy or radiotherapy before surgical excision and all 
patients gave informed consents. The study has been approved by the Ethics Committee of the Anhui Provincial 
Children’s Hospital and was conducted in compliance with the Helsinki Declaration.

RNA Isolation and Determination of Target Gene Expression Using qRT-PCR
To confirm our bioinformatics results, qRT-PCR was conducted on NB and non-NB tissues. Total RNA was extracted 
using a kit (AmoyDx, China). Then RNA was converted into cDNA via reverse transcription by a Reverse transcription 
tool (Novoprotein, China). qRT-PCR analysis was completed via a normal protocol from Power SYBR Green 
(Novoprotein, China). Every protocol was completed as per the supplier’s specifications. The Δct results were normalized 
to the values of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). qRT-PCR analysis and data acquisition were 
completed via an ABI Q5 apparatus. All specimens were studied three times. The primers were as follows: 

VGF
Forward(F): CGCTGACCCGAGTGAATCTG
Reverse (R): CATACGCGCCTGGAATTGA
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C19orf52
Forward (F): CGCTGTGTATGTGGGTCTG
Reverse (R): AGAGCCCCAGGTTGACGTA
DGKD
Forward (F): CTTCGAGGGCGAACGCTTTA
Reverse (R): TTTTGGTACTGGATTCAGCTACG
GAPDH
Forward (F): GGAGCGAGATCCCTCCAAAAT
Reverse (R): GGCTGTTGTCATACTTCTCATGG

Statistical Analysis
Statistical analyses were performed by GraphPad Prism 7.0 software. Data were presented as the mean ± SD. The t-test 
was used for comparison between the two groups.

Results
Flow Chart
Figure 1 Depicts the analysis flow chart of this research.

DEGs Recognition of Neuroblastoma
In the GSE49710 dataset, there were 6132 upregulated and 5529 downregulated differentially expressed genes (DEGs) 
(Figure 2A). A heat map illustrating the differential gene expression levels in the GSE49710 dataset is shown in 
Figure 2B. In the TARGET dataset, 420 DEGs were upregulated and 272 were downregulated (Figure 2C), with 
Figure 2D displaying a heat map of the differential gene expression levels in the TARGET dataset.

GO and KEGG Analysis of Neuroblastoma DEGs
A Venn diagram was utilized to delineate the intersection of differentially expressed genes (DEGs) across two datasets. We 
identified 265 upregulated genes (Figure 3A) and 188 downregulated genes (Figure 3B). Subsequent analysis of co-differential 

Figure 1 Flowchart of data preparation, processing, analysis, and validation.
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genes revealed that the DEGs primarily influenced biological processes such as protein polyubiquitination, cell protein complex 
disassembly, translation elongation, and mitochondrial gene expression. Notably, the cell components significantly impacted by 
these DEGs were enriched in areas like the mitochondrial inner membrane, mitochondrial matrix, mitochondrial protein 
complex, and transferase complexes involved in phosphorus transfer. Furthermore, the DEGs exhibited a pronounced effect 
on molecular functions including catalytic RNA activity, ribosomal components, and nucleotide transferase activity, as illustrated 
in Figure 3C. Additionally, KEGG enrichment analysis indicated a significant association of neuroblastoma DEGs with 
neurodegenerative diseases, encompassing conditions such as amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease (Figure 3D).

Figure 2 DEGs recognition of neuroblastoma. (A) Difference analysis volcano map in GSE49710 dataset (B) Difference analysis heat map in GSE49710 dataset. (C) 
Difference analysis volcano map in TARGET dataset (D) Difference analysis heat map of TARGET dataset. (A and C) Difference analysis volcano map (B and D) Difference 
analysis heat map (GSE49710 up-regulated 6132, down-regulated 5529. TARGET up-regulated 420, down-regulated 272).
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Weighted Gene Co-Expression Network Analysis
WGCNA was conducted for screening the genes with a stronger correlation with death and MYCN amplification from the 
GSE49710 gene in the data set. The results showed that when the soft threshold of the selection adjacency matrix was five, 
the links among genes in the network were most consistent with the scale-free network distribution (Figure 4A). The power 
value was set to five to divide 18 gene modules. Among these modules, the modules named MEbrown and MEpink had the 
strongest correlation with Gene Set Expression (GSE) death and MYCN amplification (Figure 4B). It suggested that the 
genes in MEbrown and MEpink modules had a stronger correlation with GSE death and MYCN amplification. Afterward, 
further study was carried out for MEbrown and MEpink modules and death, whose resulting data depicted a positive 
association between Module Membership (MM) and Gene Significance (GS) (Figure 4C and 4D).

