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Background: Prostate cancer (PCa) development largely depends on increased levels of oxidative stress (OS) and a deficient anti- 
oxidative system. Identifying genes associated with oxidative stress is critical in order to direct PCa therapy and future research.
Methods: The TCGA and GTEx databases provided the bulk RNA-seq data, and the GEO database provided the single-cell data 
GSE141445. Utilizing reactive oxygen species (ROS) markers, single-cell analysis and cluster identification related to oxidative stress 
were conducted using the R packages “Seurat” and “AUCell”. The differentially expressed genes (DEGs) in normal and PCa samples 
were identified with the “limma” R package. LASSO regression analysis was used to build a recurrence score (RS) model. The R 
packages “maftools” and the CIBERSORT method were employed to explore genetic mutation and the infiltrating immune cell, 
respectively. LAMP5 was chosen for further investigation after random forest analysis was performed.
Results: The RS model for PCa was found to be an independent predictor. The tumor immune microenvironment and the frequency of 
gene mutations differed significantly between the high- and low-risk score groups. Further investigation revealed that downregulation 
of LAMP5 in PC-3 and DU145 cell lines suppressed cell proliferation and invasion, as demonstrated by the results of in vitro 
experiments.
Conclusion: We successfully created a robust RS model. The result of the study indicates that LAMP5 could contribute to cell 
proliferation and invasion in PCa.
Keywords: prostate cancer, oxidative stress, single-cell analysis, recurrence score model, LAMP5

Introduction
Prostate cancer (PCa) ranks second in the global incidence of cancer and the fifth most deadly cancer in males. Globally, 
there were 397,000 PCa patient deaths and 1.5 million new instances of PCa diagnoses, according to GLOBOCAN 
2022.1 The suggested curative therapies for clinically organ-confined PCa include radical radiotherapy (RT) and radical 
prostatectomy (RP). Nevertheless, biochemical recurrence (BCR) occurs in 20–60% of individuals after aggressive 
therapy in less than a decade. Because these patients are more prone to acquire distant metastases, their prognosis is 
frequently poor.2 Prostate-specific antigen (PSA) levels increase following PCa therapy, which is described as BCR. 
Routinely, BCR following RP is commonly described as an increasing PSA level equal to or more than 0.2 or 0.4 ng/mL. 
The BCR for RT is a PSA that is at least 2ng/mL higher than the PSA nadir.3–5 For patients to have better outcomes and 
experience less burden from their disease, identifying individuals at high risk of getting BCR is critical.

The tumor microenvironment (TME) is the intricate ecology encompassing a tumor, consisting of tumor cells, stromal tissue, 
and the extracellular matrix.6 In tumor proliferation, invasion, metastasis, and differentiation, the TME has significant regulatory 
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functions.7 Active immune cells are attracted to tumor cells, producing chemicals that induce an immunosuppressive TME in the 
initial stages of cancer formation, inhibiting tumors from growing and developing. However, following persistent tumor antigen 
stimulation and immune response, remodeling or even exhaustion of the relevant immune effector cells may occur. As a result, 
they may become incapable of killing tumors and may even facilitate tumor progression that contributes to the formation of the 
immunosuppressive TME.8 Solid tumors have an immunosuppressive TME that is mediated mainly by reactive oxygen species 
(ROS). When ROS accumulate in TME, oxidative stress (OS) is created, promoting the development of an immunosuppressive 
TME.9 The term OS describes how cells react to different stressors by producing active molecules such as nitrogen free radicals 
and ROS. When free radical levels in the body are out of whack with antioxidant levels, it leads to cell and tissue damage.10 PCa 
is frequently related to a change in the balance of the prooxidant and antioxidant system to a higher OS. Antioxidant enzymes, 
such as superoxide dismutase (SOD) and catalase, are often downregulated in PCa tissues, resulting in increased oxidative stress 
and promoting cancer cell survival and proliferation.11,12 Previous research has indicated that the prostatic tissue of humans, rats, 
and cell lines has a modified prooxidant-antioxidant status. The development of PCa is proved to have been influenced by the 
imbalance between these antioxidants.13 OS contributes significantly to PCa initiation and progression by damaging DNA, 
proteins, and lipids, leading to genetic mutations and tumor development.14 Apart from causing damage to DNA, increased levels 
of ROS in PCa can also function as secondary messengers and regulate different signaling pathways that are crucial for sustaining 
the oncogenic phenotype by triggering numerous transcription factors including HIF-1α, Snail, Ets, etc.15 Moreover, OS impacts 
various immune cell types, including cytotoxic T lymphocytes, mast cells, neutrophils, and M0 macrophages. Collectively, these 
elements are essential to the occurrence and advancement of PCa.16,17 Although OS has been demonstrated to be significant in 
tumor growth and anti-tumor procedures, its link to BCR in PCa remains unknown.

