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Background: Ankle fractures are common injuries with substantial implications for patient mobility and quality of life. Traditional 
imaging methods, while standard, have limitations in detecting subtle fractures and distinguishing them from complex bone structures. 
The advent of 3D Convolutional Neural Networks (3D-CNNs) offers a promising avenue for enhancing the accuracy and reliability of 
ankle fracture diagnoses.
Methods: In this study, we acquired 1453 high-resolution CT scans and processed them through three distinct 3D-CNN models: 3D- 
Mobilenet, 3D-Resnet101, and 3D-EfficientNetB7. Our approach involved meticulous preprocessing of images, including normal-
ization and resampling, followed by a systematic comparative evaluation of the models based on accuracy, Area Under the Curve 
(AUC), and recall metrics. Additionally, the integration of Gradient-weighted Class Activation Mapping (Grad-CAM) provided visual 
interpretability of the models’ predictive focus points.
Results: The 3D-EfficientNetB7 model outperformed the other models, achieving an accuracy of 0.91 and an AUC of 0.94 after 20 
training epochs. It demonstrated particularly effective in the accurate detection and localization of subtle and complex fractures. Grad- 
CAM visualizations confirmed the model’s focus on clinically relevant areas, aligning with expert assessments and enhancing trust in 
automated diagnostics. Spatial localization techniques were pivotal in improving interpretability, offering clear visual guidance for 
pinpointing fracture sites.
Conclusion: Our findings highlight the effectiveness of the 3D-EfficientNetB7 model in diagnosing ankle fractures, supported by 
robust performance metrics and enhanced visualization tools.
Keywords: 3d convolutional neural networks, ankle fractures, diagnostic accuracy, Grad-CAM, image processing, machine learning, 
medical imaging, orthopedic diagnostics

Introduction
Background
Ankle fractures account for a considerable proportion of skeletal injuries, representing approximately 9% of all fracture 
types, and have become an increasingly significant concern in public health arenas.1 Ankle fractures, common injuries to 
the ankle joint involving the tibia, fibula, and talus, include several specific types such as pilon fractures, which affect the 
distal tibial region and its weight-bearing surface; bimalleolar fractures, involving breaks in two of the three ankle 
malleoli (usually the lateral malleolus of the fibula and medial malleolus of the tibia); trimalleolar fractures, which 
include all three malleoli and thus are more complex and severe; and isolated fractures of either the tibia or fibula’s 
malleolus. These injuries are often associated with acute pain, substantial swelling, and significant impairment in 
mobility, thereby severely impacting an individual’s quality of life and daily functioning. Recent projections indicate 
an alarming 25% increase in the incidence of ankle fractures by 2025, accentuating the critical demand for advancements 
in diagnostic approaches.2
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Surgical intervention is the most common treatment method for ankle fractures, aimed at restoring alignment and 
stability of the joint to prevent long-term complications such as arthritis. Common techniques include Open Reduction 
and Internal Fixation (ORIF), where bone fragments are realigned using plates and screws; Minimally Invasive Plate 
Osteosynthesis (MIPO), which involves smaller incisions to minimize soft tissue damage while achieving stable fixation; 
and External Fixation (EF), typically used for complex fractures or in cases with significant soft tissue injury. According 
to research by Biz et al3 various surgical techniques including ORIF, MIPO, and EF have been evaluated in the treatment 
of intra-articular tibial pilon fractures, demonstrating that all techniques can achieve satisfactory outcomes, although the 
choice of technique may depend on the specifics of the fracture and the overall health condition of the patient.

While traditional diagnostic methods, such as X-rays and computed tomography (CT) scans, remain prevalent in 
clinical practice, their limitations are well-documented. Studies have shown that certain types of fractures may elude 
detection through these conventional imaging techniques, leading to a reliance on symptomatology and physical 
examinations for diagnoses.4,5 Additionally, 2D CT images may not always offer clear differentiation of the bone 
from surrounding soft tissues, making it difficult to discern minute but clinically significant details.6

The novelty of this study lies in the application of 3D Convolutional Neural Networks (3D-CNNs) specifically 
tailored for the detection and localization of ankle fractures, a focus not extensively explored in existing literature. 
Previous applications of CNN technologies have broadly addressed various orthopedic conditions, but the specific 
challenges posed by ankle fractures—such as the detection of subtle fracture lines and complex bone structures in 
a region with high anatomical variability—have not been comprehensively tackled using 3D-CNNs. This research not 
only fills this gap but also introduces innovative techniques such as the integration of Gradient-weighted Class Activation 
Mapping (Grad-CAM) for enhanced visual interpretation and spatial localization methods that significantly improve 
diagnostic accuracy and clinician trust in automated systems.

