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Purpose: This study aimed to evaluate the potency of 471 flavonoids from the genus Erythrina as potential acetylcholinesterase 
(AChE) inhibitors and free radical scavengers through computational studies to develop Alzheimer’s disease (AD) therapies from 
natural products.
Methods: A total of 471 flavonoids from the genus Erythrina were subjected to molecular docking against AChE, followed by 
toxicity screening. The potential AChE inhibitors with the least toxic profile were subjected to further investigation through molecular 
dynamics (MD) simulations, density functional theory (DFT) study, and in silico pharmacokinetic predictions.
Results: A combination of molecular docking and in silico toxicity screening led to the identification of 2(S)‒5,7‒dihydroxy‒5′‒ 
methoxy‒[2′′,2′′‒(3′′‒hydroxy)‒dimethylpyrano]‒(5′′,6′′:3′,4′) flavanone (89) and Abyssinoflavanone IV (83) as potential AChE 
inhibitors. These compounds had stable binding to AchE and exhibited lower Root Mean Square Deviation (RMSD) values compared 
to the apo state of AChE. In addition, Molecular Mechanics Generalized Born Surface Area (MMGBSA) analysis revealed that the 
binding energies of 89 and 83 were significantly lower compared to acetylcholine, the natural substrate of AChE. Based on DFT study, 
these compounds exhibited a higher energy in the highest occupied molecular orbital (EHOMO) and lower electron affinity (EA) than 
Quercetin. This indicated that 89 and 83 could be potential radical scavengers through their electron-donating activity.
Conclusion: Although this study primarily relied on computational methods, the results showed the dual functionality of compounds 
89 and 83 as both potential AChE inhibitors and free radical scavengers. Further investigation in wet laboratory experiments is 
required to validate their therapeutic potential for AD.
Keywords: flavonoids, erythrina, acetylcholinesterase, free radical scavenger, in silico

Introduction
Alzheimer’s disease (AD) poses a significant global health challenge, affecting millions of people worldwide, with its 
prevalence increasing as age advances.1 Several studies have shown that therapeutic interventions play a crucial role in 
addressing the cognitive decline associated with AD. During the treatment process, cholinesterase (ChE), including 
acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), serves as key molecular targets.2 These enzymes are 
responsible for acetylcholine hydrolysis, which is essential for memory and cognitive functions. In addition, inhibition of 
ChE can elevate acetylcholine levels, potentially enhancing cholinergic neurotransmission and mitigating cognitive 
deficits in AD patients.3

The formation of free radical species is another important neurotoxic pathway in the development of AD.4 As 
individuals age, the formation and accumulation of free radical species in the body exacerbates oxidative stress and 
weakens cellular antioxidant defense mechanisms.5 Numerous studies have shown that antioxidants can either prevent or 
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ameliorate AD.6–8 Therefore, the discovery and development of medicinal compounds possessing both antioxidant and 
anti-ChE activities are essential for effective treatment.9

In line with these results, flavonoids are a diverse class of polyphenolic compounds found abundantly in fruits, 
vegetables, and medicinal plants.10 Flavonoids are recognized for their broad spectrum of health-promoting properties, 
including antioxidant and anti-inflammatory activities. In addition, these compounds have been extensively studied due 
to their potential therapeutic applications.11 Flavonoids have also shown significant potential as anti-ChE agents and ChE 
activity inhibitors.12,13 For instance, compounds isolated from Dorstenia and Polygonum genus showed inhibitory 
activity against AChE, with IC50 values ranging from 5.93 to 8.75 µg/mL.14

The genus Erythrina has been reported to comprise medicinal plants rich in flavonoids, with approximately 471 
compounds being isolated.15,16 Several studies revealed that extracts from various Erythrina species, including E. 
corallodendron,17 E. caffra,18 E. velutina19 and E. variegata20 have the potential to serve as therapeutic agents for AD 
by inhibiting AChE enzyme activity. However, there is no available literature on the potency of flavonoids derived from 
the genus Erythrina as AChE inhibitors.

