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Background and Objective: Non-obstructive azoospermia (NOA) is an important cause of male infertility. This study is being 
proposed to assess the efficacy of autologous bone marrow-derived mesenchymal stem cells (MSCs) in the reversal of busulfan- 
induced NOA in rats.
Methods: Twenty adult 3-month-old male rats were divided into two groups: a control group and a study group. In the study group, 
bone marrow was aspirated to culture MSCs. NOA was created by stopping endogenous spermatogenesis in all the animals by 
injecting two doses of busulfan 10 mg/kg body weight with a 3 week interval. Four weeks after the last dose of busulfan, two animals 
were euthanized and the testes were studied histologically to confirm complete azoospermia. In the study group, five million MSCs in 
1 mL normal saline were injected into seminiferous tubules; and in the control group, 1 mL of normal saline was injected. After 
4 weeks of MSC injection, all the rats were euthanized and epididymis tails and testes were harvested and sent for measurement of 
serological indices, including luminal, cellular, and total diameters, luminal, cellular, and cross-sectional areas, number of tubules per 
unit area of testis, numerical density of the tubules, and spermatogenesis index, pre- and post-MSC transplantation.
Results: The effect of busulfan on the testicular tissue was universally devastating. In the control group, there was variable length and 
width of markedly necrotic seminiferous tubules, whereas in the group treated with autologous bone marrow-derived MSCs there was 
variable height of germinal epithelium in seminiferous tubules, with active spermatogenesis, showing spermatogonia, spermatocytes, 
and sperm.
Conclusion: MSC injection in the testis has the potential to reverse the testicular function of spermatogenesis after cytotoxic therapy. 
Human trials should be undertaken to confirm our findings and bring the results into clinical practice.
Keywords: non-obstructive azoospermia, busulfan, spermatogenesis, mesenchymal stem cells

Introduction
Many factors have been implicated in male infertility, including a reduction in sperm production, abnormal sperm 
functions, and obstruction to the movement of sperm. Non-obstructive azoospermia (NOA), which is defined as no sperm 
in the ejaculate, is an important cause of infertility. Jarow et al1 reported that the incidence of azoospermia is between 
10% and 15%,1 and Esteves and Agarwal2 found that in 75% of infertile men azoospermia is due to disorders of sperm 
production which are untreatable. However, despite severe spermatogenic dysfunction and no sperm in the ejaculate, 
there are areas of focal spermatogenesis in about 30–60% of these infertile men.3,4 In these men, following sperm 
retrieval, the sperm is capable of inducing normal fertilization and the development of an embryo.5–7
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The clinical and social management of men with NOA, without any sperm in the testis, who are seeking fertility, 
remains a challenge as NOA men have a wide spectrum of disorders, from genetic disorders to hormonal imbalances. At 
the present time, there are no treatments available that can restore spermatogenesis in the majority of NOA patients. Such 
men tend to be directed toward options such as adoption or donor sperm. Recent advances in stem cell therapy have 
raised the hopes of NOA patients with no sperm in their testes. Different cellular therapies for infertility problems have 
been studied, one of which is testicular transplantation of spermatogonial stem cell (SSC) tissue. Hermann et al8 

performed autologous transplantation of SSCs in rhesus macaques treated with busulfan, resulting in the testes producing 
functional sperm which fertilized the ovum. Cakici et al,9 in a study on rats, demonstrated the recovery of fertility after 
the injection of adipose tissue-derived mesenchymal stem cells (MSCs). Later studies complemented each other, 
indicating that MSCs worked in the complete reversal of the testes to produce normal sperm.10–13

This study was conducted to confirm the efficacy of autologous bone marrow-derived mesenchymal stem cells 
(BMSCs) in the reversal of NOA induced by busulfan.

Methods
The study was commissioned after receiving the approval of the Institutional Review Board of Imam AbdulRahman Bin 
Faisal University, Dammam, vide (#2023-01-110), dated 12th March 2023. Animal welfare guidelines were followed as 
per the Animal Welfare Act of the Cooperation Council for the Arab States of the Gulf (https://leap.unep.org/), and this 
study also adheres to the ARRIVE guidelines in regard to conducting the study and reporting the results. Twenty male 
adult rats were procured and divided into two groups: a control group and a study group. The rats were housed at 
a temperature of 25°C and fed ad libitum. The animals were anesthetized with intramuscular ketamine 50 mg/kg and 
35 mg/kg of xylazine was administered. Ophthalmic ointment was applied to the eyes to prevent drying during the 
operation. In the study group, bone marrow was aspirated from the femoral shaft using a 18 gauge needle which was 
washed with heparin. The samples were transported at 4°C to StemCells Research and Regenerative Labs Inc, 
Hyderabad, India, to culture MSCs.

Separation and Expansion of MSCs
MSCs were cultured from the bone marrow aspirate using the technique described by Piao et al.14 Bone marrow aspirate 
was taken in a conical centrifuge tube and centrifuged at 2000 rpm for 5 minutes. The resultant layer containing 
mononuclear cells were siphoned out, and seeded onto a T75 tissue culture flask at the rate of 5000 cells/cm2. Then, 
20 mL of MSC culture medium (Thermo Fisher, Massachusetts, USA) was added and the flask was incubated at 37°C, in 
5% CO2 and 95% humidity in a CO2 incubator. The MSC culture medium was replaced every 2 days.