The transition from 2D to 3D CT imaging has been heralded for its potential to provide a more nuanced view of bone 
architecture, offering greater clarity on fracture depth and angulation. However, several barriers impede the widespread 
adoption and utility of 3D imaging in clinical practice. Clinicians, habituated to interpreting 2D images, may find the 
shift to 3D film interpretation more challenging, and in high-pressure environments, this additional complexity may lead 
to diagnostic oversights. Missed or incorrect diagnoses carry significant repercussions for patient care, resulting in 
potential delays in treatment, prolonged disability, and increased healthcare costs.7 As such, there is a compelling need 
for an autonomous, machine-assisted approach that can alleviate the human factors contributing to diagnostic errors.

Several studies have showcased the effectiveness of deep learning in identifying various orthopedic conditions within 
musculoskeletal imaging domains. Yuan et al developed a Convolutional Neural Network (CNN) tailored for the 
detection of fractures in prestack seismic data,8 suggesting the versatility of CNNs across different fields. Emon et al 
introduced an innovative CNN utilizing a lazy learning strategy to classify skull fractures,9 demonstrating the adaptability 
of CNNs to various types of medical imaging.

For the detection of wrist fractures, Hardalaç et al crafted object detection models,10 while Wei et al a semi- 
supervised model aimed at localizing thighbone fractures.11 Further honing the accuracy of fracture detection, Krogue 
et al automated the placement of bounding boxes and successfully classified hip fractures with a deep learning-based 
model.12

The scope of deep learning extends to differentiating between benign and malignant vertebral compression fractures, 
with Duan et al constructing predictive models,13 and Liu et al comparing the efficacy of a Two-Stream Compare and 
Contrast Network (TSCCN) against traditional radiologist assessments.14 These advances also permeate osteoporosis 
research, with Park et al developing a prediction model for osteoporosis risk15 and Hong et al devising deep learning 
scores for osteoporosis and vertebral fracture detection using lateral spine radiography.10

The advent of 3D CNNs marks a significant evolution in deep learning applications, providing a multi-dimensional 
analysis of medical images that surpasses traditional diagnostic methods.16 Their capacity to decipher intricate patterns 
and features, which often elude human experts, makes them particularly effective for complex cases. Notably, in the 
context of ankle fractures, the comprehensive analysis by 3D CNNs has shown potential in outstripping conventional 
imaging techniques, which may miss subtle fracture lines or misinterpret bone structure, especially in patients with 
concurrent conditions like osteoporosis.17
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Uniquely, 3D CNNs bring an element of objectivity and standardization to diagnostic processes, addressing the 
variability in interpretations often seen among radiologists. Their consistent output promises to mitigate the risk of 
diagnostic errors, fostering improved patient management strategies as the demand for medical imaging surges.18 

However, there remains a notable gap in literature regarding the application of 3D CNNs specifically for ankle fracture 
detection, highlighting the novelty and importance of this study.

Research Objectives
The primary aim of our research is to revolutionize the diagnostic process for ankle fractures through the implementation 
of 3D Convolutional Neural Networks (CNNs). This study is uniquely poised to address the deficiencies and limitations 
identified in previous research by utilizing a suite of advanced algorithms. We intend to rigorously evaluate 3D- 
Mobilenet, 3D-Resnet101, and 3D-EfficientNetB7, each of which has shown promise in various medical imaging 
contexts.19 The utilization of these sophisticated algorithms is anticipated to significantly enhance the precision of 
ankle fracture diagnosis beyond the capabilities of conventional imaging techniques.

To further this advancement, we prioritize not only the accuracy but also the interpretability of our models. By 
conducting detailed comparative analyses across the three aforementioned 3D CNN architectures, we aim to determine 
the most effective model. The selected model will then be augmented with Gradient-weighted Class Activation Mapping 
(GradCAM) technology. This integration is designed to offer visual explanations for the decisions made by the CNN, 
thereby providing clinicians with intuitive, transparent insights into the model’s diagnostic reasoning.

