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Introduction: Mechanical thrombectomy (MTB) is a critical procedure for acute ischemic stroke (AIS) patients. However, the free- 
text format of MTB surgical records limits the formulation of effective postoperative patient management and rehabilitation plans. 
This study compares the efficacy of large language models (LLMs) in structuring data from these free-text MTB surgical record.
Methods: This retrospective study collected a total of 382 MTB surgical records from a tertiary hospital. An initial analysis of 30 
surgical record from these records provided a guiding prompt for LLMs, focusing on basic and advanced characteristics, such as 
occlusion locations, thrombectomy maneuvers, reperfusion status, and intraoperative complications. Six LLMs—ChatGPT, GPT-4, 
GeminiPro, ChatGLM4, Spark3, and QwenMax—were assessed against data extracted by neuroradiologists and a junior physician for 
comparison. The all 382 surgical records were used to test the performance of LLMs. The performance of the LLMs was quantified 
using Accuracy, Sensitivity, Specificity, AUC, and MSE as an additional metric for advanced characteristics.
Results: All LLMs showed high performance in characteristic extraction, achieving an average accuracy of 95.09 ± 4.98% across 48 
items, and 78.05 ± 4.2% overall. GLM4 and GPT-4 were most accurate in advanced characteristics extraction, with accuracies of 
84.03% and 82.20%, respectively. The processing time for LLMs averaged 73.10 ± 10.86 seconds of six models, significantly faster 
than the 427.88 seconds for manual extraction by physicians.
Conclusion: LLMs, particularly GLM4 and GPT-4, efficiently and accurately structured both general and advanced characteristics 
from MTB surgical record, outperforming manual extraction methods and demonstrating potential for enhancing clinical data 
management in AIS treatment.
Keywords: large language models, free-text report, mechanical thrombectomy, acute ischemia stroke

Introduction
Acute Ischemic Stroke (AIS) stands as a leading cause of mortality and debilitating conditions among adults globally.1 

The burden of stroke has increased significantly over recent decades, with the Global Burden of Disease (GBD) study 
showing that the annual number of strokes and stroke-related deaths increased substantially from 1990 to 2019.2 This 
trend is particularly evident in China, where the burden of stroke remains critically high.3,4

The surgical records of mechanical thrombectomy (MTB) detail essential intraoperative findings, including the extent 
of blood flow restoration and reperfusion status. These records are crucial for developing personalized, systematic, and 
evidence-based post-surgical management strategies, ultimately improving patient outcomes and quality of life.5

The prevalent use of free-text for documenting mechanical thrombectomy introduces inefficiencies in medical data 
utilization. Extracting precise data from such texts is error-prone and incomplete, complicating the integration with 
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structured systems like Electronic Health Records.6,7 This disjunction not only stymies extensive clinical research but 
also hinders clinical decision-making and effective patient follow-up, as the information is poorly suited for quick 
reference or integration into clinical decision support systems. Adopting structured reports for mechanical thrombectomy 
operations in AIS patients holds considerable clinical benefits. Structured reports enhance the speed and clarity of 
presenting surgical data, aiding healthcare providers in making informed and timely treatment decisions. Integration of 
structured reports into clinical decision support systems bolsters the accuracy and scientific basis of treatment strategies. 
Furthermore, organized documentation is crucial for monitoring patient recovery and refining follow-up protocols, 
thereby elevating both clinical efficiency and patient care standards.8

Large language models (LLMs) such as ChatGPT,9 GPT4,10 and Gemini have performed well on various downstream 
natural language processing(NLP) tasks and are widely used in the medical field.11 Previous studies have evaluated 
LLMs’ capabilities in extracting structured imaging reports12,13 and in medical professional exams.14,15 However, these 
studies have primarily focused on English texts, using data mainly from open-source datasets or specific public 
examination questions, and predominantly on ChatGPT or GPT-4. Given the complexity and unpredictability of surgery, 
the content and organization of free-text surgical records exhibit much greater variability and heterogeneity compared to 
semi-standardized electronic medical records or radiology reports. This variability can pose challenges in extracting 
information from these documents.