Non-adherent cells were washed off and the culture was continued, with a change of medium every 2 days, until the 
cells became confluent. Then, the cells were trypsinized and harvested. A portion of the cells was used for cell 
characterization using MSC-specific antibodies in a flow cytometer, and the expression of CD73, CD90, and CD105, 
and negativity for CD45, was confirmed. The MSCs were transported at −80°C and received at the animal facility in 
a Credo CubeTM (https://www.pelibiothermal.com/products/credo-cube). NOA was induced by stopping endogenous 
spermatogenesis in all the animals by injecting two doses of busulfan 10 mg/kg body weight with a 3 week interval. Four 
weeks after the last dose of busulfan, two animals were euthanized and the testes were studied histologically to confirm 
complete azoospermia.

Surgical Procedure
Once total azoospermia had been confirmed, the testes were approached intra-abdominally; 5 million MSCs were injected 
into the seminiferous tubules in the study group and 0.5 mL of normal saline was injected in the control group. The testes 
were then returned to the abdominal cavity. Intramuscular ceftazidime 2.5 mg/kg and diclofenac 1 mg/kg were adminis-
tered. Animals had free access to food and water throughout the study. After 4 weeks of MSC injection, all the rats were 
euthanized. Epididymis tails and testes were harvested and sent for assessment of serological indices, including luminal, 
cellular, and total diameters, luminal, cellular, and cross-sectional areas, number of tubules per unit area of testis, numerical 
density of the tubules, and spermatogenesis index.
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Statistical Analysis
All statistical tests were performed using SPSS version 25.0 (IBM Corp, Armonk, NY, USA). A p value of <0.05 was 
considered statistically significant, with a confidence interval (CI) of 95%.

Results
All animals survived the procedure and there were no deaths. Before injection, the autologous BMSCs were thawed 
and underwent flow cytometric analysis for confirmation of the MSCs. This showed negativity for CD45 and 
positive results for CD90, CD105, and CD166. An automated cell counter (Thermo Fisher) was used to count the 
autologous BMSCs; on average, 5.1 million cells were present in each vial and were injected. Post-injection of the 
busulfan, total necrosis of the germinal epithelium was observed. Table 1 presents the comparative data between the 
groups for the serological indices. All the tested and compared parameters showed that the study group animals had 
significantly improved, and the germinal epithelium had recovered from the insult of the busulfan, with evident 
spermatogonia and sperm.

Histological Analysis
The control group showed necrosis with barely preserved germinal epithelium in the seminiferous tubules (STs), whereas in 
the study group, proliferating germinal epithelium with active spermatogenesis in the STs was evidenced. Histological 
analysis of the testes after busulfan administration revealed marked damage to STs and spermatogenic cells. In the control 
group, the number of STs per unit area was slightly lower (15–16/mm2) than in the study groupm and the STs showed 
marked necrosis (Figure 1A–F), irregular margins (Figure 1B and C), and foci of cytoplasmic vacuolization (Figure 1D). 
The germinal epithelium was predominantly lost, with STs showing just preserved Sertoli cells (Figure 1C–G). The rare 
foci of preserved germinal epithelium showed a mean height of 12–13 µm, reaching a maximum of 25 µm (Figure 1E), and 

Table 1 Comparative Data on the Serological Indices for the Two Groups

Parameters Control Group Study Group p Value

Testicular length (cm) 1.375±0.221 1.421±0.27 0.7534

Testis width (cm) 0.825±0.15 0.872±0.17 0.66

Seminiferous tubules length maximum (mm) 1148.5±149.1 1347.5±34.57 0.0097

Seminiferous tubules diameter (µm) 233.5±10.07 203±19.23 0.006

Seminiferous tubule margins Irregular 1.5 Smooth NA

Basement membrane thickening 0 1 NA

Number of tubules per unit area (mm2) 14.75±0.5 16.5±1.37 0.014

Seminiferous tubule necrosis 4 0 0.0001

Cytoplasmic vacuolization 3±0.1 1.66±0.51 0.0001

Germinal epithelium height (µm) (mean of 10 fields) 9.5±6.3 84.8±14.02 0.0001

Spermatogonia 0.187±0.125 3.6±0.54 0.0001

Spermatocytes 0.187±0.125 3.2±0.836 0.0001

Sperm 0.75±0.5 2.4±1.3 0.015

Sertoli cells 4±0.1 3.8±0.44 0.21

Leydig cells 1.375±1.1 0.85±0.336 0.28
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Figure 1 Photomicrographs of cross-sections of testes of the control and study groups. (A) Variable length and width of markedly necrotic seminiferous tubules, H&E ×4. 
(B) Marked necrosis seen in seminiferous tubules, showing irregular margins, H&E ×10. (C) Preserved Sertoli cells in markedly necrotic, irregular seminiferous tubules 
(arrowhead), H&E ×20. (D) Prominent Leydig cells (red arrow) around seminiferous tubules showing vacuolization (green arrow), H&E ×20. (E, F) Rare foci of preserved 
spermatogonia with germinal epithelium height (E) and spermatocytes (F) in seminiferous tubules with marked necrosis, H&E ×40. (G) Preserved Sertoli cells (blue arrow) 
and marked apoptosis in germinal epithelium (blue bracket). Leydig cells are seen in the interstitium (red arrow). H&E ×40.
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comprising few viable spermatogonia and rare spermatocytes (Figure 1E and F). Prominent Leydig cells (Figure 1D–H) 
were evident in the interstitium in all animals.

