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Purpose: Cutaneous squamous cell carcinoma (cSCC) ranks as the second most common malignancy in clinical practice and poses 
a significant threat to public health due to its high malignancy. In this study, we aimed to explore potential biomarkers and molecular 
mechanisms of cSCC.
Methods: Differentially expressed genes (DEGs) from GSE66359 and GSE117247 datasets were identified using R software. We 
conducted enrichment analyses and screened hub genes through protein-protein interaction (PPI) analysis and weighted gene co- 
expression network analysis (WGCNA). To assess the diagnostic performance of these genes, we generated ROC curves using both 
internal and external datasets (GSE45164) and validated the expression levels of these genes in cSCC tissues through immunohis-
tochemistry. Subsequently, we predicted the target miRNAs and lncRNAs for hub genes using online databases and constructed 
competing endogenous RNA (ceRNA) networks.
Results: In total, we identified 505 upregulated DEGs and 522 downregulated DEGs. Through PPI and WGCNA analyses, we 
identified four hub genes exhibiting robust diagnostic performance in internal and external datasets (AUC > 0.9) and selected three 
previously unreported genes for further analysis. Immunohistochemistry demonstrated significantly elevated CCNA2, CCNB2, and 
UBE2C expression in cSCC tissues compared to normal skin tissues. Finally, we constructed three ceRNA networks, namely NEAT1/ 
H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C.
Conclusion: In conclusion, we have identified CCNA2, CCNB2, and UBE2C as novel biomarkers for cSCC, and the NEAT1/H19- 
hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C ceRNA networks may represent molecular mechanisms under-lying 
cSCC progression. The findings of this study offer new diagnostic and therapeutic options for cSCC patients.
Keywords: weighted gene co-expression network analysis, protein-protein interaction analysis, competitive endogenous RNA, 
pathogenesis

Introduction
Cutaneous squamous cell carcinoma (cSCC), originating from epidermal keratinocytes, ranks as the second most 
prevalent malignant cutaneous neoplasm in clinical practice, constituting approximately 20–50% of all skin 
malignancies.1 It exhibits a propensity for metastasis, disseminating to lymph nodes and various organs, including the 
liver, lungs, and bones, posing a substantial threat to life.2 In recent years, the incidence of cSCC has gradually increased, 
owing to its heightened malignancy, thereby representing a significant menace to public health.3 Despite certain 
advancements in diagnosis and treatment, there remains a lack of comprehensive understanding regarding the pathogen-
esis of cSCC, and satisfactory therapeutic efficacy still needs to be discovered, with long-term survival rates of treated 
patients falling below 20%.4 Consequently, there is a pressing need for further exploration of novel, effective biomarkers, 
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augmenting our comprehension of the pathogenesis of cSCC, and offering fresh diagnostic and therapeutic alternatives 
for cSCC patients.

Currently, transcriptomics and chip analysis have found widespread application in various diseases.5–7 Differentially 
expressed genes analysis is a quantitative approach for investigating changes in gene expression levels between 
experimental and control groups in multiple samples.8 It is extensively employed to identify potential biomarkers and 
therapeutic targets for cancer. Another crucial analysis in transcriptomics is weighted gene co-expression network 
analysis (WGCNA), which allows the examination of gene expression patterns, identification of co-expression modules 
containing highly correlated genes, and modules associated with clinical traits.9 Consequently, integrating WGCNA and 
differentially expressed gene analysis results can enhance the precision in identifying potential hub genes in cSCC. 
Furthermore, competitive endogenous RNA (ceRNA) networks can elucidate novel mechanisms that promote cSCC 
development within the transcriptional regulatory network.10 The combination of microarray data and bioinformatics 
analysis allows for exploring potential hub genes and regulatory networks closely associated with disease progression.

In this study, we retrieved microarray datasets for cSCC from the GEO database. Following data integration and batch 
effect correction, we identified differentially expressed genes (DEGs) between cSCC and normal skin tissues. Gene 
ontology (GO) analysis was employed to unveil critical biological functions implicated in the pathogenesis of cSCC. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis elucidated molecular pathways associated with cSCC. 
Protein-protein interaction (PPI) analysis and WGCNA were utilized to explore hub modules and ultimately identify hub 
genes linked to cSCC, with subsequent validation through immunohistochemistry. Lastly, target miRNAs and lncRNAs 
of hub genes were predicted using online databases, and ceRNA networks were constructed. The workflow of our study 
is shown in Figure 1. This work provides an in-depth exploration of the disease development mechanisms of cSCC at the 
transcriptomic level.