To further enhance the potential of MTB surgical records in formulating effective postoperative patient management 
and rehabilitation plans for AIS patients, this study aims to perform a comparative evaluation of the capabilities of six 
widely used large language models (LLMs). These include three globally recognized models: ChatGPT (GPT-3.5 Turbo), 
GPT-4, and Gemini Pro,16 as well as three major Chinese models: ChatGLM-4 (GLM4),17 Spark 3,18 and Qwen Max, in 
extracting vital information from free-text Chinese MTB surgical records and generating structured text. It is well-known 
that GPT-4 performs exceptionally well in many tasks. In our setup for extracting text from Chinese MTB records, we are 
interested in whether GPT-4 can maintain its strong performance. Additionally, we are keen to see if other large language 
models, especially those developed in China, can outperform GPT-4 in our specific context.

Materials and Methods
Dataset
A total of 502 consecutive reports from patients with AIS who underwent MTB treatment at Shanghai Sixth People’s 
Hospital from September 2019 to November 2023 were retrospectively collected from the hospital information system 
between January 3, 2024, and January 12, 2024. These reports meticulously documented various examinations and 
treatment processes during hospitalization, including detailed records of the MTB treatment procedure, all in free-text 
format. Inclusion criteria included: (1) patient age over 18 years; (2) AIS resulting from CT-confirmed large vessel 
occlusion of the middle cerebral artery; (3) treatment with MTB. The exclusion criterion was the absence of a detailed 
report (n = 120 patients). A total of 382 patients were finally included. To better illustrate the enrollment process, a flow 
chart has been provided (Figure 1). Before analysis, all personal data were anonymized, resulting in 382 MTB surgical 
record with free-text descriptions of the MTB procedure for further research in Chinese. There was neither an internal nor 
an external data set.

Using of the Large Language Models
This study included six large language models capable of supporting simplified Chinese queries, including: (1) GPT-3.5 
turbo, which has a parameter count in the hundreds of billions and has garnered widespread global attention.19 (2) GPT-4, 
the successor to GPT-3.5 turbo, boasts an even larger parameter count and has demonstrated outstanding performance in 
multiple medical scenario tests.14,20 (3) GLM4, which has matched or approached GPT-4’s performance in several 
benchmark tests, particularly in Chinese understanding.17 (4) Spark3, which has undergone specialized training in 
multiple professional fields, including medicine, resulting in significantly improved performance.18 (5) QwenMax and 
GeminiPro were also included in this study to enrich the baseline for experimental comparison. The information about 
the development companies and countries of the above models can be found in the Table S1.
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To ensure accuracy and reproducibility, all models were accessed via their official default interfaces. Python programs 
were used to implement cyclic question calling, with no modifications to the models’ default hyperparameters during the 
process. To explore the application capabilities of LLMs in medical text processing, this study designed two experiments: 
one focused on extracting key basic characteristics, and the other on generating advanced logic characteristics from MTB 
procedure details. An initial analysis of 30 surgical record from these records provided a guiding prompt for LLMs. The 
prompts for each experiment were constructed by a senior neuroradiologist with over 15 years of experience (detailed in 
Supplementary Material 1). Characteristics were extracted by LLMs from free-text MTB surgical records and returned in 
a structured JSON format. In cases where the JSON format was incorrect, we re-requested the specific case to obtain 
a properly formatted response. A post-processing tool was developed to transfer all model-generated JSON texts to 
corresponding Excel spreadsheets for further analysis. This workflow is illustrated in Figure 2.

Key Basic Characteristics Extraction from MTB Surgical Record
The operating records in MTB procedure report meticulously noted the thrombolytic drugs used, the exact occlusion 
locations, the TICI grading, and whether there were any occurrences of bleeding or hematoma post-surgery. This 
experiment aimed to test the ability of six LLMs to extract data from MTB surgical record and return key characteristics 
in a structured JSON format. A prompt was tested on 30 records to identify errors and optimize instructions for the 
LLMs. The experiments were conducted in Chinese, with an English version of the prompt provided in Supplementary 
Material 1. This experiment was based on 382 detailed free-text records describing MTB procedures, comprehensively 
covering essential information such as occlusion sites, procedural processing, angiographic outcomes, therapeutic 
measures, and treatment outcomes. Specific examples are provided in Supplementary Material 1 and Figure S1. The 
characteristics that were extracted, as well as the instructions for the LLMs for each procedural detail, are summarized in 
Table 1. These characteristics are crucial for assessing patient functional outcomes and serve as important indicators that 
assist in clinical decision-making.21

For reference standard construction, all records were independently evaluated by two interventional neuroradiologists 
(X.X.X and X.X.X, with over 5 years of experience), and disagreements were resolved by an arbitrator (X.X.X., with 15 
years of experience in neurointerventional surgery). During this process, the neuroradiologists were blinded to the results 
produced by the LLMs. The data were exclusively extracted from MTB surgical records, with no data acquired from 
other clinical sources.