In silico approaches, such as molecular docking and dynamic simulations, offer a powerful method to explore ligand- 
receptor interactions at the atomic level.21 Therefore, this study aims to determine the binding affinity, binding mode, and 
stability of flavonoids from the genus Erythrina with AchE using computational tools. Potential lead compounds were 
also identified for further experimental validation by elucidating the structural basis of flavonoid‒AChE interactions. The 
results of this study are expected to bridge the gap between natural product chemistry and computational biology, 
providing insights into the therapeutic potential of flavonoids from the genus Erythrina as ChE inhibitors to combat AD.

Materials and Methods
Molecular Docking System Preparation
The 3D X-ray crystal structure of human AChE in complex with galantamine (GNT) was downloaded from Protein Data 
Bank (PDB) (https://www.rscb.org, accessed on April 25th, 2024) with PDB ID of 4EYH. Furthermore, co-crystallized 
ligand was separated from the 3D structure of the protein and saved in PBD format, while the water molecules were 
removed from the ligand-free protein and saved in PDB format. Both the ligand and protein were processed using 
AutoDock tools (version 1.5.7), and saved in the pdbqt format.

In this study, the structures of the 471 flavonoids were retrieved from several literature reviews.15,16 The protonated 
state of these flavonoids was predicted using Chemaxon MarvinSketch, and the 3D structures were optimized using the 
Merck molecular force field (MMFF94) and saved in the format. Finally, the 3D structures were further processed using 
AutoDock tools (version 1.5.7), and saved in pdbqt format.22

Redocking and Virtual Screening
The prepared protein and co-crystallized ligand structures were subjected to a redocking procedure using AutoDock Vina 
(version 1.2.0). In addition, the grid box parameter was set to a size of 36×36 x 40 with a 0.375 Å spacing, which covered 
co-crystallized ligand and the largest flavonoid structure for docking. The docking poses generated by AutoDock Vina 
were separated using Vina Split, and the most preferred pose (with the lowest binding score) was superimposed onto co- 
crystallized ligand file. Subsequently, Root Mean Square Deviation (RMSD) was calculated using Biovia Discovery, 
which resulted in RMSD of 0.3403 Å. The docking parameters from redocking procedure were then applied to virtual 
screen 471 flavonoids against the human AChE protein.

Molecular Dynamics (MD) Simulation
According to previous studies, MD simulation for the best-hit compound was conducted using Amber20 with GPU 
acceleration.23,24 The amino acid residues of AChE were parameterized using the ff19SB force field. Furthermore, the 
partial atomic charges of the ligands were determined using the Austin Model 1‒Bond Charge Corrections (AM1‒BCC) 
method in the antechamber module of Amber‒Tools21. Additional parameters for the ligand were sourced from the 
generalized amber force field 2 (GAFF2). AChE‒ligand complex was solvated using the tleap module in Amber-Tools21, 
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with solvent box dimensions of 10 Å. In addition, a small number of Na+ and Cl‒ ions were added to the system to 
achieve a 0.15 M salt concentration.

The simulation process began with 2 consecutive energy minimization steps. For the protein-ligand complex, 
a restraint of 25 kcal mol–1Å–2 was applied in the initial step, followed by 5 kcal mol–1Å–2 in the second step of 
minimization. After the minimization step, the temperature of the system was increased to 300 K under a 50‒ps NVT 
(Number‒Volume‒Temperature) condition and then switched to Number‒Pressure‒Temperature (NPT) condition. 
Subsequently, the system density was adjusted to 1 g.cm–3 over a 50‒ps period. During subsequent NVT simulations, 
the restraint on the solute was gradually reduced by 1 kcal mol–1 Å–2 every 50 ps until it was fully eliminated.

