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Abstract: Lymphoma, a heterogeneous group of blood cancers, presents significant diagnostic and therapeutic challenges due to its 
complex subtypes and variable clinical outcomes. Artificial intelligence (AI) has emerged as a promising tool to enhance the accuracy 
and efficiency of lymphoma pathology. This review explores the potential of AI in lymphoma diagnosis, classification, prognosis 
prediction, and treatment planning, as well as addressing the challenges and future directions in this rapidly evolving field. 
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Introduction
Lymphoma, a heterogeneous group of blood cancers, presents significant diagnostic and therapeutic challenges due to its 
complex subtypes and variable clinical outcomes.1 Accurate diagnosis and classification of lymphoma are critical for 
determining appropriate treatment strategies and predicting patient prognosis.2 However, traditional diagnostic methods, 
such as histopathological examination, immunohistochemistry, and molecular testing, can be time-consuming, labour- 
intensive, and subject to inter-observer variability.3 Artificial intelligence (AI), particularly machine learning (ML) and 
deep learning (DL), has emerged as a promising tool to enhance the accuracy, efficiency, and reproducibility of 
lymphoma diagnosis and management.4

Lymphoma is a diverse group of malignancies originating from lymphocytes, with multiple subtypes characterised by 
distinct histological, immunophenotypic, and molecular features.5 The World Health Organization (WHO) classification 
system for lymphoid neoplasms recognises over 90 distinct entities, each with unique clinical presentations, therapeutic 
implications, and prognostic outcomes.6 Accurate diagnosis and classification of lymphoma are crucial for determining 
appropriate treatment strategies and predicting patient survival.7 However, the increasing complexity of lymphoma 
classification poses challenges for pathologists and can lead to discrepancies in diagnosis and suboptimal patient 
management.8

Traditional diagnostic methods for lymphoma rely on histopathological examination of tissue biopsies, immunohis-
tochemical staining for specific markers, and molecular testing for genetic aberrations.9 As noted, these methods require 
extensive manual labour and specialised expertise, and are subject to inter-observer variability.10 Moreover, the inter-
pretation of histopathological features and immunohistochemical patterns can be challenging, especially in cases with 
atypical morphology or overlapping features between different lymphoma subtypes.11

Artificial intelligence, especially ML and DL, has demonstrated remarkable potential in various domains of pathol-
ogy, including cancer diagnosis, prognosis prediction, and treatment response assessment.12 Machine learning algorithms 
can learn from large datasets and extract meaningful patterns and relationships, enabling automated and objective 
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analysis of complex medical data.13 As a subfield of ML, DL utilises artificial neural networks with multiple layers to 
learn hierarchical representations of data, allowing for more accurate and efficient feature extraction and classification.14

The application of AI in lymphoma pathology has gained significant attention in recent years, with numerous studies 
demonstrating its potential to improve diagnostic accuracy, streamline workflows, and provide novel insights into disease 
biology.15 Artificial intelligence algorithms can analyse various types of data, including histopathological images, 
immunohistochemical stains, molecular profiles, and clinical variables, to assist in lymphoma diagnosis, classification, 
prognosis prediction, and treatment planning.16

This comprehensive review explores the current state-of-the-art applications of AI in lymphoma pathology, high-
lighting the opportunities, challenges, and future directions in this rapidly evolving field. The review discusses the use of 
AI in lymphoma detection and diagnosis, classification, prognosis prediction, treatment planning, and integration with 
other diagnostic modalities. Furthermore, it addresses the ethical considerations, regulatory aspects, and future research 
directions in the development and deployment of AI tools for lymphoma management.

Artificial Intelligence Applications in Lymphoma Subtypes
Histopathological examination of tissue slides remains the gold standard for lymphoma diagnosis.17 However, manual 
examination of slides can be time-consuming, labour-intensive, and prone to subjectivity and inter-observer variability.18 

Artificial intelligence-driven algorithms have been developed to automate various image analysis tasks, such as cell 
detection, segmentation, classification, and morphological analysis, to assist pathologists in the diagnostic process.19 

Lymphoma AI research primarily uses convolutional neural networks (CNNs) for image analysis, with pre-trained 
architectures fine-tuned on specific datasets. Various learning approaches address limited data challenges. Datasets 
range from hundreds to thousands of images from multiple sources. Evaluation uses standard metrics and validation 
techniques to assess accuracy and generalisability.