Methodology
Data Collection
Data collection was a pivotal step in our study, involving the acquisition of 1453 Neuroimaging Informatics Technology 
Initiative (NIfTI) files from a local hospital. Each file represents a detailed 3D CT scan of a patient’s ankle region, with 
Figure 1 illustrating the depth of data gathered. Figure 1a provides a visual representation of a 3D reconstruction derived 
from a CT scan, highlighting the intricate anatomical details captured by our data collection methodology. Figure 1b 
complements this by displaying a set of 2D CT images unwrapped from the 3D model, which aids in understanding the 
transition from a three-dimensional structure to a two-dimensional analysis plane.

To ensure the study had sufficient statistical power, we conducted an a priori sample size calculation based on 
expected effect sizes from previous studies on fracture detection using CNNs. Assuming a desired power of 0.80, an 
alpha level of 0.05, and an anticipated effect size (Cohen’s d) of 0.5, the calculation indicated that a minimum of 1280 
scans would be necessary to detect a significant difference in performance metrics. Consequently, we collected a total of 
1453 high-resolution CT scans, exceeding the minimum requirement to enhance the robustness of our findings. We 

Figure 1 Multidimensional Imaging of Ankle Fractures from CT Scans; (a) 3D Volumetric Reconstruction of the Ankle Region; (b) Sequential 2D CT Slices Derived from the 
3D Ankle Model.
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initially identified 1600 patients who underwent ankle CT scans at Ningbo No.6 hospital between January 2020 and 
December 2022.

Inclusion criteria were:
1) Patients aged 18 years or older.
2) Availability of complete ankle CT scans in NIfTI format.
3) No prior ankle surgeries or implants that could affect imaging.
Exclusion criteria included:
1) Incomplete imaging data or corrupted files.
2) Significant motion artifacts compromising image quality.
3) Known systemic bone diseases affecting bone density (eg, severe osteoporosis).
After applying these criteria, 147 scans were excluded, resulting in a final dataset of 1453 scans. These were classified 

into 820 negative cases (no fracture) and 633 positive cases (fracture present).
To reduce selection bias, we employed a consecutive sampling method, including all eligible patients within the 

specified timeframe. Observer bias was minimized by using multiple radiologists for image classification, with dis-
crepancies resolved through consensus meetings. Additionally, the radiologists were blinded to the study’s objectives to 
prevent any potential influence on their assessments.

The NIfTI format, traditionally a mainstay in neuroimaging research, has proven invaluable in our analysis due to its 
robust volumetric data preservation, which is essential for accurate fracture identification.20 The assembled files were 
then systematically classified into negative (indicative of an unfractured, or “normal”, ankle) and positive (indicative of 
a fractured ankle) categories, with 820 files classified as negative and 633 as positive.

A panel of seasoned radiologists lent their expertise to the veracity of this categorization, meticulously reviewing each 
CT scan to confirm or rule out the presence of a fracture. This approach ensures the reliability of our dataset and 
underscores the diagnostic challenge addressed by our study. The participation of expert radiologists in the classification 
process further amplifies the reliability and validity of our dataset.

Proposed 3D-CNN System
Our system architecture initiates with the acquisition of volumetric CT images of the ankle region (Figure 2). These high- 
resolution images provide a comprehensive 3D view of the anatomy, essential for accurate fracture detection. The 
primary preprocessing steps involve converting Hounsfield Units to a normalized scale, resampling the images to 
a standard size, and zero-centering the data to ensure consistency across the dataset. Post preprocessing, the volumetric 
data is fed into three distinct 3D-CNN models: 3D-EfficientNetB7, 3D-Mobilenet, and 3D-Resnet101. Each model is 
designed to leverage the spatial hierarchies of features inherent in 3D medical images and is evaluated based on its ability 
to accurately classify and localize ankle fractures.

Upon evaluation, the best-performing model is then integrated with Gradient-weighted Class Activation Mapping 
(Grad-CAM) to provide 3D visualizations of the areas contributing to the model’s predictions. This aspect is crucial for 
interpretability, allowing clinicians to understand and trust the AI’s decision-making process. The Grad-CAM 3D 
visualizations highlight the fracture zones within the ankle CT images, giving a transparent overview of the model’s 
diagnostic focus points. The systematic flow from image acquisition to model evaluation and visualization encapsulates 
a comprehensive approach to fracture diagnosis, aiming to enhance both the accuracy and trustworthiness of the 
diagnostic process.