Figure 3 GO and KEGG analysis of neuroblastoma DEGs. (A) Differential analysis up-regulated gene intersection (265 genes). (B) Differential genes down-regulated gene 
intersection, 188 genes were obtained. (C) GO functional enrichment analysis (including BP MF CC). (D) KEGG pathway enrichment analysis results.
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Overlapping Gene Screening and GO and KEGG Analysis
The intersection of MEbrown and MEpink module genes and co-differential genes was obtained by using the Venn 
diagram, and a total of 336 overlapping genes were obtained (Figure 5A). GO analysis and TOP5 KEGG were carried out 
to draw an enrichment network diagram, aiming to further clarify the association between overlapping genes and 
functions and mechanisms of action. GO analysis results showed that its function was mainly related to protein 
polyubiquitination and catalytic RNA synthesis (Figure 5B). The KEGG enrichment network diagram (Figure 5C) 
depicts the relationship between the top 5 KEGG result genes and pathways.

LASSO Regression Analysis Results
The regression analysis of GSE49710 and TARGET data sets was carried out using LASSO regression to further narrow 
the gene range. Through cross-validation and at the lowest mean square error, 29 genes were screened by GSE49710 
analysis, 36 by TARGET analysis, and three hub genes were obtained by using the intersection of the Venn diagram 
(Figure 6).

Hub Gene Difference, Correlation Analysis, and ROC Diagnosis Analysis
The difference analysis of the three hub genes obtained after Lasso analysis was carried out in the two data sets. The 
value was log FC, showing two genes with high expression and one gene with low expression (Figure 7A). At the same 
time, the correlation of three hub genes was analyzed. VGF was positively associated with C19orf52 and depicted 

Figure 4 Weighted gene co-expression network analysis. (A) Screening soft threshold powers value, screening results for 5 when the most appropriate. (B) Association of 
gene modules with clinical traits. (C)The positive correlation between gene significance for death and module membership in the brown module. (D) The strong positive 
correlation between gene significance for death and module membership in the pink module.
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a negative association with DGKD. C19orf52 was also negatively associated with DGKD (Figure 7B). In addition, ROC 
diagnostic analysis was performed on three hub genes. When AUC>0.5, the nearer the AUC value is to 1, the more 
favorable the diagnostic effect of the diagnostic object. Based on the two data sets of GSE49710 and TARGET, the ROC 
curves of the three hub genes were drawn utilizing the R language pROC software package. The results indicated that the 
AUC value of the hub gene was basically between 0.6 and 0.8, and the diagnostic value of C19orf52 (AUC=0.8, 0.753) 
was relatively high (Figure 7C and D).

Figure 5 Overlapping gene screening and GO and KEGG analysis.(A) Two module genes intersected with differential genes to obtain 336 genes. (B) GO enrichment 
analysis of 336 genes. (C) Corresponding relationship between genes and pathways.
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Figure 6 LASSO regression analysis results. (A) GSE49710 lasso regression analysis (screened 29 genes). (B) TARGET lasso regression analysis (36 genes screened). (C) 
The results of the two methods intersected to obtain three hub genes.
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Immune Infiltration Analysis
The function ssGSEA of the R language GSVA package was utilized for the evaluation of the proportion of immune 
infiltrates on the GSE49710 data set. Correlation analysis of the infiltration of 23 different immune cells was performed, 
of which monocytes, follicular helper T cells, and CD4+ T cells were strongly correlated (Figure 8A). The GSE49710 
data set was categorized into the death and the survival groups, wherein it was determined that the rate of infiltration of 
activated CD4+ T cells, macrophages, mast cells, plasmacytoid dendritic cells, and Th2 cells was high in the death group. 
Whereas the degree of infiltration of the activated dendritic cells, immature B cells, immature dendritic cells, natural 
killer T cells, monocytes, follicular helper T cells, natural killer cells, Th1 and Th17 cells were high in the survival group 
(Figure 8B). The ggplot2 was used to assess the association between hub genes and immune cells. VGF expression 