In this work, we used single-cell and bulk RNA-sequencing data from PCa in order to identify OS response-related 
differentially expressed genes (DEGs). A recurrence score (RS) model was built using these genes to forecast the 
prognosis of PCa patients. Using random forest analysis, LAMP5 was chosen for additional investigation, which 
included prognostic and clinical analyses. LAMP5 is a single-transmembrane protein that belongs to the Lysosome- 
associated membrane protein (LAMP) family. It consists of 280 amino acids. It has been found that proteins belonging to 
the LAMP family have an influence on several cellular functions, including autophagy, phagocytosis, senescence, lipid 
transport, and the development of cancers.18 Based on experimental data, LAMP5 may facilitate tumor proliferation, 
migration, and invasion. This work suggests that LAMP5 could serve as a useful PCa treatment target.

Materials and Methods
Data Collection and Pretreatment
Single-cell data GSE141445 were obtained from the GEO database. Additionally obtained from GEO were the patient 
survival statistics and expression profiles from the GSE46602 and GSE70768 datasets. We selected the datasets GSE141445, 
GSE46602, and GSE70768 based on special criteria to ensure relevance and reliability for the study of PCa. First, each dataset 
focuses on PCa. Second, these datasets offer comprehensive gene expression profiles and survival statistics. Third, the sample 
sizes in these datasets are sufficient to provide robust statistical power. Lastly, these datasets have been quality-controlled and 
publicly released in the GEO database, ensuring transparency, reproducibility, and alignment with ethical standards. To 
process the data, these procedures were followed: (1) remove samples that lack clinical follow-up data; (2) remove samples 
with unknown BCR status or time; (3) transform probe IDs into gene symbols; (4) remove probes corresponding to multiple 
genes; (5) calculate the median expression values for every gene. The expression profiles of PCa patients and controls were 
extracted from the TCGA database. Transcripts Per Million (TPM) value was obtained through the conversion of the raw 
transcriptome count. The conversion to log2(TPM+1) was carried out. After correction, further analysis was done on the 
survival and mutation data. 17 ROS-related pathways that have previously been reported (Table S1)19 Finally, 414 genes 
(Table S2) were found to be associated with OS and used in the following study.

Single-Cell Data Analysis
Single-cell data analysis was performed by the “Seurat” R package.20 The analysis stages comprised the following: building 
objects, standardizing data, reducing data dimensionality, clustering, and determining marker genes. A Seurat object was 
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constructed using the CreateSeuratObject function. We filtered the genes and the cells. 3 cells and 200 features were required 
as the minimum. For principal component analysis, we selected the top 2000 hypervariable genes. The ElbowPlot function 
determined that the first 15 principal components (PCs) were significant PCs for further analysis. Several datasets provided the 
single-cell data; therefore, to ensure that subsequent analyses would not be impacted by the batch effect, the “harmony” R 
package21 was used. Tumor cell subgroups were identified with a resolution of 0.5 using the FindClusters technique. UMAP 
technique was employed to decrease further the data dimension acquired following PCa. The DimPlot function was utilized to 
display the cellular types in low-dimensional spaces visually. Canonical cell markers were used to annotate the cell clusters 
manually. Tumor cell-specific gene expression was visualized using the VlnPlot function.