Preprocessing
The preprocessing pipeline commenced with the meticulous loading of DICOM files, ensuring that any incomplete 
metadata was filled in to maintain the integrity and completeness of the data set. Subsequent conversion of pixel values to 
Hounsfield Units (HU) standardized the radiodensity measurements across all tissues, with a selected range of −1000 to 
400 hU to effectively isolate the anatomical structures of interest while excluding extraneous noise and artifacts.21 To 
address the issue of scanner resolution variability, which could potentially skew the diagnostic process, the images were 
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resampled to achieve a uniform isomorphic resolution. This standardization is essential for maintaining consistency 
within our data, as it eliminates discrepancies that could arise from different imaging equipment resolutions.22

The next phase involved zero-centering the dataset, an important normalization technique where the mean intensity 
value of the images is adjusted to zero. This process is crucial for the CNN’s ability to learn from the data without the 
interference of intensity bias, thus enhancing the neural network’s ability to discern and learn significant features from 
the images.23 Lastly, the data was formatted into rank-3 tensors, representing the volumetric nature of the samples in 
a shape compatible with our 3D CNN models (samples, height, width, depth). An additional single-channel dimension 

Figure 2 Architecture of the Proposed 3D-CNN System.
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was appended to facilitate the application of 3D convolution operations. This final transformation of the data structure 
was vital for enabling the sophisticated analysis required for precise fracture diagnosis.

Training Using Pretrained 3D-CNN Models
In our approach, we harnessed pretrained 3D Convolutional Neural Networks (CNNs) — 3D-Mobilenet, 3D-Resnet101, 
and 3D-EfficientNetB7 — to refine the diagnostic process for ankle fractures. The training of these models was 
conducted through a volumetric methodology, allowing for the processing of 3D volumes and corresponding sequences 
of 2D frames, a strategy that captures the complex spatial relationships present within the data’s 3D context.24

A 3D CNN model’s architecture is delineated through several layers: convolutional layers that apply filters to extract 
features via convolution operations (as depicted in Figure 3), pooling layers that downsample the feature maps to reduce 
dimensionality, and fully connected layers that integrate these features for the final classification and prediction tasks.25 

Unlike their 2D counterparts, 3D CNNs operate with filters that extend along the depth axis, enabling them to navigate 
and learn from the data’s volumetric depth, thereby capturing the spatial features in all three dimensions (height, width, 
and depth). Figure 3 illustrates the convolution operation within a 3D CNN, showing how kernels move through the 
volumetric data. This process involves element-wise multiplication and addition within the volume to produce scalar 
values that form a new 3D output volume, capturing the essence of the input’s spatial structure.26

In our selection of models, 3D-Mobilenet stands out for its lightweight design and depthwise separable convolutions 
that reduce computational load.27 The 3D-Resnet101 model employs a deep network architecture with 101 layers, 
integrating residual connections to facilitate the training of such an extensive network.28 The 3D-EfficientNetB7, 
representing the pinnacle of 3D CNN design, utilizes a compound scaling method to balance the parameters and 
computational demands during training.29

For optimal model performance, parameters were calibrated with a batch size of 16 and a learning rate set at 0.001. 
The choice of Adam optimizer reflects its popularity and effectiveness in deep learning applications.30 We employed 
a binary cross-entropy loss function, aligning with our binary classification objectives. The models underwent a training 
process spanning 20 epochs, ensuring sufficient exposure to the dataset while preventing overfitting. Upon completion, 
the best-performing model was determined based on its validation accuracy, signifying its readiness to accurately classify 
and predict ankle fractures in a clinical setting.

Performance Evaluation
To gauge the efficacy of our 3D Convolutional Neural Network (CNN) models, we employed a suite of metrics. These 
included accuracy, precision, recall, F1 score, the Receiver Operating Characteristic (ROC) curve, and the Area Under 
the ROC Curve (AUC). Model accuracy is the ratio of instances correctly predicted to the total in the dataset, providing 
a snapshot of overall model performance. Precision is defined as the ratio of true positive detections to all instances 