Materials and Methods
Data Preparation
Gene expression data for many diseases can be publicly accessed in the GEO database (www.ncbi.nlm.nih.gov/geo). The 
GSE66359 dataset was generated using the Affymetrix Human Genome U133 Plus 2.0 Array microarray platform and 
comprises eight cSCC samples and five normal skin samples. The GSE117247 dataset was generated using the 
Affymetrix Human Genome U95 Version 2 Array platform and includes eight cSCC samples and ten normal skin 

Figure 1 The workflow of our study to explore potential biomarkers and molecular mechanisms of cSCC based on bioinformatics.
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samples. The GSE45164 dataset was generated using the Affymetrix Human Genome U133A 2.0 Array platform and 
consists of ten cSCC samples and three normal skin samples. We merged the samples from the GSE66359 and 
GSE117247 datasets and corrected batch effects using the Combat package in R software (version 4.1.2).11 The merged 
dataset was designated as GSE66359-117247, comprising sixteen cSCC samples and fifteen normal samples. GSE66359, 
GSE117247, GSE45164, and GSE66359-117247 will be utilized for subsequent analyses.

Data Preprocessing and DEGs Selection
Quality control and preprocessing of the raw files (*.CEL) obtained from the GEO database were conducted using the 
AffyPLM package for data quality assessment.12 Relative log expression (RLE) plots were employed to evaluate data trend 
consistency. Normalization was performed using the Robust Multi-Array Average (RMA) algorithm based on R software 
(version 4.1.2),13 and the results were validated using principal components analysis (PCA). Probes were converted to gene 
symbols using the hgu133plus2.db, hgu95av2.db, and hgu133a2.db packages. In cases where one gene symbol corresponded 
to multiple probes, the probe with the median expression value was selected. DEGs between samples were conducted using 
the limma package,14 with criteria set at |log2FC| > 2 and p < 0.05 for gene selection. Volcano plots and heatmaps were 
generated using the heatmap package to visualize the expression patterns of differentially expressed genes.

Enrichment Analysis
To perform functional-level analysis of DEGs, we conducted enrichment analysis for GO15 and KEGG16 pathways using 
the clusterProfiler package17 in R software. GO analysis encompasses biological processes, cellular components, and 
molecular functions. A significance threshold of p < 0.05 was considered statistically meaningful.

Construction of PPI Network
We utilized the STRING online database (https://string-db.org)18 to construct the PPI network, setting a threshold 
interaction score of >0.4. Subsequently, we employed Cytoscape software (version 3.9.1) for network visualization.19 

We utilized the MCODE plugin to extract densely connected modules from the PPI network, with filtering criteria set as 
degree cutoff = 2, node score cutoff = 0.2, K-core = 2, and maximum depth = 100. The CytoHubba plugin was employed 
to identify key genes within the PPI network. We extracted the top 30 genes ranked by five algorithms (Degree, MCC, 
MNC, Closeness, and Stress). Genes that appeared at the intersection of all five methods and were present in the top- 
ranked module were considered potential key genes.

Construction of WGCNA and Identification of Hub Genes
WGCNA is a practical algorithm for discovering highly correlated gene modules and identifying phenotypes-associated 
modules.20 We employed the WGCNA package to construct a weighted gene co-expression network. The gene expression 
matrix, GSE66359-117247, obtained after data integration and batch effect correction, was used as input for WGCNA. Initially, 
we conducted hierarchical clustering of samples to remove outliers and ensure the accuracy of the analysis. To establish a scale- 
free network, we determined the soft threshold, β, using the pickSoftThreshold function. Subsequently, we constructed the 
weighted network, created a hierarchical clustering dendrogram, and delineated modules using the blockwiseModules function. 
To further identify functional modules within the co-expression network, module-trait associations were calculated, and modules 
with high correlation coefficients were considered cSCC-related modules for subsequent analysis. For each gene within 
a module, the membership (MM) reflects its correlation with module eigengenes, while the gene significance (GS) represents 
the correlation of the gene with corresponding clinical traits. Genes with MM > 0.8 and GS > 0.6 were considered candidate key 
genes, and those overlapping with key genes from the PPI analysis were designated as the final hub genes.