Figure 1 Patient Enrollment Flow Chart. Flow chart depicting the process of patient enrollment and exclusion for the study, including the initial cohort of 502 patients, the 
exclusion criteria, and the final number of 382 patients included in the analysis.
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Advance Logic Characteristics from MBT Surgical Record
This experiment focused on extracting a characteristic generated by advanced logic using LLMs. The models were tasked 
with calculating the number of thrombectomy maneuvers in MTB surgical record, a task that requires both medical 
knowledge and logical reasoning capabilities. Typically, the number of thrombectomy maneuvers may not be directly 
recorded as a number in the records but described in text, such as indicating statements like “The microcatheter was then 
guided again by the microguidewire to the distal end of the right M1 segment” or “Repeat the above procedure three 
times”. This experiment involved the textual analysis of the same set of 382 detailed medical texts documenting MTB 

Figure 2 Large Language Model Invocation and Data Retrieval Process. Each Chinese medical text is input into six large language models, which analyze the text and return 
JSON outputs (for retrieving structured item information) or text regarding the number of thrombectomy maneuver. After relevant text post-processing, all data are 
transferred and saved into an xlsx file.

Table 1 Summary of Instructions and Options Given to the Large Language Models

Extracted Key characteristics Instructions

Thrombectomy performing Yes/No

Stent using Yes/No

Location of vessel occlusion The naming of segment vessel, such as left MCA, right MCA, right ICA, left ICA, BA, or unknown

Balloon guide catheter using Yes/No

Midline shift of brain Yes/No

Intravenous thrombolysis Yes/No

Bleeding or hematoma Yes/No

mTICI grading Grading value (eg, 0, 1, 2a, 2b, 3) / Unknown

Abbreviations: mTICI, modified Thrombolysis in Cerebral Infarction; MCA, middle cerebral artery; ICA, internal carotid artery; BA, basilar artery.
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treatment. The first pass effect was defined as the scenario explicitly indicated in the text where a guidewire was 
introduced into the vessel, a single pass of the device achieved complete revascularization of the large vessel occlusion 
and its downstream territory (mTICI 3), and no rescue therapy was employed. The six LLMs (invoked on January 22, 
2024) analyzed all 382 records using the same Chinese prompt to extract the number of thrombectomy maneuvers. For 
comparison, a junior neuroradiologist (XXX, with 3 years of experience) independently analyzed all 382 records to 
extract the number of thrombectomy maneuvers. An expert with over 15 years of experience in neurointerventional 
surgery analyzed all the records and these findings served as the reference standard.

Statistical Analysis
All results were numerically transformed before statistical analysis. Only data entries from the LLMs that exactly matched 
the expert’s readings were counted as correct. Any deviation from the given options in the prompt, including synonyms, 
punctuation marks, or any additional symbols entered by the LLM, was counted as false. If a data point was not included in 
the report, it was declared as “missing” or “unknown” by the neuroradiologist. When the LLM also declared certain 
information as “missing” or “unknown”, the data entry was categorized as correct. The performance of these models and 
junior neuroradiologists was assessed by calculating accuracy, sensitivity, specificity, and the area under the receiver 
operating characteristic curve (AUC). The comparison of AUC values between groups was conducted using the DeLong 
test.22,23 The significance of differences in accuracy between the model and junior doctors was assessed using the McNemar 
test. For the occlusion locations and TICI grading, only accuracy was calculated. The 95% confidence intervals were 
determined by bootstrapping with 1000 samples. Statistical analyses were performed by one of the authors (X.X.X.) using 
Python 3.10. The total number of tokens in the text was calculated using https://github.com/openai/tiktoken.

