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Background: Sleep disorders and low grip strength often co-occur clinically and are geriatric symptoms that cause significant 
socioeconomic burden. Previous observational studies have found an association between sleep behaviors and grip strength, but the 
causal relationship remains unclear.
Purpose: With the Mendelian randomization (MR) approach, the study aimed to determine the causal association between sleep traits 
(sleep duration, insomnia, daytime napping, sleep-wake disorders, chronotype) and low grip strength.
Methods: The study used genetic variants from the genome-wide association study (GWAS) archived in UK Biobank and FinnGen. 
We assessed the potential causal relationship between sleep behaviors and grip strength using inverse variance weighting (IVW), 
weighted median (WM), and MR-Egger. Additionally, we performed sensitivity analyses using Cochran’s Q test, MR Egger Intercept 
test, funnel plots, and leave-one-out method.
Results: We found that sleep duration is causally negatively associated with low grip strength (OR = 0.618, 95% CI = 0.424–0.900, 
P = 0.012). Sleep-wake disorders have a positive association with low grip strength (OR = 1.018, 95% CI = 1.002–1.034, P = 0.029). 
Reversely, high low grip strength risk was causally associated with increased daytime napping (OR = 1.018, 95% CI = 1.004–1.032, 
P = 0.011).
Conclusion: The study revealed causal associations between sleep duration, sleep-wake disorders, and low grip strength. 
Understanding their relationship helps in early clinical intervention to improve the life quality of the elderly.
Keywords: sleep, low grip strength, Mendelian randomization

Introduction
Low grip strength is a common debilitating dysfunction, and not only predicts a decline in muscle mass and function, but 
is also associated with falls and reduced mobility.1 Meta-analyses have demonstrated that low grip strength elevates the 
risk of a variety of diseases, including cardiovascular diseases,2 type 2 diabetes,3 obesity,4 and chronic obstructive 
pulmonary disease.5 In addition, multiple previous studies support the association of weak grip strength with increased 
all-cause mortality in the general and old population.6–8

Sleep quality is a key evaluator of sleep, and sleep quality is recognized as one of the key factors affecting grip 
strength.9 Previous studies have demonstrated that poor sleep quality was associated with decreased muscle mass and 
decreased grip strength.10,11 This may be due to the fact that poor sleep quality affects the metabolism of hormones, 
among which insulin-like growth factor 1 (IGF-1) is a central factor to muscle protein synthesis.12 Sleep patterns are also 
significant for sleep health,13 yet sleep patterns change with age independent of other factors such as comorbidities and 
medications.14 Several prospective cohorts have also examined the strong correlation between circadian rhythm disrup-
tion and skeletal muscle damage in humans.15,16 Epidemiological studies have shown that poor sleep quality is prevalent 
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in the old, with about half or more complaining about their sleep problems.17,18 Therefore, it is essential to explore the 
effects of sleep on grip strength levels in the elderly.

Most of the current studies on sleep and grip strength are observational and are susceptible to confounding factors, 
making it difficult to confirm a causal relationship. In addition, most of these studies utilized cross-sectional designs, so it 
is difficult to infer causality and the direction of causality. To strengthen causal inference, we apply a novel genetically 
informed method. Mendelian randomization (MR) is an approach that uses genetic variants as instruments to estimate the 
causal effects of the exposure on outcome.19 Since genotypes are randomly assigned from parents to offspring, they are 
not subject to reverse causality and confounding factors.20

As mentioned earlier, there may be a correlation between sleep traits and low grip strength, but evidence of causality 
is lacking. This study aimed to investigate the causal relationship between several sleep traits and low grip strength and 
shed light on the causal directions, providing a theoretical basis for clinical improvement of life quality in the elderly.