Validation of Receiver Operating Characteristic (ROC) Curves
GSE66359+117247 were utilized as internal datasets, while GSE45164 was employed as an external dataset to evaluate 
the diagnostic efficacy of the hub genes through ROC curve analysis. The Area Under the Curve (AUC), representing the 
area under the ROC curve, serves as a metric for assessing the performance of various predictive models.
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Samples Collection
We selected 30 patients diagnosed with cSCC who received treatment at our institution between April 2017 and 
April 2022. Surgical excision was performed to obtain corresponding tumor tissues and adjacent normal tissues. All 
patients underwent routine examinations, including complete blood counts, and had no history of other malignancies. 
Histopathological diagnosis confirmed the presence of cSCC in all cases.

Immunohistochemistry
The cSCC and adjacent normal tissues were obtained through surgical excision, followed by paraffin embedding and 
sectioning for immunohistochemical staining. The tissue sections were incubated in 0.1% BSA, followed by overnight 
incubation at 4°C with antibodies against CCNA2 (Proteintech, 66087-1-Ig), CCNB2 (Proteintech, 66391-1-Ig), and 
UBE2C (Proteintech, 66726-1-Ig). Biotinylated IgG was used as the secondary antibody. Color development was 
achieved using the DAB staining kit following the secondary antibody reaction, and the sections were observed and 
captured using an optical microscope. Finally, analysis was conducted using ImageJ software.

Construction of the ceRNA Networks
We employed five online miRNA databases, RNA22, DIANA-micro T, miRWalk, miRDB, and miRcode, to predict the 
target miRNAs for the hub genes. Subsequently, we selected miRNAs that were identified in at least four of these 
databases for further analysis. StarBase (version 3.0) (http://starbase.sysu.edu.cn/index.php) was used to predict the 
interactions of selected miRNAs with lncRNAs.21 We selected lncRNAs that were present in the majority of miRNA 
prediction results for further analysis. Cytoscape was utilized to construct interaction networks, namely the ceRNA 
networks, based on interactions among mRNAs, miRNAs, and lncRNAs.

Data Statistics
Statistical analysis of experimental data was conducted using R software (version 4.1.2) and Prism software (version 9.3.1). 
Student’s t-test was used to compare the differences between the two groups. A paired t-test was employed to validate 
significant differences in Immunohistochemistry. *** indicated P < 0.001.

Results
Data Quality Control
Regression calculations were performed using the affyPLM package in R language. RLE boxplots were generated to 
validate the homogeneity between the datasets. RLE plots demonstrated enrichment of gene expression values around 
zero in GSE66359 and GSE117247, indicating high consistency and their suitability for subsequent analysis (Figure 2).

Figure 2 Sample distribution by regression calculation. (a) RLE boxplot for GSE66359; (b) RLE boxplot for GSE117247.
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Normalization of Data
The RMA algorithm was employed for background correction and normalization of the samples. Gene expression density 
curves (Figure 3a and b) and boxplots (Figure 3c and d) revealed that gene expression values in both datasets ranged 
between 0 and 15, indicating similar expression trends between the two datasets. Furthermore, PCA illustrated significant 
differences between the tumor and normal samples in the two datasets (Figure 3e and f).

Figure 3 Distribution figures among samples after normalization. (a) Gene expression density curve after normalization in GSE66359; (b) Gene expression density curve 
after normalization in GSE117247; (c) Gene expression boxplot after normalization in GSE66359; (d) Gene expression boxplot after normalization in GSE117247; (e) 
Sample distribution in GSE66359 by PCA analysis. (f) Sample distribution in GSE117247 by PCA analysis.
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Identification of DEGs
The gene screening was performed by limma package in R language. Based on the cutoff criteria of |log2FC|>2 and 
p value<0.05, 820 DEGs in the GSE66359 dataset were found, comprising 451 upregulated genes and 369 downregulated 
genes. 287 DEGs were found in the GSE117247 dataset, including 94 upregulated genes and 193 downregulated genes. 
Next, heatmaps (Figure 4a and b) and volcano plots (Figure 4c and d) analyses were used to visualize these DEGs. The 
DEGs found from the two datasets were combined, and 505 upregulated genes and 522 downregulated genes were 
extracted for the next validation step.