Results
Patient Characteristics
A total of 382 MTB surgical records from 382 patients (mean age, 72.23 years ± 13.35) were finally included for 
analysis, comprising 208 male (208/382, 54.45%) and 174 female (174/382, 45.55%). The average character length of 
the surgical records in report was 277.21 characters, with an average token count of 588.88. Texts with a mTICI score of 
3 accounted for 53.79%, while texts documenting occlusions of the middle cerebral artery comprised 63.61%. There 
were 333 texts involving thrombectomy procedures, 310 texts detailing stent usage, 80 texts on balloon dilation, 83 texts 
on intravenous thrombolysis, one text describing midline shift, and 17 texts reporting bleeding or hematoma. Patient 
characteristics and basic clinical and procedural details are summarized in Table 2

Key Basic Characteristics Extraction by LLMs
Performance of Models in Key Information Extraction
In the process of extracting basic key information from 382 texts of 382 patients, the models performed excellently in 
most key information extraction tasks, with an average accuracy of 95.09 ± 4.98% in 8 items*8 models = 64 items. 
Specifically, GPT-3.5 Turbo achieved an average accuracy of 92 ± 6.72%; Gemini Pro had an average accuracy of 94.18 
± 4.57%; GLM4’s average accuracy was 95.91 ± 3.75%; GPT-4 reached an average accuracy of 97.67 ± 2.60%; Qwen 
Max had an average accuracy of 95.02 ± 5.12%; and Spark 3’s accuracy was 95.58±4.34%. Figure 3 shows the 
performance accuracy of six large language models with a line chart.

For the six key information extraction tasks, With the “mTICI score” and “occlusion location” excluded, GPT-3.5 
Turbo’s average AUC was 0.91 ± 0.09, Gemini Pro’s average AUC was 0.90 ± 0.008, GLM4’s average AUC was 0.97 ± 
0.04, GPT-4’s average AUC was 0.92 ± 0.08, Qwen Max’s average AUC was 0.96 ± 0.05, and Spark 3’s average AUC 
was 0.95 ± 0.04. More details can be found in Table 3, and the Delong Test and additional comparison details are 
provided in Tables S2–S4.
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Incorrect Data Analysis
In an experiment involving the extraction of basic key information from texts of 382 patients, GPT-4 and Spark 3 were 
the only models that consistently returned data in the correct format, while other models exhibited varying degrees of 
format errors. Specifically, GPT-3.5 Turbo and GLM4 exhibited format error rates of 0.52% (2 cases) and 0.79% (3 
cases), respectively. In contrast, both Gemini Pro and Qwen Max had higher error rates of 8.2% (34 cases each).

For the extraction of occlusion locations, GPT-4 demonstrated an accuracy of 98.41% [95% CI: 98.03, 99.02], and 
GLM4 recorded an accuracy of 96.58% [95% CI: 95.74, 97.38], both outperforming other models. Some patients had 
multiple occlusion sites, and the original texts were often complex. Some patients presented with multiple occlusion sites, 

Table 2 Patient Characteristics and Key 
Procedural Information from Text

Characteristic Statistic

Sex

F 174(45.55)

M 208(54.45)

Mean age (y)* 72.2 ± 13.4

Age range (y)† 22–96(74)

Thrombectomy procedures 333(87.17)

Stent used 310(81.15)

Balloon guide catheter 80(20.94)

Intravenous thrombolysis 83(21.17)

Midline shift 1(0.26)

Bleeding or hematoma 16(4.18)

mTICI

0 1 (0.26)

1 4 (1.05)

2a 7 (1.83)

2b 23 (6.02)

2c 7 (1.83)

3 206 (53.93)

Unknown 129(33.77)

Occlusion site

MCA 243 (63.61)

BA 48 (12.57)

ICA 3 (0.79)

ACA 32 (8.38)

Notes: Unless otherwise indicated, data are num-
bers of patients and data in parentheses are percen-
tages. *Data are mean ± SDs. †Data in parentheses 
are the range(median).
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complicating the extraction process. Certain models frequently overlooked parts of the occluded vessels or specific 
occlusion locations. For instance, instead of the expected “Left MCA”, a model might inaccurately respond with 
“MCA M1”.

In the extraction of mTICI scores, Spark 3.0 had an accuracy of 97.11% [95% CI: 96.39, 98.03]. Other models, such 
as GLM4 and GPT-3.5 Turbo, might deduce an mTICI score from the text information even when the original text lacked 

Figure 3 A line chart showing the accuracy of each model across various items. The performance accuracy of six large language models—GeminiPro, QwenMax, Spark3, 
GLM4, GPT-4, and GPT-3.5 Turbo—across different clinical information extraction categories from mechanical thrombectomy surgical records. The evaluated tasks include 
the number of thrombectomy maneuvers, occlusion location identification, mTICI grading, detection of bleeding or hematoma, intravenous thrombolysis, midline shift, usage 
of a balloon guide catheter, stent usage, and identification of thrombectomy procedures. Each bar represents the accuracy percentage for each model, highlighting 
comparative effectiveness in the extraction tasks.