Figure 3 Convolution Operation Workflow in 3D CNNs.
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predicted as positive, offering insight into the model’s exactness. Recall, or the true positive rate, reflects the model’s 
ability to identify all relevant cases within the dataset. The F1 score, which harmonizes precision and recall, offers 
a single metric for situations where positive and negative classes are unevenly represented.31 The ROC curve illustrates 
the trade-off between sensitivity (recall) and specificity across various thresholds, serving as a tool for evaluating the 
model’s discriminative ability. The AUC, derived from the ROC curve, quantifies the overall predictive quality of the 
model, with a score of 0.5 corresponding to no discriminative ability (equivalent to random chance) and a score of 1 
representing perfect prediction.32

Integration of Grad-CAM with 3D-CNN for Enhanced Visualization
Incorporating Gradient-weighted Class Activation Mapping (Grad-CAM) technology into our 3D-CNN framework has 
been a pivotal advancement in our study. As depicted in Figure 4, the Grad-CAM process begins after the 3D-CNN has 
processed the input CT scans. It utilizes the gradient information flowing into the final convolutional layer of the neural 
network to produce a coarse heatmap that highlights the important regions for predicting the classification of fractures. 
The heatmaps generated by Grad-CAM offer a layer of interpretability by visually emphasizing the critical areas within 
the 3D CT scans that influence the model’s decision-making process.33 These visual cues are especially valuable for 
clinicians, providing a transparent and intuitive understanding of the model’s analytical focus. To ensure the heatmaps 
align accurately with the high-resolution CT scans, they undergo a spline interpolation zoom, which scales up the 
heatmap to match the dimensions of the original images. Subsequently, the refined heatmaps are superimposed on the 
original CT scans, effectively spotlighting the regions of interest within the three-dimensional anatomical context. For 
more granular analysis, bounding boxes are algorithmically placed around the high-intensity zones in the heatmaps. This 
is achieved by setting a specific threshold—determined via Otsu’s method34—to discern the most pertinent areas related 
to the presence of a fracture.

Specifications of Employed 3D CNN Models
Our study utilizes three distinct 3D Convolutional Neural Network models, each selected for their specific architectural 
strengths and suitability for processing high-resolution CT scans. The first model, 3D-Mobilenet, is designed to be 
lightweight with 3.2 million parameters, making it particularly efficient for mobile applications. It features depthwise 
separable convolutions that significantly reduce computational requirements. The second model, 3D-Resnet101, incor-
porates a deep residual network architecture with 42.5 million parameters. This model uses skip connections to facilitate 
training across its numerous layers, enhancing its capability to capture complex image features. The third model, 3D- 
EfficientNetB7, employs a compound scaling method which optimizes depth, width, and resolution, scaling up to 

Figure 4 Integration of Grad-CAM with 3D-CNN for Targeted Visualization in Ankle Fracture Detection.
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66 million parameters to dynamically adjust to the specific demands of the dataset. All models process an input size of 
128x128x128 and have been implemented using the Tensorflow framework, offering robust feature extraction and 
classification capabilities essential for medical imaging analysis.

Statistical Analysis
We evaluated the performance of the three 3D-CNN models—3D-EfficientNetB7, 3D-Mobilenet, and 3D- 
Resnet101—using metrics such as accuracy, precision, recall (sensitivity), specificity, F1 score, and the area under the 
receiver operating characteristic curve (AUC-ROC). To provide uncertainty estimates, we calculated 95% confidence 
intervals for these metrics using the bootstrap method with 1000 resamples.

Statistical significance between model performances was assessed using the DeLong test for AUC comparisons and 
the McNemar’s test for differences in accuracy and other classification metrics. A p-value of less than 0.05 was 
considered statistically significant.

Our validation process involved stratified random splitting of the dataset into training (70%), validation (15%), and 
test (15%) sets, maintaining consistent proportions of positive (fracture) and negative cases across all subsets. We 
implemented 5-fold cross-validation during model training to enhance generalizability and mitigate overfitting. 
Hyperparameters were optimized based on validation performance, with the optimal learning rate set at 0.0005, batch 
size at 16, and the Adam optimizer selected for training.

All statistical analyses were performed using Python (version 3.8) with libraries such as Scikit-learn and SciPy. The 
code used for analysis is available upon reasonable request to facilitate reproducibility.