Enrichment Analysis
To further elucidate the potential functions of these DEGs, we conducted an enrichment analysis using the clusterProfiler 
package. Following GO enrichment analysis (Figure 5a and b), we found that upregulated DEGs were primarily enriched in 
biological processes related to mitotic sister chromatid segregation and mitotic nuclear division. Regarding cellular components, 
these DEGs were notably associated with chromosomal regions and centromeres. In molecular functions, microtubule binding 
and single-stranded DNA binding were identified as relevant to the upregulated DEGs. On the other hand, downregulated DEGs 
were mainly involved in biological processes such as skin development, epidermis development, and keratinocyte differentiation. 
They were also associated with cellular components like collagen-containing extracellular matrix and cornified envelope. They 

Figure 4 Identification of DEGs by limma package. (a) DEGs of GSE66359 in heatmap; (b) DEGs of GSE117247 in heatmap; (c) DEGs of GSE66359 in volcano plot. 
(d) DEGs of GSE117247 in volcano plot.
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were linked to extracellular matrix structural constituent and glycosaminoglycan binding in molecular functions. KEGG analysis 
revealed that upregulated DEGs were significantly enriched in signaling pathways such as the cell cycle, DNA replication, 
mismatch repair, and the IL-17 signaling pathway. In contrast, downregulated DEGs were primarily enriched in pathways, 
including focal adhesion and PPAR signaling (Figure 5c and d).

PPI Construction and MCODE Module Analysis
Protein-protein interactions constitute a significant source of functional complexity within cells, and PPI analysis 
can provide deeper insights into disease progression. Using the STRING online database, we constructed an 
interaction network of proteins encoded by DEGs. This network consisted of 585 nodes and 4789 edges and was 
visualized using Cytoscape. We employed five algorithms (Degree, MCC, MNC, Closeness, Stress) from the 
cytoHubba plugin for gene selection and listed the top 30 genes for each method (Table 1). Genes simultaneously 
selected by all five algorithms were considered key genes (AURKA, BIRC5, CCNA2, CCNB2, CDK1, UBE2C). 
Subsequently, we conducted module analysis using the Molecular Complex Detection (MCODE) plugin and 
identified 25 clusters. We selected the top-ranked module (score = 62.551) as the key module, noteworthy for 
containing the six key genes mentioned earlier. This module played a crucial role in the constructed PPI network, 
consisting of 20 nodes and 2158 edges (Figure 6a). We then performed GO and KEGG analyses on the genes within 

Figure 5 Functional enrichment analysis of DEGs. (a) GO enrichment analysis of the upregulated DEGs; (b) GO enrichment analysis of the downregulated DEGs; (c) KEGG 
analysis of the upregulated DEGs; (d) KEGG analysis of the downregulated DEGs.
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the key module (Figure 6b and c). In terms of biological processes, the key module genes were mainly enriched in 
nuclear division and organelle fission. Regarding cellular components, these genes were primarily associated with 
chromosomal and centromeric regions. In molecular functions, these genes were mainly related to microtubule 
binding. KEGG analysis indicated that the genes within the key module were enriched in pathways such as the cell 
cycle and oocyte meiosis.

WGCNA and Hub Module Identification
During the sample clustering process, two samples (GSM1620814 and GSM1620816) were identified as outliers and 
subsequently excluded (Figure 7a). Additionally, we determined that β = 10 and R2 = 0.85 were the optimal soft- 
thresholding parameters to ensure the scale-free nature of the topology model (Figure 7b). In total, 26 modules were 
obtained, and we computed the correlation of each module with cSCC (Figure 7c). Among these modules, the blue 
module exhibited the strongest correlation with cSCC (Figure 7d). Furthermore, module-trait analysis confirmed a highly 
positive correlation between the blue module and cSCC (r=0.58, p<0.001) (Figure 7e). It suggests that genes within the 
blue module may play a critical role in the development of cSCC. Molecular functional analysis (Figure 7f) revealed that 
genes within the blue module were significantly enriched in pathways associated with single-stranded DNA binding, 