Table 3 Performance of Each Model in Basic Key Information Extraction

Models Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Thrombectomy GPT3.5Turbo 90.84 (87.95–93.72) 91.16 (88.17–94.13) 85.00 (66.67–100.00) 88.08 (78.82–95.62)

GeminiPro 92.67 (89.79–95.03) 93.20 (90.39–95.67) 86.21 (72.00–96.67) 89.70 (82.37–95.41)

GLM4 92.67 (90.05–95.29) 93.95 (91.40–96.32) 80.00 (66.67–91.67) 86.97 (79.98–92.74)

GPT4 91.88 (88.74–94.50) 92.42 (89.52–95.17) 84.62 (68.75–96.43) 88.52 (80.41–94.79)

QwenMax 92.67 (90.05–95.03) 93.95 (91.44–96.32) 80.00 (65.79–91.44) 86.97 (79.80–92.97)

Spark3 92.93 (90.31–95.29) 94.74 (92.33–96.95) 77.50 (64.00–89.13) 86.12 (79.27–92.00)

Stent GPT3.5Turbo 99.48 (98.69–100.00) 99.36 (98.37–100.00) 100.00 (100.00–100.00) 99.68 (99.19–100.00)

GeminiPro 99.48 (98.69–100.00) 99.68 (98.98–100.00) 98.61 (95.58–100.00) 99.14 (97.50–100.00)

GLM4 99.74 (99.21–100.00) 99.68 (98.99–100.00) 100.00 (100.00–100.00) 99.84 (99.49–100.00)

GPT4 99.74 (99.21–100.00) 99.68 (98.99–100.00) 100.00 (100.00–100.00) 99.84 (99.49–100.00)

QwenMax 99.74 (99.21–100.00) 99.68 (98.99–100.00) 100.00 (100.00–100.00) 99.84 (99.49–100.00)

Spark3 98.95 (97.91–99.74) 98.73 (97.39–99.69) 100.00 (100.00–100.00) 99.36 (98.70–99.85)

(Continued)

Journal of Multidisciplinary Healthcare 2024:17                                                                                 https://doi.org/10.2147/JMDH.S486449                                                                                                                                                                                                                       

DovePress                                                                                                                       
5169

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


a specific mTICI score. Another area where models generally showed poor performance was in determining whether 
MTB had been performed. This task likely requires extensive medical knowledge and sophisticated logical reasoning, 
presenting a significant challenge for LLMs. This also underpins the rationale behind designing the Medical Logic 
Analysis experiment.

Medical Logic Analysis
Thrombectomy Count Extraction
In this study, we analyzed the number of thrombectomy procedures mentioned in 382 medical texts related to stroke 
surgery. This task evaluated not only the clinical medical knowledge of each model but also their capabilities in 
comprehensive medical analysis and reasoning. Table 4 shows the accuracy and mean squared error (MSE) of six 
models on thrombectomy count extraction. The average accuracy of the six models across eight items was 78.05±4.2%. 
Among them, the GLM4 and GPT-4 models demonstrated slightly higher accuracies of 84.03% [95% CI: 80.37, 87.70] 

Table 3 (Continued). 

Models Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Balloon guide catheter GPT3.5Turbo 98.95 (97.90–99.74) 96.34 (92.10–100.00) 99.67 (98.95–100.00) 98.00 (95.78–99.68)

GeminiPro 92.93 (90.31–95.29) 75.24 (66.98–83.49) 99.64 (98.87–100.00) 87.44 (83.16–91.40)

GLM4 99.74 (99.21–100.00) 100.00 (100.00–100.00) 99.67 (98.97–100.00) 99.83 (99.48–100.00)

GPT4 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00)

QwenMax 99.48 (98.69–100.00) 98.75 (95.65–100.00) 99.67 (98.97–100.00) 99.21 (97.62–100.00)

Spark3 98.69 (97.38–99.74) 95.18 (90.11–98.91) 99.67 (98.96–100.00) 97.42 (94.85–99.45)

Midline shift GPT3.5Turbo 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00)

GeminiPro 99.74 (99.21–100.00) 50.00 (0.00–100.00) 100.00 (100.00–100.00) 75.00 (50.00–100.00)

GLM4 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00)

GPT4 99.74 (98.95–100.00) 50.00 (0.00–100.00) 100.00 (100.00–100.00) 75.00 (50.00–100.00)

QwenMax 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00)

Spark3 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00) 100.00 (100.00–100.00)