Figure 7 Hub gene difference, correlation analysis, and ROC diagnosis analysis. (A) Hub gene difference analysis (value represents logFC value). (B) Correlation analysis of 
core genes (red lines represent positive correlation, green lines represent negative correlation, the deeper the color, the stronger the correlation). (C and D) Receiver- 
operating characteristic curve.
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negatively correlates with the presence of monocytes and immature dendritic cells. In contrast, higher levels of DGKD 
are positively linked to increased infiltration of activated CD4+ T cells and T follicular helper cells. C19orf52 shows 
a complex relationship with immune cells, having both positive and negative correlations; for instance, a positive 
correlation with monocyte infiltration and a negative one with activated CD4+ T cells and T follicular helper cells. 
(Figure 8C).

Single-Gene GSEA Analysis and Construction of TF-miRNA-Hub Co-Regulatory 
Network
Correlation analysis was performed between the three hub genes and all genes in the data set GSE49710, and a heat map 
was used to display the expression of positively correlated genes (top 50) and the expression of negatively correlated 
genes (first 50) (Figure 9). According to the data of the correlation analysis, the single-gene GSEA analysis based on 
Reactome and KEGG was executed, and the first 20 results of the three hub genes were displayed respectively 
(Figure 10). To further verify the link between the hub genes and neuroblastoma, the RegNetwork was utilized for the 

Figure 8 Immune infiltration analysis. (A) Correlation of different immune cell infiltration. (B) Difference of immune infiltration between death group and survival group (ns: 
Not significant (p ≥ 0.05), *: p < 0.05, **: p < 0.01, ***: p < 0.001). (C) Correlation between the hub gene and immune cell infiltration (only p < 0.05 immune cells).
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Figure 9 Heatmap of the gene correlation. Gene expression analysis of positive correlation top50 and negative correlation top50 of Hub gene. (A) C19orf52 Correlation 
Analysis Heatmaps. (B) DGKD Correlation Analysis Heatmaps. (C) VGF Correlation Analysis Heatmaps.
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Figure 10 Single-gene GSEA analysis. Based on the results of correlation analysis in Figure 8, GSEA analysis of single gene based on Reactome and KEGG was performed. 
(A) GSEA Analysis for C19orf52. (B) GSEA Analysis for DGKD. (C) GSEA Analysis for VGF.
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prediction of the miRNAs and related transcription factors upstream of the hub gene, while the Cytoscape software was 
utilized for mapping analysis. The data depicted that CLEC5A, GABPA, ZEB1, MXI1, MYC, JUND, LMO2, BACH1, 
BACH2, JUNB, MAX, ARNT, CREB1, REST, SP1, POU3F2, USF1, EGR1, PPARG, FOSL1, FOS, JUN, HAX1, MEF2A, 
CTCF, TP53, TAL1, PAX6, E2F1, FOSB, ATF2, and MZF1 may be potential TFs that regulate the hub gene expression. 
The potential upstream miRNAs of the hub gene included has-miR-432, has-miR-620, has-miR-516b, has-miR-522, has- 
miR-671-5p, has-miR-890, has-miR-27a, has-miR-603, has-miR-296-3p, has-miR-936, has-miR-27b, has-miR-432-5p, 
has-miR-377, has-miR-922, has-miR-29a, has-miR-29b, and has-miR-29c (Figure 11).

Validation of Key Genes by Real-Time qPCR
To confirm the involvement of key genes in the pathogenesis of neuroblastoma (NB), quantitative Real-Time Polymerase 
Chain Reaction (qRT-PCR) was utilized to measure the expression levels of three key genes in four NB tissue samples 
and four non-NB lymph gland samples. Our findings revealed that VGF is significantly upregulated in neuroblastoma 
tissues (Figure 12), corroborating our bioinformatics analysis. However, the expression levels of DGKD and C19orf52 
did not show a statistically significant difference when comparing NB tissues with normal tissues. These observations 
indicate that the hub gene VGF might play a role in the etiology of neuroblastoma and could potentially serve as 
a biomarker for this disease.