In this study, the system was simulated at a temperature of 300 K under NPT conditions to produce a 100‒ns MD trajectory. 
Particle‒Mesh Ewald (PME) method was used to overcome long-range electrostatic interactions, while a 10‒Å cut‒off was 
applied for short‒range non‒bonded interactions. A SHAKE algorithm was used to maintain bond constraints, including 
hydrogen atoms. Simultaneously, the temperature and pressure of the system were controlled using a Langevin thermostat and 
Berendsen barostat, respectively.23,24

Density Functional Theory (DFT) Study
Molecular structures of the hit compound and quercetin (used as a standard antioxidant) were optimized using DFT with 
the B3LYP method and the 6–311G++(d,p) basis set in the Gaussian 09 software. Following the optimization, vibrational 
frequency analysis confirmed that no imaginary frequencies were present in the optimized structures.25

The global descriptive parameters, including the ionization potential (I), electron affinity (A), hardness (η), softness (S), 
electronegativity (χ), chemical potential (μ), electrophilicity index (ω), electron-donating power (ω‒), and electron accepting 
power (ω+), were calculated based on the vertical energy method using the following equations:26

In silico Pharmacokinetics Prediction
The ADMETlab 2.0 web server (https://admetmesh.scbdd.com, accessed on May 3, 2024) was used to predict the pharmaco-
kinetic properties (absorption, distribution, metabolism, and excretion) of the potential AChE inhibitor.
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Results
Molecular Docking and Toxicity Screening
Molecular docking was used to screen the binding affinity of 471 flavonoids isolated from the genus Erythrina for AChE, with 
galantamine as the standard. Out of the 471 flavonoids, 88 exhibited lower docking scores compared to that of galantamine which 
exhibited docking score of −10.44 kcal/mol as cutoff (Table S1). These potential AChE inhibitors were evaluated for toxicity 
(Table S2), and 9 of these flavonoids showed a low to medium risk of toxicity and were listed in Table 1. Among these flavonoids, 
2(S)‒5,7‒dihydroxy‒5′‒methoxy‒[2′′,2′′‒(3′′‒hydroxy)‒dimethylpyrano]‒(5′′,6′′:3′,4′) flavanone (89) and Abyssinoflavanone 
IV (83) (Figure 1) are the top hits which were further subjected to MD simulation, DFT study and pharmacokinetics prediction.

Molecular Dynamics (MD) Simulation
Among these 9 hits, the first 2 were evaluated for further analysis using MD. The results could be described in terms of RMSD, 
Root Mean Square Fluctuation (RMSF), and Molecular Mechanics Generalized Born Surface Area (MMGBSA) free energy.

RMSD
RMSD plots of the Apo form, along with AChE‒89 and AChE‒83 complexes, were shown in Figure 2. The apo state of AChE 
exhibited the highest RMSD, with a median value of 1.783 Å and a median absolute deviation (MAD) of 0.321 Å. Both 
AChE‒83 and AChE‒89 complexes displayed the lowest RMSD (median = 1.525 Å, MAD = 0.114 Å and median = 1.558 Å, 
MAD = 0.126 Å, respectively) when compared to AChE‒GNT and AChE‒ACh complexes (Table S3).

RMSF
RMSF profiles of AChE‒89 and AChE‒83 complexes and the Apo form of AChE were shown in Figure 3. On close 
inspection of the 100 ns trajectories within several structural regions, including the triad, omega loop, and George entry, 
significant differences emerged between the apo (unbound) and ligand-bound forms of AChE. The amino acid residues in 
the triad, omega loop, and George entry exhibited lower B‒factors in the ligand-bound complex compared to the apo 

Table 1 List of 9 AChE Inhibitor Hits

Flavonoid Name Flavonoid Subclass Docking Score  
(Kcal/mol)

Abyssinin I (80) Flavanone ‒11.1

Abyssinoflavanone IV (83) Flavanone ‒11.24

Abyssinoflavanone VI (85) Flavanone ‒10.66
2(S)‒5,7‒dihydroxy‒5′‒methoxy‒[2′′,2′′‒(3′′‒hydroxy)‒ dimethylpyrano]‒(5′′,6′′:3′,4′) flavanone (89) Flavanone ‒11.36

(2S)‒5,7‒dihydroxy‒5′‒methoxy‒2ʹʹ‒(4ʹʹ‒hydroxyisopropyl)‒ dihydrofurano[1′′,3′′:3′,4′] flavanone (95) Flavanone ‒10.57

Erypoegin A (Burttinol C) (139) Isoflav‒3‒ene ‒10.81
Vogel (387) Flavone ‒10.65

Dihydroxyabyssin (400) Flavanone ‒11.02
Erydroogmansin A (425) Isoflavanone ‒10.9

Galantamine Inhibitor ‒10.44

Figure 1 Chemical structure of compounds 89 (left) and 83 (right).
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form of AChE (Table S4). This observation suggested that amino acids in these structural regions were more stable and 
exhibited less movement.