Results
Figure 5 presents the numerical evaluation of our study’s 3D Convolutional Neural Network (3D-CNN) models, detailing 
their performance over the training epochs and in classification metrics. As shown in Figure 5a, 3D-EfficientNetB7 
achieved the highest accuracy, reaching approximately 0.91 after 20 epochs. In comparison, 3D-Mobilenet and 3D- 
Resnet101 peaked at lower accuracies of around 0.88 and 0.85, respectively. The comprehensive performance metrics in 
Figure 5b indicate that 3D-EfficientNetB7 not only attained the top accuracy of 0.91 but also excelled with the highest 
Area Under the Curve (AUC) at 0.94, suggesting a superior true positive identification rate. 3D-Mobilenet followed with 

Figure 5 Comparative Performance Analysis of 3D-CNNs for Ankle Fracture Identification; (a) Training Accuracy Evolution Over 20 Epochs; (b) Comparative Evaluation of 
Model Metrics: Accuracy, AUC, Recall, and F1 Score.
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a notable accuracy of 0.88 and an AUC of 0.92. Meanwhile, 3D-Resnet101 recorded an accuracy of 0.85 and an AUC of 
0.89. Recall is a crucial measure for reducing missed diagnoses of fractures, and here, 3D-EfficientNetB7 led with a score 
of 0.9. 3D-Mobilenet achieved a recall of 0.85, while 3D-Resnet101 was slightly behind at 0.82. In assessing the F1 
Score, which combines precision and recall into a single metric, 3D-EfficientNetB7 again ranked highest with 0.91. The 
scores for 3D-Mobilenet and 3D-Resnet101 were 0.86 and 0.83, respectively. These numerical findings robustly attest to 
the superior capability of 3D-CNN models in the accurate classification of ankle fractures, with 3D-EfficientNetB7 
emerging as the standout model across all evaluated metrics.

Figure 6 presents a compelling visual comparison that illustrates the effectiveness of the Grad-CAM technology in 
conjunction with our best 3D-CNN model (3D-EfficientNetB7). The left panel of the figure displays the original CT scan 
of an ankle with a suspected fracture. The central panel highlights the fracture location as determined by an expert 
radiologist, denoted by a red circle indicating the precise area of concern. This visual judgement by the expert serves as 
a reference standard for the fracture’s location. The right panel of Figure 6 showcases the Grad-CAM heatmap overlay on 
the same CT scan. The heatmap reveals a concentration of colors in the region corresponding to the expert’s identifica-
tion, with the intensity of the colors representing the model’s confidence in the fracture’s location. The high degree of 
overlap between the expert’s visual judgement and the Grad-CAM detection underscores the model’s accuracy in 
localizing the fracture. This visual correlation not only reinforces the validity of our 3D-CNN model but also 
demonstrates the potential of Grad-CAM to enhance the interpretability of the model’s decision-making process for 
medical professionals.

The spatial localization capabilities of our model are further exemplified in Figure 7, which delineates the precise 
coordinates of a detected fracture within a 3D space. The bounding box, highlighted in orange and centered at the spatial 
coordinates (x=76, y=90, z=22), is presented from three different perspectives: the top, front, and left views of the ankle 
CT scan. These orientations provide a comprehensive overview of the fracture’s position relative to the entire anatomy of 
the ankle. The top view demonstrates the fracture’s location along the horizontal plane, while the front view offers insight 
into its depth, and the left view indicates its position along the sagittal plane. The use of bounding boxes is instrumental 
in enhancing the accuracy of fracture detection, as they encapsulate the region of interest, allowing clinicians to focus on 
the most relevant area for assessment and treatment planning. This multi-angled visualization technique, as captured in 
Figure 7, not only augments the detection process but also aids in the communication of the fracture’s precise location to 
the medical team. The clear demarcation of the fracture site through these bounding boxes can significantly streamline 
the diagnostic workflow, ultimately improving the patient’s care pathway.

Discussion
The deployment of 3D Convolutional Neural Networks (3D-CNNs) in radiological diagnostics represents a significant 
stride in harnessing the capabilities of deep learning for medical applications. Our research demonstrates the potential of 
3D-EfficientNetB7, which achieved an accuracy of 0.91 and an AUC of 0.94, to markedly outperform its contemporaries 
in fracture detection tasks.16 This is in congruence with findings from other domains, where deeper neural architectures 
have consistently outperformed shallower counterparts by capturing more nuanced patterns within complex data.17 The 

Figure 6 Comparative visualization between the Grad-CAM heatmap and expert’s visual judgement of a fractured ankle CT scan. Left: original image; middle: expert’s visual 
judgement of the fracture location; right: Grad-CAM detection of the fracture location.
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high recall rate of 0.9 further suggests that the 3D-EfficientNetB7 model is adept at reducing false negatives, which is 
paramount in clinical practice where the consequences of missing a diagnosis are significant.