Several studies have demonstrated the success of AI in improving the accuracy and efficiency of lymphoma detection 
and diagnosis. For example, Syrykh et al developed a DL model for the identification of lymphoma cells in histopatho-
logical images.20 The model was trained on a large dataset of immunohistochemically stained tissue sections and 
demonstrated robust performance in detecting lymphoma cells across different subtypes and histological patterns.

Diffuse Large B-Cell Lymphoma
Similarly, Saltz et al developed an AI algorithm for the detection and classification of lymphoma subtypes based on 
histopathological features.21 The algorithm utilised a CNN architecture to learn discriminative features from a dataset of 
over 10,000 histopathological images. The AI model achieved an accuracy of 92% in classifying three common 
lymphoma subtypes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Hodgkin lymphoma 
(HL). The study highlighted the potential of AI to assist pathologists in the rapid and accurate diagnosis of lymphoma 
subtypes.

In DLBCL, Ferrández et al utilised CNNs to analyse F-18 fluorodeoxyglucose positron emission tomography scans, 
outperforming traditional prognostic indices in predicting treatment outcomes.22

Natural Killer/T-Cell Lymphoma
Zhang et al developed an AI system for natural killer/t-cell lymphoma diagnosis and prognosis using magnetic resonance 
imaging, achieving high accuracy comparable with senior radiologists and providing valuable insights for treatment 
decisions.23

Other Lymphoma Subtypes
While not directly AI related, Sakamoto et al’s work on targeted drug delivery systems for Burkitt lymphoma highlights 
potential synergies between AI and emerging therapeutic approaches.24

The integration of AI with digital pathology platforms has further enhanced the diagnostic capabilities in lymphoma 
pathology.25 Digital whole-slide imaging (WSI) allows for the digitisation of histopathological slides, enabling remote 
access, telepathology consultations, and automated image analysis.26 Artificial intelligence algorithms can be applied to 
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WSIs to extract quantitative and objective features, such as cell morphology, spatial distribution, and immunohisto-
chemical staining patterns, which may not be readily apparent to the human eye.27

A study by Rudin et al demonstrated the application of AI in the analysis of WSIs for the detection of lymphoma 
infiltration in bone marrow biopsies.28 The researchers developed a DL model that could accurately identify and quantify 
lymphoma cells in digitised bone marrow sections, achieving a sensitivity of 92% and a specificity of 98%. The AI- 
assisted approach significantly reduced the time required for manual examination and provided objective and reprodu-
cible assessments of lymphoma infiltration.

However, the adoption of AI for lymphoma detection and diagnosis faces several challenges. One major challenge is 
the availability and quality of training data.29 Artificial intelligence algorithms require large and diverse datasets to learn 
robust and generalisable features. However, the acquisition of high-quality, annotated histopathological images can be 
time-consuming and resource-intensive.30 Moreover, ensuring the representativeness and diversity of datasets across 
different populations, institutions, and staining protocols is crucial for developing AI models that can perform well in 
real-world clinical settings.31

Another challenge is the interpretability and explainability of AI algorithms.32 Deep learning models can be 
particularly complex and opaque, making it difficult for pathologists to understand the reasoning behind the AI- 
generated predictions.33 Developing AI models that provide transparent and interpretable outputs is essential for building 
trust and acceptance among pathologists and facilitating the integration of AI into clinical workflows.34

Furthermore, the validation and regulatory approval of AI tools for clinical use in lymphoma diagnosis require 
rigorous evaluation and standardisation.35 Prospective clinical trials and real-world studies are needed to assess the 
performance, reliability, and generalisability of AI algorithms across diverse patient populations and healthcare 
settings.36 Establishing standardised protocols for data collection, annotation, and evaluation is crucial for ensuring the 
reproducibility and comparability of AI studies in lymphoma pathology.37

Lymphoma classification is a complex task that requires the integration of morphological, immunophenotypic, and 
molecular data.38 The WHO classification system for lymphoid neoplasms relies on a multidisciplinary approach, 
incorporating clinical, pathological, and genetic information to define distinct entities with specific diagnostic criteria 
and therapeutic implications.39 However, the increasing complexity of lymphoma classification poses challenges for 
pathologists and can lead to discrepancies in diagnosis and suboptimal patient management.40