Table 1 Key Genes Identified Using the cytoHubba Plugin

Degree MCC MNC Closeness Stress

CDK1 AURKA CDK1 CDK1 CPEB2
CCNA2 DLGAP5 CCNA2 CCNA2 PKP1

CCNB1 NCAPG CCNB1 UBE2C CDK1
CCNB2 CCNB1 KIF11 CCNB1 IL6
KIF11 KIF11 CCNB2 AURKA CEBPA

TOP2A BUB1B TOP2A CCNB2 MYC

BUB1 NUSAP1 BUB1 AURKB LPL
NCAPG CCNB2 NCAPG KIF11 UBE2C
BUB1B CCNA2 BUB1B CDC20 EPHB2
AURKB KIF2C AURKB RRM2 MMP2

AURKA AURKB MAD2L1 NCAPG DSG1

MAD2L1 TPX2 AURKA TOP2A CDSN
RRM2 TOP2A RRM2 BIRC5 FADS2

CDC20 CDK1 CDC20 MAD2L1 AURKA
UBE2C BUB1 UBE2C BUB1 FOS
CDC6 UBE2C CDC6 BUB1B DSC1

ASPM ASPM ASPM CDC6 PRKCA

DLGAP5 KIF20A DLGAP5 DLGAP5 RASA1
NDC80 TTK NDC80 PLK1 BIRC5
KIF20A CENPA KIF20A ASPM PCNA

TTK PBK TTK CDCA8 PLK1
CDCA8 BIRC5 CDCA8 KIF20A CCNB2
CDC45 CDC45 CDC45 CDC45 PPL

TPX2 OIP5 TPX2 NDC80 TK1
BIRC5 CEP55 BIRC5 NUSAP1 CDKN1A

KIF2C CDCA8 KIF2C TTK CDC6

NUSAP1 CENPF NUSAP1 TPX2 PDGFRB
PBK RRM2 PBK KIF2C LMNB1

PLK1 NDC80 KIF23 PBK DDX58

KIF23 ZWINT PLK1 MKI67 CCNA2

Notes: The bold values represent the genes that appear in all five ranking 
methods used here. 
Abbreviations: MCC, maximal clique centrality; MNC, maximum neigh-
borhood component.
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catalytic activity on DNA, single-stranded DNA helicase activity, and microtubule binding. Cellular component analysis 
indicated a strong correlation of genes within the blue module with chromatin regions and condensed chromatin 
components. Furthermore, these genes were found to be actively involved in key biological processes, including DNA 
replication. KEGG analysis underscored the enrichment of genes in the blue module within pathways related to DNA 
replication, the cell cycle, and the proteasome pathway (Figure 7g). We examined the relationship between MM and GS 
to select key genes, revealing a positive correlation (r=0.37, p=5.6E-48) (Figure 7h). Genes with GS greater than 0.6 and 
MM greater than 0.8 were selected as candidate key genes. An intersection was taken between these candidates and those 
identified through PPI analysis, ultimately determining key genes, including CDK1, CCNA2, CCNB2, and UBE2C.

ROC Validation
To evaluate the diagnostic performance of the key genes in distinguishing cSCC from normal skin tissue, GSE66359 
+117247 were used as internal validation sets (Figure 8a), while GSE45164 served as an external validation set to 
generate ROC curves for these four key genes (Figure 8b). These four genes exhibit high diagnostic value, with the 
AUCs exceeding 90%. Therefore, CDK1, CCNA2, CCNB2, and UBE2C are hub genes in cSCC.

Figure 6 PPI network construction and module analyses. (a) The top-ranked module (score = 62.551) contains 20 nodes and 2158 edges; (b) GO enrichment analysis of 
genes in the top-ranked module; (c) KEGG analysis of genes in the top-ranked module.
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Figure 7 Co-expression network analysis based on WGCNA. (a) Sample clustering to detect outliers; (b) Graphs of scale-free topology model; (c) Clustering dendrogram 
for identifying cSCC-specific modules; (d) K Heatmap of the eigengene network indicates correlations between different modules; (e) Heatmap of associations among 
module eigengenes in normal and cSCC samples; (f) GO enrichment analysis of genes in the blue module; (g) KEGG analysis of genes in the blue module; (h) Scatter plots 
highlighting the association between GS and MM based on genes in the blue module.
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Immunohistochemistry
Literature retrieval indicates that CDK1 has been previously reported as an oncogenic gene in cSCC. However, the roles 
of CCNA2, CCNB2, and UBE2C in cSCC have yet to be reported. Therefore, we selected these three genes for further 
experimental validation. We performed immunohistochemistry staining on 30 cases of cSCC and adjacent normal tissues. 
The results revealed high expression of CCNA2, CCNB2, and UBE2C in cSCC tissues, while their expression was 
significantly reduced in adjacent normal tissues (Figure 9a). Paired t-test by prism demonstrated a significant difference 
(Figure 9b).