MMGBSA Free Energy Calculation
MMGBSA Analysis was a computational method extensively used in MD simulations to investigate binding affinities 
and interactions between molecules.27 The ΔGo

MMGBSA calculation from MD simulation trajectories revealed that 
galantamine (a well-known AChE inhibitor) had the lowest binding energy, followed by compounds 89, 83 and 
acetylcholine (a native substrate of AChE) (Table 2).

Figure 2 RMSD plot comparison of Apo AChE Vs AChE‒ 83 complex (green) and AChE‒ 89 complex (blue).

Figure 3 RMSF plot comparison of Apo AChE Vs AChE‒ 83 complex (green) and AChE‒ 89 complex (blue).
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To evaluate whether there was a significant difference between the 4 complexes, Kruskal–Wallis rank-sum test was 
performed. Furthermore, the test was followed by Dunn’s multiple-comparison test, using the Bonferroni method as 
a post‒hoc test.23 The test suggested that there was no statistical difference between the ΔG°MMGBSA values of 
galantamine and both 89 and 83. However, both were significantly different from that of acetylcholine (Figure 4); 
therefore, compounds 89 and 83 were identified as potential AChE inhibitors.

Density Functional Theory (DFT)
According to previous studies on other flavonoid compounds, DFT study was conducted to evaluate the free‒radical 
scavenging potency of 89 and 83. The global descriptive parameters, including EHOMO, ELUMO, ΔEgap, ionization 
potential (I), electron affinity (A), hardness (η), softness (σ), electronegativity (χ), chemical potential (μ), electrophilicity 
index (Ω), electron-donating power (ω–), and electron‒accepting power (ω+), were used to assess the reactivity of 89 and 
83 toward free radicals in comparison with Quercetin (a well‒known antioxidant) as a standard. The global descriptive 
parameter values for 89, 83, and Quercetin were listed in Table 3.

In silico Pharmacokinetics Prediction
Pharmacokinetic prediction was a crucial aspect of drug design and discovery, as it allowed for early estimation of the 
absorption, distribution, metabolism, and excretion (ADME) properties of potential drug candidates. This early 

Table 2 Δgo
mmgbsa Values of Acetylcholine‒, Galantamine‒, 89‒, and 83‒AChE Complex (Expressed as 

Median ± SD)

Ligand ΔGo
MMGBSA (Kcal/mol) ΔGo

MMGBSA Energy Terms (Kcal/mol)

vdW Electrostatics EGB ESurf

Galantamine ‒42.85 ± 10.20 ‒36.64 ± 0.84 ‒39.03 ± 17.14 32.86 ± 8.02 ‒4.78 ± 0.24
89 ‒37.94 ± 5.69 ‒46.97 ± 2.69 ‒28.10 ± 7.51 42.17 ± 4.75 ‒5.80 ± 0.15

83 ‒32.93 ± 2.26 ‒46.99 ± 2.03 ‒28.57 ± 11.39 49.37 ± 9.69 ‒5.86 ± 0.17

Acetylcholine ‒24.33 ± 3.56 ‒22.90 ± 1.37 ‒270.44 ± 5.94 272.76 ± 5.29 ‒3.36 ± 0.42

Figure 4 The 2D representation of 89 (left) and 83 (right) interaction with active site of AChE.
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estimation significantly reduced the fraction of pharmacokinetics-related failures in the clinical phase, which eventually 
enhanced the efficiency of drug development.28 Therefore, after evaluating the potency of compound 89 as AChE 
inhibitor and radical scavenger, pharmacokinetic prediction of 89 and 83 was performed, and the results were summar-
ized in Table 4.