Materials and Methods
Study Design
We used a bidirectional, two-sample MR design to examine the relationship between sleep traits and low grip strength. 
Analyses were conducted using sleep traits: (i) as the exposure to assess whether sleep traits have a causal effect on low 
grip strength and sleep traits, and (ii) as the outcome to assess whether low grip strength has a causal effect on sleep 
traits. Summary data for all exposure and outcome variables were obtained from large-scale genome-wide association 
studies (GWAS) of individuals of European ancestry. We assessed the role of five different sleep traits on low grip 
strength. These included sleep duration, insomnia, sleep-wake disorders, daytime napping, and chronotype. In addition, 
Figure 1 summarizes the core MR assumptions for the study design.21

This study is reported as per the Strengthening the Reporting of Observational Studies in Epidemiology Using 
Mendelian Randomization (STROBE-MR) guideline (Supplementary Table S1).22 All original studies included in the 
GWAS datasets were ethically approved, and informed consent was obtained from all participants.

Figure 1 Study design and Mendelian Randomisation (MR) fundamental assumptions. (I) The genetic variant must be associated with the exposure. The use of weak IVs can 
bias MR estimates towards the confounded observational estimate in MR settings. (II) The genetic instruments should not be associated with confounders of the exposure- 
outcome relationship. (III) Any association between the genetic instruments and the outcome must be via the exposure.
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Data Sources
Summary data for five sleep traits, including sleep duration (n = 460,099),23,24 insomnia (n = 307,751),25 sleep-wake 
disorders (n = 305,359),25 daytime napping (n = 452,633),26 and chronotype (n = 449,734),27 were obtained from GWAS 
studies in the UK Biobank and FinnGen (R7 release). The UK Biobank is a large-scale biomedical database containing 
genetic and health information from approximately half a million United Kingdom participants aged between 40 and 69. 
The FinnGen research project collected biological samples from 500,000 participants with a median age of 63 years in 
Finland over six years. The details of sleep traits data sources used in this study are in Table 1.

For low grip strength, the summary data were obtained from a recent GWAS meta-analysis on muscle weakness.28 

The study included 48,596 old adults (aged from 60 to 90 years) of European ancestry with the European Working Group 
on Sarcopenia in Older People definition (grip strength < 30 kg Male; < 20 kg Female), adjusted for sex, age, and 
technical covariates.

Genetic Instruments Selection
As genetic instruments, single nucleotide polymorphisms (SNPs) associated with each trait at genome-wide 
significance (P < 5×10−8) were extracted. For phenotypes with insufficient SNPs reaching the threshold, we selected 
instruments with a relaxed threshold (P < 5×10−5). Then, SNPs were clumped to obtain independent loci using 
a threshold of linkage disequilibrium (LD) r2 < 0.001 and a distance of 10,000 kb. When SNPs for the exposure 
were unavailable in the outcome phenotype data, we replaced them with proxy SNPs in high-linkage disequilibrium 
(r2 > 0.800) using the LDlink (https://ldlink.nih.gov/?tab=ldproxy). Furthermore, we removed SNPs strongly 
associated with outcome (P < 5×10−8). Then, we considered several factors to be potential confounders of the 
association between sleep traits and grip strength: body mass index (BMI), fracture, poor appetite, bone mineral 
density, waist circumference, dementia, insulin resistance, strenuous physical activity, oxidative protein damage, age 
at menarche, depression, fall status, and cardiorespiratory. Furthermore, we removed SNPs with potential reverse 
causal effects by the Steiger filtering (Steiger P > 0.05).29 Finally, to quantify the strength of instrumental variables 
(IVs), we calculated F-statistics. F-statistics > 10 suggests that the combined SNPs in our MR model are 
a sufficiently strong instrument to explain phenotypic variants.30 The list of instruments for each phenotype is 
shown in Supplementary Table S2.