Intravenous thrombolysis GPT3.5Turbo 84.55 (81.15–87.96) 96.15 (87.49–100.00) 83.71 (80.00–87.22) 89.93 (85.12–93.26)

GeminiPro 85.34 (82.20–88.48) 100.00 (100.00–100.00) 84.23 (80.85–87.43) 92.11 (90.42–93.71)

GLM4 93.19 (90.58–95.55) 100.00 (100.00–100.00) 92.00 (89.19–94.80) 96.00 (94.59–97.40)

GPT4 98.95 (97.91–99.74) 100.00 (100.00–100.00) 98.68 (97.28–99.68) 99.34 (98.64–99.84)

QwenMax 91.62 (88.74–93.98) 100.00 (100.00–100.00) 90.33 (87.12–93.06) 95.17 (93.56–96.53)

Spark3 93.72 (91.35–95.81) 100.00 (100.00–100.00) 92.57 (89.67–95.00) 96.28 (94.83–97.50)

Bleeding or hematoma GPT3.5Turbo 95.55 (93.46–97.38) 50.00 (12.50–87.50) 96.52 (94.41–98.38) 73.26 (54.65–91.76)

GeminiPro 97.64 (96.07–98.96) 100.00 (100.00–100.00) 97.59 (95.93–98.95) 98.80 (97.97–99.47)

GLM4 96.34 (94.50–98.17) 100.00 (100.00–100.00) 96.31 (94.43–98.16) 98.15 (97.21–99.08)

GPT4 96.86 (95.03–98.43) 85.71 (50.00–100.00) 97.07 (95.17–98.67) 91.39 (73.68–99.20)

QwenMax 96.60 (94.76–98.43) 100.00 (100.00–100.00) 96.56 (94.69–98.41) 98.28 (97.35–99.20)

Spark3 97.38 (95.55–98.95) 88.89 (60.00–100.00) 97.59 (95.74–98.94) 93.24 (78.67–99.33)

mTICI GPT3.5Turbo 85.06 (83.28,86.89)

GeminiPro 90.57 (89.18,92.13)

GLM4 88.99 (87.54,90.49)

GPT4 95.79 (94.75,96.72)

QwenMax 96.06 (95.08,97.05)

Spark3 97.11 (96.39,98.03)

Occlusion location GPT3.5Turbo 83.27 (81.63,85.25)

GeminiPro 95.04 (94.10,96.39)

GLM4 96.58 (95.74,97.38)

GPT4 98.41 (98.03,99.02)

QwenMax 83.96 (81.02,84.95)

Spark3 85.88 (84.26,87.55)

Notes: Unless otherwise indicated, data are percentages and data in parentheses are 95% CIs. The bold text represents the highest value of a single indicator within 
a project.
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and 82.20% [95% CI: 78.27, 85.87] respectively, surpassing the other models (p<0.05). In comparison, a junior physician 
achieved an accuracy of 79.06% [95% CI: 74.87, 82.99]. Notably, the GeminiPro model performed less effectively than 
the junior physician (p < 0.05).

Differentiation of Initial Thrombectomy Recanalization
In distinguishing the initial thrombectomy recanalization across 382 MTB surgical records, the average AUC for all models 
was 0.80±0.03 (Table 5). Both GPT4 (AUC=0.85 [95% CI: 0.82 −0.88]) and GLM4 (AUC=0.85[95% CI: 0.82 −0.89]) 
outperformed other models (p<0.05) and were statistically similar to the junior physician (AUC=0.86 [95% 0.82 −0.90]), 
demonstrating superior performance. The comparison of GLM4 and GPT4 by Junior Physician is shown in the Bland-Altman 
plot in Figure 4.

To conclude our results, we compared the performance of various models in predicting clinical outcomes related to 
thrombectomy procedures. Figure 5 provides a visual representation of the accuracy of six models—GPT-3.5 Turbo, 
GPT-4, GLM4, Spark3, QwenMax, and GeminiPro—across key metrics relevant to interventional success. These 
metrics include thrombectomy success rate, stent usage, balloon guide catheter deployment, occlusion location 
identification, mTICI scores, the incidence of bleeding or hematoma, and the number of thrombectomy maneuvers 
required.