Artificial intelligence has shown promise in assisting pathologists in the accurate and reproducible classification of 
lymphoma subtypes. Several studies have demonstrated the ability of ML and DL algorithms to extract discriminative 
features from histopathological images, immunohistochemical stains, and molecular profiles to classify lymphoma 
subtypes with high accuracy.41

For example, Carreras et al developed a model called LymphoML for the classification of multiple lymphoma 
subtypes.42 The model utilised gradient-boosted models to learn features from haematoxylin and eosin-stained tissue 
microarray cores, encompassing morphology, texture, and architecture. The AI algorithm achieved non-inferior diag-
nostic accuracy compared with pathologists using WSIs, and outperformed black-box DL models on a dataset of 670 
cases spanning eight lymphoma subtypes. The study highlighted that nuclear shape features were most discriminative for 
DLBCL (F1-score: 78.7%) and classical HL (F1-score: 74.5%), demonstrating potential for assisting pathologists in the 
diagnostic process.

Similarly, Shankar et al reviewed various AI applications in the classification of mature lymphoid neoplasms.43 The 
researchers highlighted how ML and neural networks can predict patient prognosis and classify mature B-cell neoplasms. 
They also described a novel analysis that predicted lymphoma subtypes using cell-of-origin markers commonly used by 
hematopathologists in clinical routines, including CD3, CD5, CD19, CD79A, MS4A1 (CD20), MME (CD10), BCL6, 
IRF4 (MUM-1), BCL2, SOX11, MNDA, and FCRL4 (IRTA1). This approach demonstrates the potential of AI to assist 
pathologists in the challenging task of lymphoma classification by integrating multiple markers and complex data.

Comparative studies have highlighted the potential of AI to outperform traditional methods in certain scenarios. For 
example, Kim et al compared the performance of an AI algorithm with that of pathologists in classifying DLBCL 
subtypes based on gene expression profiling.44 The AI algorithm demonstrated higher accuracy and reproducibility 

Journal of Multidisciplinary Healthcare 2024:17                                                                                 https://doi.org/10.2147/JMDH.S485724                                                                                                                                                                                                                       

DovePress                                                                                                                       
5331

Dovepress                                                                                                                                                       Shen and Jiang

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


compared with the pathologists’ assessments, suggesting that AI could provide objective and standardised classification 
of molecular subtypes.

Moreover, AI has the potential to identify novel lymphoma subtypes or subclasses that may not be readily apparent to 
human experts. Unsupervised learning techniques, such as clustering and dimensionality reduction, can be applied to 
large-scale molecular and clinical datasets to uncover previously unrecognised patterns and associations.45 These 
discoveries can lead to a better understanding of lymphoma biology, inform prognostic stratification, and guide the 
development of targeted therapies.46

However, the application of AI in lymphoma classification also faces challenges. One challenge is the availability of 
large, well-annotated datasets for training AI models.47 Lymphoma classification often requires the integration of 
multiple data types, including histopathological images, immunohistochemical stains, and molecular profiles. 
Collecting and curating these diverse datasets can be time-consuming and resource-intensive, requiring collaboration 
among pathologists, oncologists, and bioinformaticians.48

Another challenge is the standardisation and reproducibility of AI algorithms across different institutions and 
diagnostic platforms.49 Lymphoma classification criteria and guidelines may vary across different countries and health-
care systems, making it difficult to develop universally applicable AI models.50 Establishing standardised protocols for 
data collection, annotation, and evaluation is crucial for ensuring the generalisability and comparability of AI studies in 
lymphoma classification.51

Furthermore, the integration of AI into clinical workflows for lymphoma classification requires validation and 
regulatory approval.52 Prospective clinical trials and real-world studies are needed to assess the performance and impact 
of AI algorithms in diverse patient populations and healthcare settings.53 Engaging pathologists, oncologists, and 
regulatory bodies in the development and evaluation of AI tools is essential for ensuring their clinical relevance and 
acceptance.54