Statistical Analyses
This study used the random-effect inverse-variance weighted (IVW) method to estimate overall causal effects. It is 
considered the most predictive method, assuming no directional pleiotropy.31 Then, we conducted the weighted-Median 
method, which gives a credible estimate of effect when up to half of the weight is derived from valid IVs.32 In addition, 
the MR-Egger method provided a causal estimate using the slope of the weighted linear regression against horizontal 
pleiotropy.33

We conducted several sensitivity analyses to further estimate the MR results’ robustness. Cochran’s Q statistic 
evaluated Heterogeneity across IVs.34 We performed the MR-Egger intercept test to assess horizontal pleiotropy.35 

The stability of these genetic variants is measured by funnel plots and leave-one-out method.33 In addition, Mendelian 
Randomization Pleiotropy Residual Sum and Outlier (MR-PRESSO) was used to identify potential pleiotropic outliers 
and provided estimates after excluding these outlier SNPs.35 Moreover, we looked up each instrument SNP and their 
proxies (r2> 0.80) in the PhenoScanner database to assess associations with potential confounding (P < 1 × 10−5). We 
assessed the effects of manually removing these SNPs from the MR analysis to rule out possible pleiotropic effects. 
Finally, because some exposure data were derived from UK Biobank and outcome data were derived from several GWAS 
meta-analysis results, there is some inevitable partial sample overlap. We used MRlap method to assess the potential 
resulting bias.36 If the difference between the raw and adjusted IVW effects was insignificant (P > 0.05), the raw IVW 
estimates could be trusted. Conversely, if we found the difference significant (P < 0.05), we prioritize the adjusted IVW 
estimates as it is not affected by sample overlap.
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All statistical analyses were conducted in the R software (version 4.2.2) using the TwoSampleMR, MR-PRESSO, and 
MRlap packages.37 Effect estimates are reported in odds ratio (OR) with 95% confidence intervals (CI), and P < 0.05 was 
considered statistically significant.

Results
Causal Effects of Sleep Traits and Low Grip Strength
The F-statistics for five sleep traits were above of 10 (12.09–32.67), indicating that the selected IVs has enough power to 
avoid potential weak instruments bias effectively.38,39 The summary results of all the analyses for sleep traits on low grip 
strength are shown in Figure 2 and Table 2.

We obtained 36 significant independent SNPs as IVs for sleep duration, excluding 24 confounder-associated 
variants, 1 incompatible SNP, and 10 palindromic SNPs. The IVW result showed that sleep duration was negatively 
associated with low grip strength (OR = 0.62, 95% CI = 0.42–0.90, P = 0.012 < 0.05) (Figure 3). The weighted 
median and MR-Egger results showed the same direction as those of IVW (OR < 1.00). Moreover, the MR-Egger 

Table 1 Details of GWAS Datasets About Sleep Traits

Exposures Type Definition Sample 
size

Populations Consortium Sources

Sleep 

duration

Categorical 

Ordered

Reported in whole hours: Short sleep duration  

(<6 vs 7 or 8 h); Long sleep duration  

(>9 vs 7 or 8 h)

460,099 European MRC-IEU 

(UKB)

https://gwas.mrcieu. 

ac.uk/datasets/ukb- 

b-4424/23

Insomnia Categorical 

Ordered

Self-reported: usually;Sometimes or rarely; Never 307,751 European FinnGen Kurki MI et al25

Sleep-wake 

disorders

Categorical 

Ordered

Sleep-wake phase disorder; Delayed sleep-wake phase 

disorder

305,359 European FinnGen Kurki MI et al25

Daytime 

napping

Categorical 

Ordered

Self-reported: Never/Rarely; Sometimes; Always 452,633 European UKB Dashti HS et al26

Chronotype Categorical 

Ordered

Self-report: Definitely morning; More morning than 

evening; Do not know; More evening than morning; 

Definitely evening

449,734 European UKB Jones SE et al27

Abbreviations: UKB, UK biobank; MRC-IEU, Medical Research Center-Integrative Epidemiology Center (UK Bristol).