Table 3 Global Descriptive Parameter of Compound 89 and Quercetin as Standard

Global Descriptive Parameter Value (eV)

89 83 Quercetin

EHOMO ‒0.21835 ‒0.22195 ‒0.22311

ELUMO ‒0.05502 ‒0.0593 ‒0.07586
ΔEgap ‒0.16333 ‒0.16265 ‒0.14725

Ionization potential (I) 7.38354023 7.43831677 7.54223709

Electron affinity (A) 0.05825960 0.00087076 0.62493692
Hardness (η) 3.662640314 3.718723001 3.458650083

Softness (σ) 0.136513541 0.134454758 0.144565073

Electronegativity (χ) 3.720899913 3.719593766 4.083587006
Chemical potential (μ) ‒3.720899913 ‒3.719593766 ‒4.083587006

Electrophilicity index (Ω) 6.92254808 6.917688891 8.337841418

Electron donating power (ω–) 4.208323103 4.184869625 4.884846062
Electron accepting power (ω+) 0.48742319 0.465275859 0.801259056

Table 4 Pharmacokinetics Prediction of Compounds 89 and 83

Pharmacokinetic  
Properties

Parameters Predicted Values Unit

89 83

Absorption Caco‒2 permeability ‒4.848 ‒4.908 log cm/s
MCDK permeability 1.3 x 10‒5 1.2 x 10‒5 cm/s

Pgp‒inhibitor Yes Yes ‒
Pgp‒substrate No No ‒
Human intestinal 

absorption

>30 >30 %

Distribution Plasma Protein Binding 92.15 97.35 %

Volume Distribution 1.027 0.637 L/kg

BBB Penetration Yes Yes ‒
Fraction unbound 8.02 3.59 %

Metabolism CYP1A2 inhibitor No Yes ‒
CYP1A2 substrate No No ‒
CYP2C19 inhibitor No Yes ‒
CYP2C19 substrate No Yes ‒
CYP2C9 inhibitor Yes Yes ‒
CYP2C9 substrate Yes Yes ‒
CYP2D6 inhibitor Yes Yes ‒
CYP2D6 substrate No No ‒
CYP3A4 inhibitor Yes Yes ‒
CYP3A4 substrate No No ‒

Excretion Drug clearance 13.419 16.486 mL/min/kg

Half‒life 0.393 0.485 ‒
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Discussion
Out of the 471 flavonoids evaluated, 9 hits were identified with lower binding affinities compared to that of galantamine 
(GNT) and were predicted to exhibit low to medium toxicity. The top 2 hits, namely 2(S)‒5,7‒dihydroxy‒5′‒methoxy‒[2′ 
′,2′′‒(3′′‒hydroxy)‒dimethylpyrano]‒(5′′,6′′:3′,4′) flavanone (89) and Abyssinoflavanone IV (83) (Figure 1) were further 
subjected to MD simulation to evaluate the stability of AChE upon binding to these compounds. This was followed by in 
silico pharmacokinetics and drug-likeness prediction to evaluate the potency of these compounds to be developed as 
potential drugs for AD therapy.

RMSD was a crucial metric for studying biomolecules during simulations and experiments. It quantified the average 
displacement of atoms from their initial positions and could provide insights into the dynamic behavior of a biomolecule as it 
interacted with other molecules (eg, a docked ligand). RMSD plot (Figure 2) indicated that both 89 and 83 stabilized AChE 
protein, as both AChE‒83 and AChE‒89 complexes displayed the lowest RMSD (median = 1.525 Å, MAD = 0.114 Å and 
median = 1.558 Å, MAD = 0.126 Å, respectively). A lower RMSD value indicated greater stability of the biomolecular 
structure during these interactions.29 As comparison, RMSD values of both 83 and 89 were lower compared to that of AChE- 
quercetin complex in the literature (1.9 Å). Furthermore, it was noteworthy that Quercetin exhibited inhibitory activity against 
AChE with IC50 of 4.59 ± 0.27 µM.30 The stability of both AChE‒83 and AChE‒89 complexes was further supported by 
RMSF plot (Figure 3). RMSF quantified these fluctuations by calculating RMSD of the atomic positions from their 
equilibrium positions.31 RMSF plot served as a common representation of residues that had undergone substantial changes 
during MD simulation.32 For all AChE‒ligand complexes, except for the C-terminus and N-terminus, the other residues in 
AChE did not fluctuate significantly, including in the triad, omega loop, and George entry.