The group administered stem cells revealed slightly more STs (16–17/mm2), with smooth, rounded margins 
(Figure 2A and B). The STs showed viable, proliferating germinal epithelium (Figure 2A–F) with no evidence of 
necrosis. Foci of cytoplasmic vacuolization were, however, present. The germinal epithelium showed variable height, 
with a mean of 80 µm, and reaching a maximum height of 110.88 µm (Figure 2C). Brisk spermatogenesis was evidenced 
by prominent spermatogonia and spermatocytes, with some showing maturation to spermatozoa (Figure 2D). Active 
mitosis was also seen in the germinal epithelium (Figure 2F). Sertoli cells were consistently seen in all STs, along with 
some scattered Leydig cells in the interstitium.

Figure 2 Restoration of germinal epithelium and spermatogenesis in necrosed testis post-transplantation of autologous bone marrow-derived mesenchymal stem cells. (A, B) 
Length and width of seminiferous tubules, showing active spermatogenesis, H&E ×10. (C) Variable height of germinal epithelium in seminiferous tubules, H&E ×10. (D) Active 
spermatogenesis showing spermatogonia (blue arrow), spermatocytes (red arrow), and sperm (green arrow) in seminiferous tubules, H&E ×40. (E, F) Variable height of 
germinal epithelium in seminiferous tubules with active mitosis seen in (F) (red arrow), H&E ×40.
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Discussion
In the present investigation, we found that there was notable reversal of testicular pathology after busulfan injection under the 
influence of BMSCs. The morphology of the testis showed obvious changes in the size and weight of the testicle, providing 
unequivocal evidence of the regeneration process in the study group of animals, which was not observed in the normal saline- 
treated animals. Furthermore, MSCs demonstrated their ability to induce a high proliferation and recovery of the testis post- 
busulfan therapy. The germinal epithelium, spermatocytes, and the presence of sperm were all highly significant in the study 
group of animals in comparison to the control group. Our findings support the results of an earlier study by Zhang et al.15 It was 
shown that BMSCs expressed integrin-β, suggesting that BMSCs have the potential to transform into sperm cells. Zhang 
et al15 demonstrated that BMSCs survived and were located in the basement of the seminiferous tubule in the azoospermic rat 
model after transplantation because MSCs originate from the mesoderm, which can give rise to sperm cells. Karimaghai et al16 

reported that adipose tissue-derived MSCs had a similar result in the induction of spermatogenesis in seminiferous tubules of 
azoospermic hamsters. Zhankina et al17 found that exosome-derived MSCs can also influence spermatogenesis in NOA.

MSCs have the unique properties of maintaining a process of recurrent self-renewal and possessing permanent pluripotency, 
which indirectly enhance spermatogenesis.18–20 Apart from their self-renewal potential, MSCs have robust immunomodulatory 
effects, which are mediated through the cytokines and affect the local environment. These effects occur whether the cell is alive or 
apoptotic, and this suggests that even if testicular function is compromised by autoimmune disease, transplantation of MSCs in 
the testis can be effective.21 Naji et al22 concluded that therapy with MSCs now appears promising, with easily obtained cells and 
cultures that are genetically stable, and their regenerative properties can enable tissue repair and immune suppression. Optimized 
MSCs are usually derived from sources such as bone marrow, adipose tissue, or umbilical cord. Bone marrow-derived cells are 
the preferred choice of MSC owing to the ease of aspiration from the iliac crest.23 We used bone aspiration to culture MSCs as we 
had previous experience of this procedure in small animals.

Our study has limitations in that we based on our conclusions on the histopathology rather than a combination of 
hormonal measurements and histopathology. Our results could be confirmed by the improvement of testosterone and 
reduction of follicle-stimulating hormone levels post-MSC treatment. In conclusion, our study shows that MSCs can 
improve testicular damage following cytotoxic therapy. This is due to the paracrine factors that are secreted by MSCs. 
The cells secrete chemokines, cytokines, and growth factors, inducing surrounding damaged cells to renew and 
differentiate into mature cell lines, while immune modulation affects the testicular niche and restores the process of 
spermatogenesis. The use of MSCs in NOA can improve the functions of the testis in relation to spermatogenesis and 
spermiogenesis, which could herald a new avenue of treatment for male infertility. Human trials should be undertaken to 
confirm our findings and bring the results into clinical practice.
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