Exposure
Sleep duration

Insomnia

Sleep−wake disorder

Daytime napping

Chronotype

Models
IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

nSNP
36

36

36

66

66

66

18

18

18

48

48

48

6

6

6

OR (95%CI)
0.618 (0.424−0.900)

0.526 (0.322−0.860)

0.587 (0.101−3.402)

1.013 (0.994−1.032)

0.994 (0.968−1.021)

0.999 (0.967−1.032)

1.018 (1.002−1.034)

1.015 (0.993−1.038)

1.007 (0.973−1.043)

1.045(0.721−1.515)

0.839(0.486−1.449)

1.025(0.245−4.282)

1.179(0.886−1.569)

1.116(0.786−1.585)

0.847(0.365−1.962)

Pvalue
0.012

0.010

0.556

0.171

0.675

0.962

0.029

0.173

0.693

0.816

0.520

0.973

0.325

0.657

0.740

0 1 4.5
Odds Ratio

Figure 2 Forest plot for Mendelian randomization (MR) effect estimates with IVW, WM, and MR-Egger: causal effects for sleep traits on low grip strength. OR: odds ratio; 
CI: confidence interval; IVW: inverse-variance weighted; WM: weighted median; nSNP: number of single nucleotide polymorphisms. Horizontal lines represent 95% 
confidence interval.
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intercept test showed no significant horizontal pleiotropy (P > 0.05), and MR-PRESSO did not identify any 
pleiotropic outliers. Funnel plot and leave-one-out analysis showed no single SNP biased effect estimates 
(Supplementary Figures S1 and S2). MRlap analysis showed no significant difference between the raw and adjusted 
IVW estimates (P > 0.05).

For sleep-wake disorders, we got 18 IVs using relaxed P-value thresholds (P < 5×10−5) after removing 1 palindromic 
SNP. Notably, for the large-scale GWAS study on sleep-wake disorders (n = 305,359) that we used, relaxing the P-value 

Table 2 MR Analyses with Heterogeneity, Sensitivity, and Pleiotropy Evaluation for Causal Effects of Sleep Traits on 
LGS

Exposure Outcome SNPs Cochran’s  
Q test (P)

MR Egger  
Intercept (P)

MR

Method OR (95% CI) P

Sleep duration LGS 36 0.193 0.954 IVW 0.618 (0.424–0.900) 0.012
WM 0.526 (0.322–0.860) 0.010

MR-Egger 0.587 (0.101–3.402) 0.556

Insomnia LGS 66a 0.390 0.321 IVW 1.013 (0.994–1.032) 0.171
WM 0.994 (0.968–1.021) 0.675

MR-Egger 0.999 (0.967–1.032) 0.962

Sleep-wake disorders LGS 18a 0.408 0.525 IVW 1.018 (1.002–1.034) 0.029
WM 1.015 (0.993–1.038) 0.173

MR-Egger 1.007 (0.973–1.043) 0.693

Daytime napping LGS 48 0.701 0.978 IVW 1.045 (0.721–1.515) 0.816
WM 0.839 (0.492–1.431) 0.520

MR-Egger 1.025 (0.245–4.281) 0.973

Chronotype LGS 6a 0.910 0.500 IVW 1.161 (0.862–1.563) 0.325
WM 1.083 (0.763–1.538) 0.657