Discussion
NB is a significant cause of childhood malignancy-related death, and early diagnosis and treatment are essential for extending 
patients’ survival time.24 Therefore, it is necessary to investigate prognostic indicators for NB further. With the development of 
bioinformatics, sequencing technology is increasingly used to explore the early diagnosis, treatment, and prognosis of 

Figure 11 Upstream prediction. Prediction of miRNAs and transcription factors upstream of three Hub genes.
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cancer.25 In the field of pediatric neuroblastoma, studies utilizing bioinformatics to identify prognostic markers remain 
relatively scarce. There has been only a report highlighting GDPD5, related to lipid metabolism, as a potential prognostic 
biomarker.26 Additionally, variations in the expression of genes linked to ferroptosis have been observed between stages 1 and 
4 of neuroblastoma.27 There is a pressing need for continued investigation into these biomarkers and their validation in clinical 
samples to enhance our understanding of the disease and improve prognostic accuracy. This study aims to seek hub genes 
(DEGs) between NB with a favorable prognosis and NB with an unfavorable prognosis to understand the mechanism of NB 
further and potentially provide diagnostic biomarkers and therapeutic targets.

The data sets GSE49710 and TARGET were accessed at the databases GEO and UCSC-XENA, respectively, and the DEGs 
were screened by using R language. The respective upregulated and downregulated DEGs reached almost 265 and 188 in 
number. The GO analysis and KEGG enrichment analysis were performed with the data depicting the elevated concentration of 
neuroblastoma DEGs in the pathways of neurodegenerative disorders such as amyotrophic lateral sclerosis, Parkinson’s disease, 
Huntington’s disease, and Alzheimer’s disease. Among them, protein polyubiquitination, translation elongation, catalytic RNA 
activity, and mitochondrial gene expression can lead to the incidence and development of tumors.28–31 Existing research has 
indicated that ubiquitination performs a vital function in cancer and neurodegenerative disorders, so the regulation of ubiquitina-
tion pathways is considered to be a promising therapeutic strategy for tumors and neurodegenerative diseases.

To screen out DEGs with stronger correlations with death traits and MYCN amplification from the GSE49710 data 
set, WGCNA analysis was conducted. The high expression of the MYCN gene was positively correlated with death traits 
and decreased the survival rate of neuroblastoma, which was consistent with the conclusion described in the literature, 
such as the high expression of MYCN can promote the proliferation of neuroblastoma cells and increase invasion and 
metastasis, leading to poor prognosis.7 In addition, WGCNA analysis was performed on the TARGET data set, but the 
results were not very significant, so they were not displayed in the figures.

To further narrow the range of DEGs, the machine learning LASSO regression analysis was performed on the two 
data sets GSE49710 and TARGET, and finally, three hub genes were obtained, ie C19orf52, DGKD, and VGF. The 
difference and correlation analysis of the hub genes were conducted, and the results depicted two genes that were highly 
expressed and one lesser expressed gene, of which VGF was positively associated with C19orf52 and negatively 
associated with DGKD. C19orf52 depicted a negative association with DGKD. Further ROC diagnostic analysis depicted 
that the AUC (AUC=0.8, 0.753) of C19orf52 was relatively high, with a high diagnostic value.

Neuroendocrine factor VGF is a polypeptide precursor composed of 617 amino acids, mainly expressed in neurons.32 

Adult VGF has been detected in several parts of the brain, including the adrenal medulla, cerebral cortex, hippocampus, 
hypothalamus, cerebral olfactory system, as well as motor neurons of the spinal cord.33 Existing studies have shown that 

Figure 12 The relative mRNA expression of VGF (a), C19orf52 (b) and DGKD (c) in NB tissues and non-NB tissues. The experiments were repeated three times, and each 
experiment was triplicated. (ns: Not significant (p ≥ 0.05), *: p < 0.05).
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VGF may be a key regulator of Alzheimer’s disease.34 In addition, clinical studies have reported that VGF is related to 
lung cancer,35,36 pancreatic cancer,37 and glioma,38 but its role in neuroblastoma has not been reported, and its 
mechanism needs to be further studied.

The human TIM22 complex considers the C19orf52 as its novel metazoan-specific subunit. C19orf52, essential for 
the TIM22 complex stability, is integrated into the inner membrane of the mitochondria. Additionally, it plays a role in 
the assembly of hTIM22. There have been few reports on C19orf52 in recent years.