Active Subgroup Identification
Factors associated with OS responses and high population specificity for different cell subgroups (adj_p <0.05 and | 
avg_log 2FoldChange| >1.5 and pct.1 >0.5 and pct.2<0.5) were used to choose the intersection of marker genes. Using 
the “AUCell” R package, the activity score was determined by analyzing the intersection of genes. The threshold for 
identifying the active cells was established using the AUCell_exploreThresholds function. Subsequently, The AUC score 
was used to color-code the UMAP embedding of cell clusters, allowing researchers to assess which cell subgroups were 
active in the specific subgroups of genes associated with the OS response. The DEGs between the active and non-active 
subgroups were determined with the FindAllMarkers function.

Enrichment Analysis
Gene sets are sorted according to the differential expression between two samples using GSEA. The active cell subgroup- 
enriched genes were identified by The “ClusterProfiler”22 R package used in GSEA. Gene sets with a p-value of less than 
0.01 were deemed substantially enriched. Additional pathway enrichment analyses were carried out using KEGG and GO 
analysis.

DEG Identification
DEGs were found by the “limma” R package23 in bulk RNA-sequencing data for tumor and normal samples. Utilizing 
the Benjamini-Hochberg (FDR) method, the p values were adjusted. DEGs were identified by a cutoff value of |FC| >1.5 
and adj. p value < 0.05.

Prognostic Model Construction and Survival Analysis
Marker genes found in pathways and factors associated with active OS response and DEGs from tumor and normal samples 
were intersected. A cutoff value of avg_log 2FC > 0.585 was employed to find intersection genes. Intersection genes 
associated with the prognosis of PCa patients were examined with univariate Cox regression analysis. P < 0.05 was used to 
define statistical significance. LASSO regression analysis was carried out24 in order to determine the prognostic genes and 
build the prognostic model. Using the median RS, tumor samples were split into high- and low-risk groups. The biochemical 
recurrence-free survival (BCRFS) of PCa patients was predicted by the Kaplan Meier (KM) survival curve. To determine the 
difference in BCRFS, the Log rank test was used. The “timeROC” R package25 was used to forecast the score using the 
disturbance scoring model based on the receiver operating characteristic (ROC) curve. Scatter plots of BCR times, BCR states, 
and sample scores were created by the “ggplot2” R package. Gene expression heat maps for prognostic models were built 
using the pheatmap R package. The following formula is used to determine the RS:

For each gene, βirepresents its weight coefficient and Eiis equal to log2(TPM+1). Random forest analysis was used to select 
the central gene. The clinical correlation results were acquired by using the online analysis website BEST (https://rookieuto 
pia.com/app_direct/BEST/). A nomogram for BCRFS was created using clinical variables and RS. The nomogram was 
evaluated using the calibration curve.
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Gene Mutation Analysis
Using the R package Maftools, mutational patterns among subgroups were compared by analyzing and visualizing 
somatic data. Concurrently, tumor mutation burden (TMB) was computed. TMB was utilized to determine the difference 
in BCRFS between patients with high and low TMB and to determine the correlation between the RS and TMB.

Infiltrating Immune Cell Proportion Estimation
The fraction of infiltrating immune cells was computed with CIBERSORT and “ESTIMATE” algorithms26 on the TCGA- 
PRAD dataset. The leukocyte characteristic gene matrix (LM22) could distinguish 22 different kinds of immune cells. 
The fraction of 22 different kinds of immune cells in the samples was estimated using CIBERSORT and LM22. All 
immune cell types added up to 1 in each sample.

Cell Culture and Transfection
The RWPE-1, PC3, DU145, and LNCaP human prostatic cancer cell lines were obtained from the Cellverse (Shanghai, 
China) and grown in RPMI-1640 media. The siRNA targeting LAMP5 and the matching si-control were acquired from 
Genecreate (Wuhan, China). Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) was used to transfect 
PC3 and DU145 cell lines according to the manufacturer’s instructions.