MR-Egger 0.855 (0.361–2.026) 0.740

Notes: aUsing P < 5×10−5 threshold when the eligible single nucleotide polymorphism (SNP) numbers were insufficient (nSNP <3). 
Abbreviations: LGS, Low grip strength; SNP, Single-nucleotide polymorphism; MR, Mendelian Randomization; OR, odds ratio; IVW, 
Inverse-Variance Weighted; WM, Weighted Median.
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Figure 3 Scatterplot of the effect of each single genetic instrument on sleep duration and low grip strength. The slope of each line corresponds to the estimated MR effect 
in different models, and the horizontal and vertical lines indicate each correlation’s 95% confidence interval.
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thresholds may have increased the true positive discovery at the cost of adding few additional false positive results.40 We 
found sleep-wake disorders was significantly associated with low grip strength (IVW: OR = 1.02, 95% CI = 1.00–1.03, 
P = 0.020 < 0.05) (Figure 4). Consistent with the IVW result, the Weighted median and MR-Egger showed a positive 
causal direction (OR > 1.00). The Cochran’s Q and MR-Egger intercept tests showed no obvious heterogeneity and 
horizontal pleiotropy (P > 0.05). In addition, no outlier IVs were identified in the MR-PRESSO analysis. Funnel plots 
and leave-one-out analyses showed single SNP did not bias the result (Supplementary Figures S3 and S4). MRlap 
analysis showed no significant differences between the raw and adjusted IVW P-values for sleep-wake disorders 
(P > 0.05).

Besides, we did not find a significant causal relationship between the genetically predicted insomnia, daytime 
napping, and chronotype with low grip strength (IVW P > 0.05). In the sensitivity analyses, the MR-PRESSO results 
for chronotype showed rs76277841 played a contradictory role with other SNPs. However, we still could not find 
a causal relationship between chronotype and low grip strength after removing it (OR = 0.95, 95% CI = 0.65–1.40, 
P = 0.802). MRlap analyses for these three sleep traits similarly showed no significant difference between the raw 
and adjusted (for sample overlap) IVW P-values (P > 0.05). The visualization of the sensitivity analyses is shown in 
Supplementary Figures S5–S13.

Causal Effects of Low Grip Strength on Sleep Traits
In reverse analyses, we found a significant positive association low grip strength and between daytime napping (IVW: 
OR = 1.02, 95% CI = 1.00–1.03, P = 0.011 < 0.05) (Figure 5). Notably, the IVs used for daytime napping had 
removed the specific SNP (rs3771501), influencing the effect estimates found by the leave-one-out analysis. Similar to 
the IVW result, the Weighted median and MR-Egger also showed a positive causal direction (OR > 1.00). Cochran’s 
Q and MR-Egger intercept tests showed no significant heterogeneity or horizontal pleiotropy (P > 0.05). MR-PRESSO 
did not identify any outliers. Furthermore, funnel plots and leave-one-out analysis verified the robustness of the 
findings (Supplementary Figures S14 and S15). MRlap analysis showed a significant difference between the raw and 
adjusted IVW P-values (P = 0.007 < 0.05). However, the MRlap corrected results were consistent with the primary 
MR analysis result (corrected IVW: OR = 1.08, 95% CI = 0.94–1.23, P = 0.044 < 0.05), which confirms that the IVW 
method is robust. The results of reverse MR are summarized in Figure 6 and Table 3.
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Figure 4 Scatterplot of the effect of each single genetic instrument on sleep-wake disorders and low grip strength. The slope of each line corresponds to the estimated MR 
effect in different models, and the horizontal and vertical lines indicate each correlation’s 95% confidence interval.
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However, we failed to find a potential causal relationship between genetically predicted low grip strength and 
sleep duration, insomnia, sleep-wake disorders, and chronotype (IVW P > 0.05). Moreover, MRlap analyses 
revealed a significant difference between raw and corrected IVW P-values for low hand grip strength to Insomnia 
(P = 0.049 < 0.05) and Sleep-wake disorders analyses (P = 0.004 < 0.05). Similarly, the corrected results of low 
grip strength to Insomnia and Sleep-wake disorders were consistent with the primary MR results (corrected IVW: 
P = 0.856 and 0.428 > 0.05). For the MRlap result for low grip strength to chronotype, no significant difference was 
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Figure 5 Scatterplot of the effect of each single genetic instrument on low grip strength and daytime napping. The slope of each line corresponds to the estimated MR effect 
in different models, and the horizontal and vertical lines indicate each correlation’s 95% confidence interval.