Artificial Intelligence in Prognosis Prediction and Treatment Planning
Predicting disease outcomes and patient survival is crucial for guiding treatment decisions and counselling patients with 
lymphoma.55 Traditional prognostic models, such as the International Prognostic Index and the Follicular Lymphoma 
International Prognostic Index, have been valuable tools in risk stratification for patients with lymphoma. Artificial 
intelligence-based approaches aim to complement and enhance these established indices by integrating additional data 
types and identifying complex patterns. Many AI algorithms incorporate variables from traditional scores alongside other 
clinical, pathological, and molecular features.56 This synergistic approach leverages the strengths of both traditional and 
AI-based methods to improve prognostic accuracy and personalisation. However, these models have limitations in 
capturing the heterogeneity of lymphoma and predicting individual patient outcomes.57

Artificial intelligence has shown promise in improving the accuracy and personalisation of prognosis prediction in 
lymphoma. By analysing large-scale clinical, pathological, and molecular datasets, AI algorithms can identify novel 
prognostic biomarkers and develop personalised risk stratification models.58 Several studies have demonstrated the 
potential of AI in predicting lymphoma outcomes and guiding treatment planning.

For example, Kather et al developed an ML model for the identification of genetic subtypes of DLBCL with distinct 
clinical outcomes.59 The researchers analysed a large dataset of gene expression profiles from over 1000 patients with 
DLBCL and identified four genetic subtypes with significant differences in overall survival. The AI-derived classification 
outperformed existing prognostic models and provided new insights into the molecular heterogeneity of DLBCL.

Similarly, Ehteshami et al developed a DL model for the prediction of relapse risk in patients with FL.60 The model 
integrated clinical, pathological, and molecular data from over 1000 patients with FL and achieved an area under the 
curve (AUC) of 0.87 in predicting relapse risk. The AI-based approach demonstrated superior performance compared 
with traditional prognostic models and highlighted the potential of AI in personalising risk stratification and treatment 
planning in FL.

Artificial intelligence has also been applied to predict treatment response and guide the selection of targeted therapies 
in lymphoma. For example, Saltz et al developed a DL model for the prediction of response to immunotherapy in patients 
with HL.61 The model analysed histopathological images and molecular profiles from a cohort of patients with HL 
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treated with checkpoint inhibitors and achieved an AUC of 0.83 in predicting treatment response. The study demon-
strated the potential of AI in identifying patients who are likely to benefit from specific targeted therapies.

However, the application of AI in lymphoma prognosis prediction and treatment planning also faces challenges. One 
challenge is the availability and quality of clinical and molecular datasets for training AI models.62 Prognostic studies 
often require long-term follow-up data and detailed clinical annotations, which can be difficult to obtain and standardise 
across different institutions and clinical trials.63

Recalling earlier points, two significant challenges in AI-based prognostics remain: interpretability and clinical 
implementation.64–66 The need for transparent, explainable AI models is crucial for building trust among clinicians 
and patients.65,66 Additionally, the path to clinical adoption requires rigorous validation through prospective trials and 
real-world studies.67,68 Continued collaboration between AI developers, healthcare professionals, patients, and regulatory 
bodies is essential to ensure these tools are clinically relevant, reliable, and widely accepted.69

Integration of Artificial Intelligence with Other Diagnostic Modalities
A comprehensive diagnostic approach to lymphoma often involves the integration of multiple data modalities, including 
pathological, molecular, and radiological information.70 Artificial intelligence has the potential to synergise these diverse 
data types and provide a holistic view of the disease, enabling more accurate and personalised diagnosis and treatment 
planning.71

Several studies have demonstrated the potential of multimodal AI approaches in lymphoma diagnosis and manage-
ment. For example, Kather et al developed a multimodal DL model for the classification of DLBCL subtypes based on 
the integration of histopathological images, immunohistochemical stains, and gene expression profiles.12 The model 
achieved an accuracy of 95% in classifying DLBCL subtypes and demonstrated the potential of integrating multiple data 
types for improved diagnostic performance.

Similarly, van et al developed a multimodal AI approach for the prediction of treatment response in patients with FL.72 

The researchers integrated clinical, pathological, and radiological data from a cohort of patients with FL treated with 
immunochemotherapy and developed an AI model that achieved an AUC of 0.91 in predicting treatment response. The study 
highlighted the potential of multimodal AI in personalising treatment planning and improving patient outcomes.