RT-qPCR Analysis
To extract total RNA, TRIpure Total RNA Extraction Reagent (ELK Biotechnology, Wuhan, China) was utilized. EntiLink™ 
1st Strand cDNA Synthesis Super Mix (ELK Biotechnology) was utilized to synthesize cDNA. EnTurbo™ SYBR Green PCR 
SuperMix (ELK Biotechnology) and the 2-∆∆Ct method were utilized to identify the quantified expressions. The primers 
listed below were employed. LAMP5, forward: 5′-AGCAACTACGTAGATCTGATCACAG-3′; LAMP5, reverse: 
5′-TACAAAGAGCATTTTGAGTGCATAT-3′; β-Actin, forward: 5′- GTCCACCGCAAATGCTTCTA-3′; and β-Actin, 
reverse: 5′- TGCTGTCACCTTCACCGTTC −3′.

Western Blot Analysis
Proteins from cells were transferred to PVDF membranes after electrophoresis on a 10% SDS-PAGE gel. In order to 
block the membranes, a solution of 5% silk milk was employed at room temperature for one hour. The membranes were 
incubated overnight at 4°C with the diluted primary LAMP5 and β-Actin antibodies (1:1000, Thermo Fisher Scientific 
and 1:10000, TDYbio, Beijing, China), respectively. The membranes were treated with secondary antibodies (anti-rabbit 
or anti-mouse IgG (H+L), Aspen Biological, Wuhan, China) for one hour at room temperature. After that, an improved 
ECL detection kit (Aspen Biological) was used to visualize the membranes.

CCK-8 Assay
Each of the 96-well plates contained three thousand cells, which were cultured at 37°C in 5% CO2 for 24, 48, 72, and 96 
hours. Each well was added with 10μL of CCK8 solution (Beyotime, Shanghai, China) at the specified time. Two hours 
later, a multi-scan spectrophotometer was used to detect the OD at 450 nm.

Wound Healing Assay
After being seeded in six-well plates, the cells were cultivated to 90% confluence. A 10μL tip set was used to mark the 
cell gaps at the bottom of each well to show cell borders at 0 hours. Wound healing was detected after 24 hours. At both 0 
and 24 hours, the photos were captured.

Transwell Invasion Assay
For the Transwell invasion assay, 24-well Transwell chambers were used. Using a serum-free medium, 2.0×104 cells 
were introduced to each top chamber. For each bottom chamber, 500μL of a culture medium with 10% FBS was added. 
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48 hours later, 0.1% crystal violet was used to stain the cells that were moving to the bottom of the membrane and take 
pictures of them.

Statistical Analysis
We used R (v.4.3.2) for all statistical analysis. For data comparisons involving two groups, we used the Wilcoxon or 
Student’s t-test, and for more than two groups, we used the Kruskal–Wallis test. At least three replications of each 
experiment were conducted. The cutoff of P < 0.05 was chosen to ensure a statistically significant distinction between 
groups, in line with established practices in clinical research, which enhances the reliability of our findings (*P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001).

Results
Landscape of Tumor Single-Cell
GEO database provided the single-cell sequencing dataset GSE141445, which includes tumor samples from thirteen 
patients diagnosed with PCa. Based on the clustering results, the expression pattern of single cells was shown using 
UMAP dimensionality reduction. According to the results, the cells could be split into 16 subgroups, ranging from 0 to 
15 (Figure 1A). Eight primary clusters were formed by annotating cell types according to gene markers relevant to each 
cell type (Figure 1B and C). In each cell subgroup, the first two genes were used to create a violin plot. The violin 
diagram indicates the heterogeneity among the tumor cells (Figure 1D). The histogram illustrates the distribution of cell 
subgroups and TME differences among PCa patients (Figure 1E).

OS Reactive Subgroup Identification
The 52 genes obtained resulted from gene intersections between specific genes associated with OS responses and cell subgroups. 
It has been determined that these 52 genes are ROS markers (Table S3). In order to analyze the OS response gene expression 
pattern at the single-cell level, the 52 ROS markers were used to help identify the active cell subgroups. 6691 active cells were 
identified across all OS response subgroups when cell activity was measured using the optimum threshold (Figure 2A). The 
UMAP diagram and the histogram revealed that the active cells were myeloid and endothelial cells (Figure 2B and C).