Outcome
Sleep duration

Insomnia

Sleep−wake disorder

Daytime napping

Chronotype

Model
IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

IVW

WM

MR−Egger

nSNP
7

7

7

137

137

137

106

106

106

6

6

6

3

3

3

OR (95%CI)
0.996 (0.979−1.012)

0.995 (0.975−1.015)

0.997 (0.949−1.048)

1.032 (0.940−1.134)

1.072 (0.927−1.241)

1.047 (0.885−1.281)

0.900 (0.665−1.220)

0.995 (0.636−1.556)

0.739 (0.411−1.330)

1.018 (1.004−1.032)

1.020 (1.003−1.038)

1.025 (0.982−1.070)

1.060 (0.934−1.202)
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1.189 (0.953−1.484)
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0.609

0.602

0.911

0.503

0.352

0.659

0.498

0.982

0.316

0.011

0.022

0.324

0.368

0.465

0.367

0.5 1 1.5
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Figure 6 Forest plot for Mendelian randomization (MR) effect estimates with IVW, WM, and MR-Egger: causal effects for low grip strength on sleep traits. OR: odds ratio; 
CI: confidence interval; IVW: inverse-variance weighted; WM: weighted median; nSNP: number of single nucleotide polymorphisms. Horizontal lines represent 95% 
confidence interval.
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observed between the raw and adjusted IVW P-values (P > 0.05). All sensitivity analyses showed that the results are 
robust (Supplementary Figure S16–S27).

Discussion
Using bi-directional two-sample MR with genetic instruments selected from large-scale GWAS, we found evidence 
supporting a potential causal relationship between sleep traits and reduced risk for low grip strength. The study is the first 
bi-directional MR study to investigate causality between sleep traits and low grip strength. Low grip strength is an early 
marker of age-related functional decline and a strong predictor of morbidity and mortality in various diseases.41 Previous 
studies have revealed the association of grip strength with physical functioning and independence in community-dwelling 
older adults.42 Therefore, preventing low grip strength is important for improving population health, especially among 
older adults. Based on the results, we revealed a significant negative causal effect of sleep duration on low grip strength, 
indicating that longer sleep duration is associated with a lower occurrence of low grip strength. In addition, the result 
proposes a causality association between low grip strength risk and sleep-wake disorders. Reversely, low grip strength 
achieved a significant causal effect with daytime napping. However, there was no evidence of a causal association 
between insomnia, chronotype and low grip strength.

Sleep duration is a key trait in sleep quality.43 Aging disrupts circadian rhythms and is a risk factor for decreased 
sleep duration;44 it also increases the risk of falls, representing the risk of decreased muscle strength.45 As two corollaries 
of aging, however, researches on the correlation between sleep duration and grip strength in older adults are 
controversial.9,46 An observational study has shown no evidence of a correlation between lower sleep duration and 
sarcopenia.47 However, a systematic review including 21 cross-sectional, 3 prospective studies, and 92,363 subjects 
indicated the robust association between sleep duration and muscle health.48 Typically, previous studies concluded that 
the shorter the sleep duration, the lower the skeletal muscle mass index and the higher risk of low grip strength.49 The old 
adults with mid-sleep (6–7 h) had significantly higher hand grip strength than those with short-sleep (≤ 5 h).50 However, 
recent studies have suggested that either too long or too short sleep duration may lead to sarcopenia and manifest as low 
grip strength.51,52 Our findings support an appropriate increase in sleep duration, which may be a protective factor for 
low grip strength, improving quality of life in older adults. Skeletal muscle is composed of 80% protein.53 When sleep is 

Table 3 MR Analyses with Heterogeneity, Sensitivity, and Pleiotropy Evaluation for Causal Effects of LGS on Sleep 
Traits

Exposure Outcome SNPs Cochran’s  
Q test (P)

MR Egger  
Intercept (P)

MR

Method OR (95% CI) P

LGS Sleep duration 7 0.973 0.955 IVW 0.996 (0.979–1.012) 0.609
WM 0.995 (0.975–1.015) 0.602