A 2D graphical representation of the interaction of AChE with 89 and 83 was shown in Figure 4. At the catalytic or acylation 
site of AChE, compound 89 interacted with His447 through Pi-Alkil, while compound 83 interacted with the same amino acid 
residue through a conventional hydrogen bond. The catalytic or acylation site comprised 3 essential amino acid residues (such as 
Ser203, His447, and Glu334). Each of these amino acid residues played a crucial role in the hydrolysis of acetylcholine. Ser203 acted 
as a nucleophile during substrate hydrolysis, His447 stabilized the transition state during the acylation process, and Glu334 assisted 
in substrate binding and catalysis.33 Because 89 and 83 could interact with His447, these compounds could interrupt the catalytic 
function of AChE. Moreover, in the “anionic” subsite, compound 89 interacted with Trp86 and Phe338, while compound 83 
interacted with both Trp86 and Tyr337. These amino acid residues played important roles in the binding and stabilization of the 
substrate in the active site as it was bound to the quaternary trimethylammonium choline moiety.34

MMGBSA free energy calculations indicated that both 89 and 83 had significantly lower binding energies than ACh, 
which was the natural substrate of AChE. Although both 89 and 83 had higher binding energies than galantamine (a known 
AChE inhibitor), the median difference in binding energy during the 100 ns simulation was not significantly different 
(Figure 5). This result suggested that the binding of 89 or 83 was more favorable than that of ACh; therefore, inhibitory 
activity against AChE could be exhibited. As comparison with available literature data, the ΔGbind of both 89 and 83 are lower 
than that of Quercetin (ΔGbind = −21.0 ± 2.5 Kcal/mol)35 which further support the potential inhibitory activity of 89 and 83 
against AChE.

In terms of free radical scavenging activity, the global descriptive parameter values of 89 and 83 were close to those 
of the Quercetin. However, in terms of electron affinity (EA) and electron-accepting power (ω+), the values were quite 
different. EA corresponded to the energy released when a neutral molecule captured an electron. The higher the EA 
value, the better the ability of a neutral molecule to accept electrons from a radical, thereby suggesting better radical 
scavenging activity.36 Furthermore, EA of Quercetin was much higher than those of 89 and 83, implying that the 
Quercetin had a better ability to accept electrons compared to 89 and 83. Quercetin had a higher electron‒accepting 
power (ω+) than 89 and 83, which further supported the better ability of Quercetin to accept electrons. However, the 
higher EHOMO and lower EA of 89 and 83 suggested that both compounds were good electron donors compared to 
quercetin. In this study, 89 and 83 could be potential radical scavengers owing to their electron‒donating activities.

Based on the results of MD simulation and DFT study, it was evident that 89 and 83 could be potential AChE 
inhibitors as well as free radical scavengers. Therefore, in the next step, in silico pharmacokinetic studies were conducted 
to predict the pharmacokinetic properties of 89 and 83. Pharmacokinetics referred to the study of how drug 
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concentrations change over time following drug administration. This included processes, such as absorption, distribution, 
metabolism, and excretion (ADME).22

Drug absorption was a critical aspect of pharmacokinetics that comprised the process by which a drug entered the 
bloodstream to exert its therapeutic effect.37 In terms of drug absorption parameters, the prediction model suggested that 
both 89 and 83 exhibited high Caco-2, which were the human intestinal epithelial cells and MCDK permeability. High 
Caco-2 permeability indicated that a compound could readily cross the intestinal barrier and be absorbed into the 
systemic circulation. Meanwhile, a high MDCK permeability implied that a compound could traverse the renal tubular 
epithelium efficiently. Compounds with high Caco-2 and MDCK permeability were likely to be well‒absorbed and 
efficiently eliminated, making these compounds favorable candidates for drug development.38 The prediction model also 
suggested that 89 and 83 were not substrates of P‒gp but could serve as P-glycoprotein (P‒gp) inhibitors. This result 
implied that the bioavailability of these compounds was not affected by P-gp activity, which acted as an efflux transporter 
and actively pumps xenobiotics into the lumen of the small intestine.24