The integration of AI with emerging diagnostic technologies, such as liquid biopsy and single-cell sequencing, also 
holds promise for advancing lymphoma diagnosis and management.73 Liquid biopsy allows for the non-invasive 
detection of circulating tumour cells, cell-free DNA, and other biomarkers in the blood, providing a dynamic and 
longitudinal assessment of the disease.74 Artificial intelligence algorithms can be applied to analyse the complex data 
generated by liquid biopsy and identify prognostic and predictive biomarkers.75

Single-cell sequencing technologies, such as single-cell RNA sequencing and single-cell DNA sequencing, enable the 
high-resolution profiling of individual cells within the tumour microenvironment.76 Artificial intelligence can be applied 
to analyse the vast amounts of single-cell data and uncover novel cell types, functional states, and cellular interactions 
that may have prognostic and therapeutic implications.77

However, the integration of AI with multiple diagnostic modalities also presents challenges, one of which is the 
harmonisation and standardisation of data from different sources and platforms.78 Developing robust data integration 
pipelines and quality control measures is crucial for ensuring the reliability and reproducibility of multimodal AI analyses.79

Another challenge is the interpretability and actionability of AI-generated insights from multimodal data.80 

Translating the complex patterns and associations identified by AI into clinically meaningful and actionable information 
requires close collaboration among AI researchers, clinicians, and domain experts.81

Furthermore, the clinical validation and implementation of multimodal AI approaches require rigorous evaluation and 
regulatory approval.82 Prospective clinical trials and real-world studies are needed to assess the performance, reliability, 
and impact of multimodal AI tools in diverse patient populations and healthcare settings.83

Challenges and Future Directions
The research on AI in lymphoma primarily uses CNNs for image analysis. Common architectures, such as ResNet, 
Inception, and DenseNet, are often pre-trained on large datasets and fine-tuned for lymphoma-specific tasks. Training 
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typically involves supervised learning with labelled histopathological images, although semi-supervised and weakly- 
supervised approaches are also being explored. Datasets vary in size and diversity, sourced from multiple institutions. 
Evaluation metrics include accuracy, sensitivity, specificity, and AUC-receiver operating characteristic curve, with cross- 
validation and external validation used to assess model generalisability.

While AI holds great promise for advancing lymphoma diagnosis and management, several challenges need to be 
addressed for its successful clinical translation and implementation.

One major challenge is the ethical considerations surrounding the use of AI in healthcare.84 Ensuring the privacy and 
security of patient data is paramount, especially when dealing with sensitive clinical and molecular information.85 

Developing secure data management protocols and robust data anonymisation techniques is crucial for protecting patient 
privacy and maintaining trust in AI-based systems.86

Another ethical challenge is the potential for AI algorithms to perpetuate or amplify biases present in the training 
data.87 Biases related to patient demographics, socioeconomic status, or healthcare access can lead to disparities in AI- 
generated predictions and recommendations.88 Ensuring the diversity and representativeness of training datasets, as well 
as implementing fairness and accountability measures, is essential for developing equitable and unbiased AI tools.89

From a regulatory perspective, the development and deployment of AI tools in lymphoma diagnosis and management 
require rigorous evaluation and oversight.90 Establishing standardised protocols for the validation, certification, and post- 
market surveillance of AI algorithms is crucial for ensuring their safety, efficacy, and reliability.91 Regulatory bodies, 
such as the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA), have been actively 
involved in developing frameworks and guidelines for the regulation of AI in healthcare.92

Another challenge is the integration of AI tools into existing clinical workflows and decision-making processes.93 

Ensuring the seamless integration of AI algorithms with current diagnostic platforms, electronic health record systems, 
and clinical guidelines is crucial for their successful adoption and utilisation.94 Providing adequate training and support 
for healthcare professionals to effectively use and interpret AI-generated insights is also essential for facilitating the 
integration of AI into clinical practice.95

From a technical perspective, the development of robust and generalisable AI models requires large, diverse, and 
well-annotated datasets.96 Collaborative efforts among academic institutions, healthcare providers, and industry partners 
are needed to establish standardised data-sharing protocols and build comprehensive datasets for AI training and 
validation.97 Initiatives such as the International Lymphoma AI Consortium (ILAC) and the Lymphoma Research 
Foundation have been actively promoting data sharing and collaboration in the field of lymphoma AI research.98