MR-Egger 0.997 (0.949–1.048) 0.911

LGS Insomnia 137 a 0.501 0.883 IVW 1.032 (0.940–1.134) 0.503
WM 1.072 (0.927–1.241) 0.352

MR-Egger 1.047 (0.855–1.281) 0.659

LGS Sleep-wake disorders 106 a 0.986 0.444 IVW 0.900 (0.665–1.220) 0.498
WM 0.995 (0.636–1.556) 0.982

MR-Egger 0.739 (0.411–1.330) 0.316

LGS Daytime napping 6 0.722 0.756 IVW 1.018 (1.004–1.032) 0.011
WM 1.020 (1.003–1.038) 0.022

MR-Egger 1.025 (0.982–1.070) 0.324

LGS Chronotype 3 a 0.316 0.445 IVW 1.060 (0.934–1.202) 0.368
WM 1.065 (0.900–1.260) 0.465

MR-Egger 1.189 (0.953–1.484) 0.367

Notes: a Using P < 5×10−5 threshold when the eligible single nucleotide polymorphism (SNP) numbers were insufficient (nSNP <3). 
Abbreviations: LGS, Low grip strength; SNP, Single-nucleotide polymorphism; MR, Mendelian Randomization; OR, odds ratio; IVW, Inverse- 
Variance Weighted; WM = Weighted Median.
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reduced, the metabolic state of protein is reduced anabolism and/or increased catabolism, which partially explains the 
decrease in muscle mass when sleep is reduced, and also fits with our results.54 IGF-1 is a key protein for muscle growth 
and directly upregulates skeletal muscle protein synthesis through activation of PI3k/Akt/mTOR.53 Sleep deprivation 
leads to a decrease in circulating IGF-1, which in turn affects muscle synthesis.55 Besides the involvement of protein 
metabolism in muscle synthesis, glucose also has an effect on muscle metabolism. Muscle is the largest organ in the 
human body and consumes a large amount of glucose every day to maintain its energy supply and glucose 
homeostasis.56,57 Reduced sleep induces insulin resistance, leading to reduced glucose uptake by muscles and reduced 
muscle synthesis.58,59 In addition, skeletal muscle possesses a sleep-regulated cell-autonomous molecular clock, and 
maintaining adequate sleep is essential for muscle mass, growth, and metabolic regulation.60–62

Daytime napping appeared to be a beneficial strategy to enhance the recovery process and counteract some of the 
adverse effects of sleep deprivation on physical and cognitive performance.63 In observational studies, a higher risk of 
functional limitations (low grip strength and propensity to fall) was associated with increased daytime napping, but this 
could not be fully explained by adjusting for demographics or health status.64 Using MR analyses, we found the causality 
and its direction: low grip strength may be a causative factor for daytime napping. Previous studies corroborated the 
plausibility of the results: low hand grip strength was an important symptom of frailty and tended to be highly associated 
with daytime napping.65,66 However, the clinical significance of this result should be interpreted cautiously as the OR 
was very close to 1 (OR = 1.018). Increased physical activity increases muscle mass and reduces the incidence of low 
grip strength.67 This may help to reduce the incidence of daytime napping, and thus reduce the risk of multiple diseases 
associated with excessive daytime sleepiness.68

Almost all sleep-related phenotypes can be categorized as sleep-wake disorders (or sleep disorders) according to 
American Psychiatric Association definition.69 The causal associations of sleep duration, sleep-wake disorders to low 
grip strength, and low grip strength to daytime napping may be related to circadian rhythm mechanisms in skeletal 
muscle.70 Causes of sleep disorders include delayed circadian rhythm with aging, lower physical function and/or activity, 
and decreased social interactions.71,72 Studies have shown that long-term sleep disorders alter the body’s normal 
biological rhythms, and indirectly impair skeletal muscle structure, function, and metabolism.16 In addition to the 
aforementioned effects of protein metabolism on muscle production, previous studies have shown that patients with 
sleep disorders are predisposed to develop metabolic syndrome.16 And the pathological processes that characterize 
metabolic syndrome, insulin resistance and persistent inflammation, weaken muscle mass.73 Moreover, the rhythmicity of 
skeletal muscle itself is thought to affect sleep. The skeletal muscle clock gene regulates sleep homeostasis, and knockout 
BMAL1 mice exhibit an attenuated rhythm of sleep-wake distribution during 24 hours.74