Construction of the ceRNA Network
MiRNAs induce gene silencing by binding to their target genes, while their upstream molecules, lncRNAs, can 
upregulate target gene expression by binding to miRNA response elements. This interaction is known as the ceRNA 
network. Our study employed five online miRNA databases (miRDB, miDIP, RNA22, TargetScan, and RNAInter) to 
predict the target miRNAs of hub genes. Based on these predictions, we constructed mRNA-miRNA regulatory networks 
using Cytoscape (Figure 10a). Subsequently, we employed the online database Starbase to predict lncRNAs interacting 
with the selected miRNAs. We selected lncRNAs present in most miRNA prediction results as our predicted lncRNAs. 
Finally, we obtained four target lncRNAs for CCNA2-targeting miRNAs, four target lncRNAs for CCNB2-targeting 
miRNAs, and three target lncRNAs for UBE2C-targeting miRNAs. Based on these predictions, we constructed three 
ceRNA networks (Figure 10b). Through literature searches, we selected two downregulated miRNAs and two upregu-
lated lncRNAs in cSCC for further analysis. Specifically, hsa-miR-140-3p and hsa-miR-148a-3p were found to be 
downregulated in cSCC, while NEAT1 and H19 were upregulated in cSCC. Therefore, we propose that the NEAT1/H19- 
hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C axes may represent crucial pathways regulating the 
progression of cSCC (Figure 10c).

Figure 8 Validation of the diagnostic performance of the hub genes using internal and external datasets. (a) ROC curves of the hub genes in the GSE66359+117247 
(internal); (b) ROC curves of the hub genes in the GSE45164 (external).
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Discussion
CSCC is a prevalent malignant skin tumor, and its incidence has steadily increased in recent years, garnering consider-
able attention. To date, there remains a scarcity of effective therapeutic strategies for cSCC. It is primarily attributable to 
the absence of precise molecular targets, resulting in a generally unfavorable prognosis. With the rapid development of 
bioinformatics, the field of life sciences has entered the era of big data characterized by multi-omics data, including 
transcriptomics. Compared to traditional experiments, bioinformatics research on transcriptomics helps to rapidly and 
accurately extract information. It enhances experimental efficiency, reduces costs, and plays a significant role in studying 
human gene function, human diseases, and precision medicine. Therefore, investigating the pathogenesis of cSCC at the 
genetic level holds promise for early diagnosis and the development of effective interventions to prevent cSCC 
progression. Consequently, we have explored potential biomarkers and molecular mechanisms associated with cSCC.

Figure 9 Expression patterns of CCNA2, CCNB2, UBE2C in cSCC and normal tissues. (a) Protein levels of CCNA2, CCNB2, UBE2C in cSCC and normal tissues; 
(b) Expression of CCNA2, CCNB2, UBE2C in 30 pairs of cSCC and adjacent normal tissues, *** P < 0.001.
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Initially, we screened DEGs in cSCC, identifying 505 upregulated genes and 522 downregulated genes. Subsequently, 
we conducted enrichment analyses on these genes. Upregulated DEGs were primarily associated with biological 
processes such as chromosome segregation and nuclear division, while downregulated DEGs were mainly involved in 
processes related to skin development, epidermal development, and keratinocyte differentiation, which are fundamental 
processes in cell proliferation. Our research results indicated that the upregulated DEGs between normal samples and 
cSCC were mainly associated with cell cycle, DNA replication, mismatch repair, and IL-17 signaling pathways. In fact, 
a previous study suggested that the development and progression of cSCC might be related to the recruitment and release 
of IL-17 by Th17 cells.22