Discussion
This study performed a comprehensive evaluation of six LLMs using real clinical EMR data to extract essential 
characteristics from free-text records of MTB treatment and to generate structured text in Chinese. A comparative 
study was conducted to explore the differences in basic key characteristics extraction capabilities among the different 
models (Figures 3 and 5). Additionally, the performance of six LLMs was compared with that of physicians in advanced 
logic generated characteristics from text reports. All six LLMs performed well in free-text information extraction, with 

Table 4 Accuracy and Mean Squared Error Statistics 
for Thrombectomy Count by Each Model

Models Accuracy (%) MSE

GPT3.5Turbo 76.70(72.25,80.89) 0.32(0.24,0.41)

GeminiPro 69.90(65.45,74.35)* 2.04(0.96,3.63)

GPT4 82.20(78.27,85.87) 0.31(0.18,0.48)
GLM4 84.03(80.37,87.70)* 0.24(0.15,0.35)

Spark3 77.49(73.56,81.68) 0.70(0.30,1.20)

QwenMax 76.96(72.77,80.90) 0.47(0.32,0.63)
Junior Physician 79.06(74.87,82.99) 0.33(0.24,0.43)

Notes: Unless otherwise indicated, data are percentages and data in 
parentheses are 95% CIs. Comparisons between models and Junior 
Physician were made using the McNemar test. *P<0.05.

Table 5 Performance Statistics of Each Model in Distinguishing First Thrombectomy Maneuver

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

GPT3.5Turbo 79.40 (75.39 −83.25) 83.36 (78.00 −87.92) 74.68 (67.74 −81.32) 78.90 (74.62 −83.13)*
GeminiPro 74.75 (70.42 −79.06) 72.90 (66.66 −78.68) 77.46 (71.13 −83.43) 74.97 (70.61 −79.31)*

GPT4 84.52 (80.63 −87.96) 76.98 (70.91 −82.59) 93.16 (89.56 −96.63) 85.12 (81.55 −88.38)

GLM4 85.95 (82.20 −89.27) 95.12 (91.96 −97.71) 75.08 (68.89 −81.25) 85.18 (81.50 −88.66)
Spark3 81.17 (77.23 −85.08) 97.55 (95.43 −99.49) 61.98 (54.70 −69.02) 79.94 (75.94 −83.90)*

QwenMax 80.25 (76.44 −84.04) 72.30 (66.33 −78.42) 89.85 (85.14 −94.27) 81.05 (77.41 −84.76)*

JuniorPhysician 86.25 (82.72 −89.53) 87.82 (83.42 −92.17) 84.06 (78.61 −89.54) 86.01 (82.30 −89.51)

Notes: Unless otherwise indicated, data are percentages and data in parentheses are 95% CIs. Comparisons between models and 
Junior Physician were made using the Delong test. *P<0.05, indicating a significant difference compared to Junior Physicians.
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Figure 4 Comparison of the differences in the number of thrombectomy maneuver extracted between GPT-4, GLM-4, and Junior Physician. The agreement between the 
number of thrombectomy maneuvers extracted by GPT-4 and GLM4 models compared to a junior physician. The mean difference between each model and the junior 
physician is plotted against the average score, with dotted lines indicating the limits of agreement (±1.96 standard deviations). The red markers and dashed lines represent 
GPT-4 vs Junior Physician, while the blue markers and dashed lines represent GLM4 vs Junior Physician.

Figure 5 This is a radar chart showing the accuracy of each model across various items. The metrics represented include thrombectomy, stent using, balloon dilation, 
occlusion location, mTICI scores, bleeding or hematoma and intravenous thrombolysis the number of thrombectomy maneuver. Each line represents a different model. The 
area covered by each line corresponds to the model’s performance across these categories, as detailed in the following: GPT-3.5 Turbo = 23,742.56, GeminiPro = 24,152.32, 
GLM4 = 25,771.35, GPT-4 = 26,759.46, QwenMax = 25,119.24, Spark3 = 25,353.42.
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an accuracy of 92% to 97.67% for extracting key information. For advanced characteristics, the AUCs for extracting the 
number of thrombectomy maneuvers ranged between 0.90 and 0.97 (Table 3 and Figure 3). In the advanced logic 
generated characteristics extraction of accurately extracting the number of thrombectomy maneuvers, GLM4 and GPT-4 
outperformed the other models (all p<0.05), and GLM4 performed better than junior Physician (p<0.05). Regarding the 
identification of the first-pass effect, GLM4 and GPT-4 performed similarly to a junior physician (p=0.66 and p=0.67) 
and better than other models (p<0.05).