Diacylglycerol kinase delta (DGKD), an enzyme of the phosphatidylinositol (PI) cycle, performs a vital function in 
signal transduction, mainly by regulating the balance between these signaling lipids.39 Recent research has implicated 
DGKD in the development and function of the central nervous system.40 Mizuno et al proposed that at the initial/early 
stage of neuroblastoma cell differentiation, DGKD upregulated neurite outgrowth.41

After the hub genes were identified, the possible mechanism was explored. Immune infiltration is an important part of 
the tumor microenvironment. The types and methods of infiltrating cells are correlated with clinical outcomes and are 
expected to become therapeutic targets to improve prognosis. In this research, the degree of immune cell infiltration was 
evaluated, and survival analysis was performed. The resulting data depicted that the progression of neuroblastoma was 
promoted through the downregulation of monocytes by VGF and C19orf52 as well as through the upregulation of 
monocytes by DGKD and through the upregulation of CD4+T cells and Th2 cells by C19orf52, increasing the mortality. 
Therefore, monocytes, CD4+T cells, and Th2 cells can be regarded as therapeutic targets, providing new ideas for the 
treatment of neuroblastoma. Those hypotheses needed more research to reveal the intricate interplay between genes and 
immunocytes.

To gain an in-depth understanding of the hub genes, a single-gene GSEA analysis was executed based on Reactome and 
KEGG, and the first 20 results of the three hub genes were displayed, respectively. C19orf52 is mainly involved in the cell 
cycle and mitosis to enhance the proliferation of neuroblastoma cells. The combination of VGF mediates the interaction 
between cells and extracellular matrix through integrin cell surface interaction to regulate cell movement, proliferation, and 
apoptosis, resulting in tumor growth, infiltration, metastasis, and other effects. DGKD is mainly involved in choline 
metabolism in cancer, induces neuropathy in the tumor microenvironment, and leads to tumor growth and metastasis, resulting 
in perineural infiltration. This research verified the mechanism of hub gene-induced neuroblastoma by utilizing RegNetwork 
to predict the upstream miRNA and related transcription factors of the hub gene. Among these, USF1 is directly linked with 
the three hub genes. Many studies have linked USF1 to the proliferation, metastasis, invasion, and drug resistance of many 
tumors, which indicates the potential of the USF1 gene as a marker for diagnosis, targeted therapy, and prognosis of 
neuroblastoma.

Our study identified several differentially expressed genes (DEGs) potentially involved in neuroblastoma pathogen-
esis. To provide a deeper understanding, we explored the functional roles, regulatory networks, and interactions among 
these DEGs. Gene Ontology (GO) and KEGG enrichment analyses showed that the DEGs are primarily involved in 
critical processes such as protein translation, membrane composition, and RNA transcription regulation. These findings 
suggest that the DEGs may influence neuroblastoma development by modulating essential cellular functions.42 The 
Weighted Gene Co-expression Network Analysis (WGCNA) identified significant modules related to key outcomes, such 
as MYCN amplification and patient survival. These modules suggest that the identified hub genes: VGF, DGKD, and 
C19orf52 play crucial roles in the molecular networks driving neuroblastoma progression. Furthermore, our analysis of 
upstream miRNAs and transcription factors provided insights into the regulatory mechanisms controlling these DEGs, 
highlighting potential targets for therapeutic intervention.

However, the current experiment still has some limitations. Firstly, the clinical sample size for validating hub genes is 
relatively small, and large-scale clinical trials are needed. Secondly, further validation of hub genes at the protein level is 
also required.

Conclusion
In conclusion, the DEGs of neuroblastoma and their biological functions were preliminarily studied through bioinfor-
matics analysis, and three hub genes were obtained, C19orf52, DGKD, and VGF. VGF is upregulated in neuroblastoma 
tissues, consistent with the findings from bioinformatics analysis. The miRNAs and related transcription factors upstream 
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of the hub genes were predicted. These genes which require more clinical specimens to validate their findings may have 
the potential to become targets for neuroblastoma diagnosis, targeted therapy, and prediction of prognosis. However, 
there is no research or report on the correlation between C19orf52 and USF1 gene and neuroblastoma. Therefore, this 
study can provide new research areas and references for subsequent clinical and basic research.
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