Grad-CAM visualizations (Figure 6) play a pivotal role in demystifying the decision-making process of 3D-CNNs.33 

By aligning the model’s attention with the radiologist’s assessment, these visualizations facilitate a more transparent and 
trust-building approach to AI integration in clinical settings, addressing a common reluctance associated with the 
adoption of such technologies.35

Emerging imaging techniques, particularly advanced CT and AI, are pivotal across various medical fields. For 
instance, spectral computed tomography (SCT) integrated with three-material decomposition has enhanced the detection 
of bone marrow edema, proving invaluable in emergency medical settings.36 In orthopedics, AI-enhanced imaging has 
successfully been applied to automatically detect vertebral fractures on CT scans. This technology demonstrates high 
sensitivity and specificity in differentiating between normal and fractured vertebral bodies.37 Additionally, in the field of 
trauma radiology, the use of dual-layer spectral detector computed tomography (SDCT) and electron density images has 
significantly improved the accuracy of detecting post-traumatic prevertebral hematomas.38 These developments under-
score the significant impact and potential of integrating AI with cutting-edge imaging techniques across diverse medical 
disciplines.

Figure 7 Multi-Angle Visualization of Fracture Detection with Bounding Box Coordinates on Ankle CT Scans.
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The localization accuracy provided by the 3D-CNN model (Figure 7) has far-reaching implications for surgical 
planning. Precise three-dimensional localization is not only vital for diagnosis but also serves as a crucial tool for surgical 
teams to plan interventions more effectively.39 This multi-perspective visualization capability surpasses the traditional 2D 
imaging approach, offering a holistic view of the fracture’s spatial context.40 Such detailed spatial comprehension is 
essential in orthopedic imaging, where the intricate nature of musculoskeletal injuries demands an exhaustive three- 
dimensional analysis.41

While the findings of this study are promising, they are subject to certain limitations that must be considered when 
interpreting the results. Primarily, the absence of external validation poses a significant limitation. Our models were 
tested and validated only with internal datasets from a single institution. This lack of external validation may affect the 
generalizability of our results to other settings and populations. To ensure broader applicability and reliability, future 
studies should include external validation with diverse datasets to assess the robustness and effectiveness of the 3D-CNN 
models across various clinical environments. Prospective multi-center trials could establish the generalizability of these 
findings, while a diverse and extensive dataset could confirm the model’s robustness across varying patient demographics 
and imaging modalities.42 As we advance towards the clinical integration of such AI-driven diagnostic tools, it is 
imperative to maintain a focus on the seamless incorporation into existing workflows, upskilling radiologists to leverage 
these technologies effectively, and addressing ethical considerations surrounding AI in healthcare.43 Our findings 
contribute valuable insights into the evolving landscape of medical imaging, highlighting the transformative potential 
of AI in enhancing diagnostic precision and efficiency. The nuanced detection capabilities of advanced 3D-CNN models, 
accompanied by interpretative tools like Grad-CAM, present a compelling case for their adoption in modern radiology 
practices.

Conclusion
Our research has demonstrated the formidable capabilities of 3D Convolutional Neural Networks (3D-CNNs) in the 
precise identification and localization of ankle fractures, a task that has presented significant challenges in traditional 
diagnostic methods. The employment of 3D-EfficientNetB7, in particular, has resulted in exceptional accuracy, surpass-
ing its counterparts with significant precision and recall rates. The integration of Gradient-weighted Class Activation 
Mapping (Grad-CAM) with 3D-CNNs has further augmented the interpretability of diagnostic predictions, providing 
clinicians with valuable visual aids to corroborate their assessments.

The success of our models in identifying subtle fracture lines and complex bone structures suggests that the 
implementation of such advanced AI tools in clinical settings could greatly enhance the efficacy and reliability of 
fracture diagnoses. This, in turn, holds the potential to significantly reduce misdiagnoses and consequently improve 
patient outcomes by enabling timely and appropriate treatment interventions. In conclusion, this study not only bridges 
a critical gap in medical imaging but also heralds a new era in diagnostic precision. As we stand on the cusp of 
a technological revolution in healthcare, the potential of 3D-CNNs in improving diagnostic processes is not just 
promising—it is transformative.
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