Large language models based on deep learning and Transformers show great potential in extracting critical clinical 
information.11 Recently, numerous studies have utilized GPT-4 and ChatGPT to extract key information from lung cancer CT 
imaging reports.24 GPT-4 achieved an accuracy of 96%, while ChatGPT achieved an accuracy of 93.7% in another task 
involving Chinese text-based imaging reports.25 These studies demonstrate the excellent capability of ChatGPT and GPT-4 in 
extracting information from imaging reports. The EMR texts contain vast amounts of information pertinent to clinical 
research; extracting these key details is crucial for advancing clinical studies and translation, as well as improving clinical 
outcomes (5). For instance, the number of thrombectomy maneuvers and the success of the first-pass in MTB treatments are 
essential for assessing treatment efficacy and function outcome. Studies indicate that successful thrombectomy in first-pass 
effect can significantly enhance clinical efficacy and yield better clinical outcomes,26 with successful reperfusion on the first 
attempt being a critical condition for the first-pass effect in MTB. Recently, Nils et al tested the accuracy of GPT-4 in 
extracting key information from 100 German MTB reports,27 achieving an accuracy of 94%, compared to 63% for GPT-3.5. 
Our study compared six LLMs on 382 real Chinese MTB surgical record from a hospital setting, where GPT-4 achieved an 
average accuracy of 95.95% across nine tasks (key information extraction + thrombectomy count extraction), and GPT-3.5 
Turbo achieved an average accuracy of 90.04%. GPT-4’s performance was similar to the results reported by Nils et al. In the 
key information extraction tasks, we also calculated the sensitivity, specificity, and AUC values of each model and used the 
DeLong test to comprehensively assess the differences in various metrics among the models. Additionally, due to differences 
in language and report types, the number of evaluated categories in our study was fewer than that in Nils et al’s research. 
However, we specifically evaluated the models’ ability to extract the number of thrombectomy maneuvers, a task requiring 
significant medical logic, and compared their performance with a junior physician. For this task, GPT-4 and GLM4 achieved 
AUC values comparable to the junior physician (p>0.05). In our study, the three models from China including GLM4, 
QwenMax and Spark3 demonstrated commendable performance. This may be due to their specialized optimization for 
Chinese and medical contexts.16,17 In structured text extraction tasks, even without medical terminology explained in the 
prompts, GPT-4 and GLM4 managed to extract specified items from the reports with a high performance with accuracy of 
95.91% and 97.67% in the basic key characteristics extraction, such as “mTICI score”, “hemorrhage and hematoma”, and 
“occlusion location”.

Key information from medical texts like stroke surgery records is often used to train machine learning models for 
downstream tasks, thus developing and proposing more advanced clinical diagnostic and disease assessment models.20 

Without specific tools for particular text processing tasks, using large language models to extract some key information 
can speed up workflows, reduce workload, and promote analyses related to stroke prognosis and treatment. Studies have 
shown that GPT-4 performs comparably to existing professional models in structured tasks involving imaging reports.23 

As the cost of large models decreases, the expense of processing medical texts with them will also be further reduced. For 
example, using GPT-4, at the cost of $0.006 / 1K tokens, we processed 382 texts, totaling 226k tokens, which costs 
approximately $1.36 according to OpenAI’s rate as of January 22, 2024.

Our study has several limitations. First, our study primarily explored the performance of various models on Chinese 
medical texts. The prompts used in this study might not be suitable for all models, although they still exhibited excellent 
performance with high accuracy. Secondly, retrospective data collection would lead to class imbalance, such as midline 
shift and hemorrhage, which are rare among AIS patients. In our study of 382 patients, only one presented midline shift, 
and 17 cases had hemorrhages. Therefore, we employed the AUC as a metric to minimize the impact of class imbalance 
on the final results. Third, the sample size in this study was limited, necessitating additional data and experiments to more 
comprehensively evaluate the performance of LLMs in medical text processing.
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Conclusion
This study demonstrated the effectiveness and potential of LLMs in processing free-text Chinese medical reports, particularly 
in extracting key information from mechanical thrombectomy treatment records. The results indicate significant differences 
among various LLMs in handling complex medical texts, with GLM4 and GPT-4 showing superior performance in most 
evaluated tasks. Specifically, these models either matched or surpassed the accuracy of junior physicians in advanced logic 
extraction tasks, achieving an average accuracy of over 82%. However, despite the promising results, re-evaluation by more 
experienced physicians is still necessary to ensure the clinical reliability and safety of the extracted information.
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