The interpretability and explainability of AI algorithms are also crucial for their clinical acceptance and trust.99 

Developing AI models that provide transparent and understandable explanations for their predictions and recommenda-
tions is essential for building confidence among clinicians and patients.100 Techniques such as feature importance 
analysis, attention mechanisms, and rule extraction can be used to improve the interpretability of AI algorithms.101

Future research directions in the field of AI for lymphoma diagnosis and management should focus on several key 
areas. One important direction is the development of prospective clinical trials to validate the performance and clinical 
utility of AI algorithms in real-world settings.4 These trials should assess the impact of AI tools on patient outcomes, 
healthcare costs, and clinician workload, as well as evaluate their acceptance and usability among healthcare profes-
sionals and patients.62

Another future direction is the integration of AI with emerging diagnostic and therapeutic technologies, such as liquid 
biopsy, single-cell sequencing, and immunotherapy.102 Artificial intelligence algorithms can be applied to analyse the 
complex data generated by these technologies and identify novel biomarkers, therapeutic targets, and personalised 
treatment strategies.103 The combination of AI with these cutting-edge technologies has the potential to revolutionise 
lymphoma diagnosis and management, enabling earlier detection, more precise risk stratification, and tailored treatment 
approaches.104

Furthermore, the development of explainable AI (XAI) techniques specifically tailored for lymphoma diagnosis and 
management is an important future direction.105 The XAI approach aims to provide transparent and interpretable 
explanations for AI-generated predictions and recommendations, enabling clinicians to understand the underlying 
reasoning and evidence.106 The development of lymphoma-specific XAI methods can facilitate the clinical adoption 
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and trust of AI tools, as well as provide valuable insights into the biological mechanisms and prognostic factors of the 
disease.107

Finally, the establishment of international collaborations and consortia focused on AI in lymphoma research is crucial 
for advancing the field.108 These collaborative efforts can facilitate the sharing of data, expertise, and resources, as well 
as promote the development of standardised protocols and best practices for AI development and validation.109 The 
formation of multidisciplinary teams, including clinicians, pathologists, AI researchers, and patient advocates, is essential 
for ensuring the clinical relevance, ethical soundness, and patient-centeredness of AI tools for lymphoma diagnosis and 
management.110

To address the ethical and regulatory challenges associated with AI in lymphoma management, several key initiatives 
are needed. First, establishing global consortia, such as an expanded ILAC, is crucial to facilitate data sharing, 
standardisation of protocols, and development of best practices. Second, developing international standards for data 
collection, annotation, and reporting of AI studies in lymphoma, similar to the CONSORT-AI and SPIRIT-AI guidelines 
for clinical trials involving AI, is essential. Third, creating comprehensive ethical guidelines specific to AI applications in 
lymphoma care is necessary to address issues such as data privacy, algorithmic bias, and equitable access to AI-enabled 
diagnostics. Fourth, working with regulatory bodies such as the FDA and EMA to develop clear pathways for the 
validation and approval of AI tools in lymphoma diagnosis and management is critical. Fifth, implementing education 
programmes for healthcare professionals is important to ensure appropriate understanding and utilisation of AI tools in 
clinical practice. Lastly, involving patient advocacy groups in the development and implementation of AI technologies is 
vital to ensure patient-centred approaches and build trust. By addressing these areas, the lymphoma research community 
can create a more robust and responsible ecosystem for AI integration in clinical practice.

Conclusion
Artificial intelligence has demonstrated significant potential in enhancing lymphoma diagnosis, classification, and 
management. The integration of AI with digital pathology, molecular profiling, and multimodal diagnostic approaches 
promises to improve the accuracy, efficiency, and personalisation of lymphoma care. However, successful clinical 
implementation requires addressing challenges such as data quality, interpretability, and regulatory considerations. 
Future research should focus on prospective clinical validation, integration with emerging technologies, and development 
of explainable AI methods. Collaborative efforts among researchers, clinicians, and regulatory bodies are essential for 
realising the full potential of AI in advancing precision medicine for lymphoma patients.
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