Pharmacokinetics drug distribution referred to the reversible transfer of a drug between different compartments of the 
body. Once the drug entered systemic circulation through absorption or direct administration, it was distributed in both 
interstitial and intracellular fluids.22 Based on the prediction model, 89 and 83 were reported to have a good volume 
distribution with a value of 0.04–20 L/kg. Blood-brain barrier (BBB) permeability was another parameter used to 
describe drug distribution in the human body. BBB was a selective, semi-permeable membrane composed of tight 
junctions. Furthermore, it served as a protective barrier that limited the entry of specific substances from the bloodstream 
into the central nervous system (CNS). When a drug crossed the BBB, it gained access to the brain tissue. This ability 
was essential for treating CNS disorders (eg AD and epilepsy). The prediction model suggested that 89 and 83 could 
cross BBB. The unbound fraction represented the proportion of free drugs in the plasma. It was the fraction of drug 
molecules that were not bound to plasma proteins (such as albumin). Only the unbound drug could be distributed to the 
tissues, while the bound drug remained in the bloodstream. The prediction model suggested that compound 89 had 
a medium unbound fraction. Nevertheless, both 89 and 83 were predicted to exhibit high plasma protein binding (>90%), 
which could have a slower elimination rate, affecting the dosing intervals.

In terms of drug metabolism, the prediction model suggested that 89 and 83 could act as CYP2C9 substrates, 
indicating that these compounds could be metabolized by this specific enzyme. In the human liver, was the predominant 
enzyme within the CYP2C subfamily and played a crucial role in metabolizing clinically relevant drugs in a narrow 
therapeutic range.39

Figure 5 Box Plots of ΔGoMMGBSA for ligand binding AChE with significant test results from a Dunn test, a post hoc of Kruskal‒Wallis rank sum test.
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The drug excretion properties of 89 and 83 were evaluated in terms of drug clearance and half-life. Drug clearance 
represented the elimination rate of a substance divided by its concentration, and reflected the theoretical plasma volume 
from which the substance was entirely removed per unit of time. The prediction model suggested that compound 89 had 
moderate clearance, indicating that 89 was eliminated from the body at a moderate rate, and suggested a balance between 
rapid elimination and prolonged presence in the bloodstream. Meanwhile, 83 was predicted to have a high clearance, 
indicating that it could be eliminated from the body at a higher rate.

The half-life (T1/2) represented the estimated time, which was required for its concentration or amount in the body to 
decrease to 50% of its initial concentration (50%). The prediction model suggested that compound 89 had a half-life 
lower than 83, suggesting that it could remain in the body for a longer duration before being eliminated compared to 89.

Conclusion
In conclusion, through a combination of molecular docking, in silico toxicity screening had led to the identified 2(S)- 
5,7-dihydroxy-5′-methoxy-[2′′,2′′-(3′′-hydroxy)-dimethylpyrano]-(5′′,6′′:3′,4′) flavanone (89) and Abyssinoflavanone IV 
(83) from the genus Erythrina as potential AChE inhibitors. MD simulation revealed the stability of both AChE‒83 and 
AChE‒89 complexes with RMSD of 1.525 ± 0.114 Å and 1.558 ± 0.126 Å, respectively. Both 83 and 89 exhibited lower 
binding energy compared to that of acetylcholine, further supporting the potency of 83 and 89 as AChE inhibitors. 
Moreover, DFT study suggested that both 83 and 89 exhibited higher EHOMO and lower EA suggesting that both 
compounds were good electron donors compared to quercetin indicating that 89 and 83 could be potential radical 
scavengers through their electron-donating activity.

This study primarily relied on computational methods, the results could serve as s foundation to highlight the potency 
of 89 and 83 as both AChE inhibitors and free radical scavengers. Further investigation in wet laboratory experiments 
was warranted to validate their therapeutic potential for AD.
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