Circadian clock genes regulate skeletal muscle rhythms.60,61 More than 2300 circadian clock genes are expressed in 
human skeletal muscle, and these genes regulate the expression of downstream clock-control genes (CCGs) through 
transcriptional, translational, and epigenetic means, thereby effectively regulating the rhythmicity of organisms at 
physiological, metabolic, and behavioral levels.75 Among them, skeletal muscle-specific CCGs include myogenic 
differentiation 1 (Myod1),76 Atrogin-1,77 dynamin-related protein 1 (Drp1),78 Bcl-2 nineteen-kilodalton interacting 
protein 3 (BNIP3),79 and so on. These tissue-specific genes not only maintain skeletal muscle mass and prevent muscle 
atrophy by regulating muscular dystrophy factor, but also interact with the central clock to influence sleep behavior.80 For 
example, Myod1 is a key upstream factor involved in myogenic differentiation and also regulates the expression of core 
clock genes.80,81 Despite certain results, the complex mechanisms by which skeletal muscle circadian rhythms affect 
sleep behavior need to be supported by more researches.

Our study used bidirectional two-sample MR to explore causality and reverse causality between multiple sleep traits 
and low grip strength based on large sample size databases. Both directions yielded significant results, albeit with some 
weak effect sizes, suggesting some degree of potential interaction between sleep and grip strength. This may give 
a universal positive signal that increasing muscle mass to increase grip strength, or consciously improving sleep habits, 
can consequently improve quality of life and health in old populations.

Several limitations should be considered in our study. Firstly, although we drew on the largest available GWAS data, 
some traits found insufficient genome-wide significant SNPs. Therefore, we used relaxed P-value thresholds for some 
analyses, which may result in weak instruments bias.82 Although the F-statistics results assured the efficacy of the genetic 
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instruments, some bias (eg, false positives) may still exist with the relaxed thresholds.40 Secondly, despite selecting strongly 
associated SNPs, common SNPs do not yet explain much total variance in complex traits and so cannot be considered exact 
proxies of the exposure. Thirdly, there was some difference in age between the populations for exposure and outcome. The 
samples in the exposure data from the UK Biobank ranged in age from 40 to 69 years, and the median age of samples from 
the FinnGen database was 63 years. For outcome, SNPs associated with low grip strength were identified in the CHARGE 
(Cohorts for Heart and Aging Research in Genomic Epidemiology) Study of individuals aged 60 to 90. Therefore, we could 
not avoid bias from age differences. Due to the low hand grip strength being an important symptom of frailty, the GWAS data 
on low hand grip strength are restricted to an older population, which might limit the generalizability of the findings to 
younger populations. However, age differences in two-sample MR studies generally do not increase the likelihood of 
incorrectly inferring a causal association.83 Moreover, datasets restricted to European ancestry limited the bias due to 
population stratification and clinical generalizability to other populations. However, despite some limitations, our findings are 
novel and provide data support and a theoretical basis for clinical improvement of quality of life in older adults.

Conclusion
This study leverages MR to explore causal associations regarding sleep traits and low grip strength risk. Our findings 
validate a potential causal association between sleep-related phenotypes and low grip strength risk, including sleep 
duration, sleep-wake disorders, and daytime napping. Furthermore, we speculate on possible physiological mechanisms 
from the skeletal muscle circadian rhythms perspective. Effective interventions are of great necessity to improve the 
elderly sleep and muscle function from an early stage. These findings have implications for establishing feasible disease 
screening and prevention strategies.
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