Figure 10 CeRNA networks. (a) The mRNA-miRNA co-expressed networks constructed by Cytoscape; (b) The ceRNA networks constructed by Cytoscape; (c) NEAT1/H19-hsa- 
miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C.
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To further explore the key genes involved in the pathogenesis of cSCC, we constructed a PPI network of DEGs. Utilizing 
five algorithms, namely Degree, MCC, MNC, Closeness, and Stress, we identified six genes highly correlated with cSCC: 
AURKA, BIRC5, CCNA2, CCNB2, CDK1, and UBE2C. We found that the expression patterns of these genes were 
upregulated in cSCC tissues compared to normal tissues, and these genes were also present in the top-scoring key module.

Subsequently, we employed WGCNA to identify key modules associated with cSCC. Within the WGCNA analysis, the 
blue module emerged as the most relevant module correlated with cSCC. Molecular function analysis revealed that genes 
within the blue module were enriched in pathways related to single-stranded DNA binding, catalytic activity on DNA, single- 
stranded DNA helicase activity, and microtubule binding. It has been reported that disruptions in microtubule dynamics can 
regulate cell proliferation in several human tumors,23 including squamous cell carcinoma.24 Cellular component analysis 
showed that the genes in the blue module were primarily associated with chromatin regions and condensed chromatin, 
indicating their essential roles in mitosis. KEGG analysis demonstrated that genes in the blue module were enriched in 
pathways related to DNA replication, the cell cycle, and the proteasome pathway. Notably, the GO/KEGG enrichment analysis 
results for the blue module closely resembled the most important module in the PPI network.

We identified four hub genes, CDK1, CCNA2, CCNB2, and UBE2C, as the intersection between the genes selected through 
WGCNA and PPI analyses. ROC analyses conducted on internal and external validation datasets indicated that these 4 hub genes 
hold significant diagnostic value, potentially serving as biomarkers for accurate diagnosis and treatment of cSCC. Literature 
research revealed that CDK1 was previously reported as an oncogene in cSCC.25 However, the roles of CCNA2, CCNB2, and 
UBE2C in cSCC had not been previously documented. These genes have been confirmed to regulate the pathogenesis of other 
tumors, including squamous cell carcinoma,26–30 suggesting a close association between the aberrant overexpression of hub 
genes and tumorigenesis. To confirm this, we conducted experimental validation in vitro after bioinformatics analysis, and our 
study revealed a significant upregulation of CCNA2, CCNB2, and UBE2C expression in cSCC patients.

We hypothesize that CCNA2, CCNB2, and UBE2C may serve as potential biomarkers for the diagnosis and treatment of 
cSCC. LncRNAs and miRNAs frequently interact in gene expression regulation. To identify regulatory factors associated with 
hub genes, we constructed lncRNA-miRNA-mRNA regulatory networks, elucidating the pathogenesis of cSCC at the 
transcriptome level. We conducted a literature search based on the ceRNA hypothesis and selected downregulated miRNAs 
in cSCC for further analysis. Among the targeted miRNAs for CCNA2, CCNB2, and UBE2C, hsa-miR-140-3p and hsa-miR 
-148a-3p have been confirmed to be downregulated in cSCC.31,32 Additionally, it has been reported that two lncRNAs, NEAT1 
and H19, are upregulated in cSCC.33,34 NEAT1 can regulate cSCC cell proliferation,33 while H19 plays a significant role in 
cSCC proliferation and invasion by promoting the epithelial-mesenchymal transition process.34 Therefore, we propose that the 
NEAT1/H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C axes may constitute a potential ceRNA reg-
ulatory pathway, modulating the progression of cSCC. However, our study has some limitations. The investigation into the 
pathogenesis was primarily conducted through computational simulations, and further in vivo and in vitro experiments will be 
necessary to validate these findings in the future.

Conclusion
In this study, we have identified CCNA2, CCNB2, and UBE2C as potential biomarkers for cSCC for the first time. 
Additionally, we have proposed novel molecular regulatory mechanisms, NEAT1/H19-hsa-miR-148a-3p-CCNA2 and 
NEAT1-hsa-miR-140-3p-UBE2C, which may offer prospects for targeted therapy with anti-tumor drugs.
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