OS Reactive Cell Subgroup Function Identification
The GSEA analysis was used to identify the function of the active OS cell subgroup by examining the expression of 
marker genes that exhibit high specificity. To create a bubble diagram, the marker gene sets underwent GO function and 
KEGG pathway enrichment analysis. The top 10 pathways and 5 functions were selected based on the level of 
enrichment. The findings showed that marker gene sets greatly enriched cytokine-cytokine receptor interaction pathways 
and chemotaxis functions (Supplementary Figures 1A and B). The GSEA was conducted using the HALLMARK 
pathway. Eight pathways were considerably enriched. Interferon γ and immunological modulation in tumors were 
shown to be closely correlated (Supplementary Figure 1C).

Analysis of PCa Sample Bulk RNA-Sequencing
495 PCa samples and 151 normal samples were obtained by integrating the Genotype-Tissue Expression and TCGA- 
PRAD samples to conduct differential expression analysis. 2665 DEGs in total were found (Table S4). The active cell 
subgroup marker genes were intersected with the DEGs, obtaining 916 differentially active marker genes (Table S5). 
Supplementary Figure 2A displays the expression heatmap. The HALLMARK pathway for DEGs was used to perform 
GSEA. The result demonstrated that the DEG substantially enriched G2m checkpoint and E2f targets (Supplementary 
Figure 2B). Additionally, Supplementary Figures 2C and D display the outcomes of GO and KEGG pathway enrichment 
analysis.
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Figure 1 Determination of cell subgroups and marker gene expression using single-cell data. (A) UMAP displays the distribution of subgroups in PCa. (B) UMAP displays the 
subgroup annotation findings for PCa. (C) Marker gene expression of various kinds of cells, where the percentage of marker gene expression and the average scaled 
expression are shown by the size and color of the dots, respectively. (D) The violin diagram displays specific gene expression in cell subgroups. (E) Normalized infiltrating 
immune cell composition of each sample.
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Construction of RS Model
The active cell subgroup was analyzed using univariate Cox analysis to identify marker genes differently expressed 
(P <0.05). Five genes were identified as having an association with PCa prognosis (Table S6). Further investigation of 
these five genes was conducted using LASSO regression analysis. The result showed that four genes were correlated with 
the prognosis of PCa patients (Table S7), and the findings are displayed in Figures 3A–C. The patients were categorized 
into high-risk and low-risk groups based on the median expression value of each gene. A KM survival curve was 
generated using data from the TCGA-PRAD dataset, revealing notable differences in the BCRFS rates across the patients 
of high- and low-risk groups in the four genes. Compared to the low-risk group, the high-risk group had a 
poorer prognosis (Figure 3D–G). In order to ascertain the gene with the most significant influence on PCa biochemical 
recurrence, a random forest analysis was conducted, identifying LAMP5 as potentially playing a central role (Figure 3H).

Figure 2 Active cell subgroup Identification. (A) The cutoff value for AUC scores of oxidative stress marker genes is 0.12. (B) UMAP displays the cell activity score. The 
activity level increases with color brightness. (C) The histogram displays the total distribution of the subgroup of active and inactive cells.
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Figure 3 Lasso regression and random forest analysis of the TCGA-PRAD dataset. (A) Analysis of 4 genes using Lasso regression. (B) Lasso regression analysis with cross- 
validation. (C) The coefficient of the lasso regression model for the vital prognostic genes. (D-G) KM survival curve of prognostic gene signatures. (H) Random forest 
analysis of key prognostic genes.
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Validation of the RS Model
In order to evaluate the reliability of the models built with four gene signatures, samples were categorized into high- and 
low-risk groups according to the median RS value (Supplementary Figures 3A-F). The KM survival curves for various 
cohorts in the TCGA (Figure 4A), GSE70768 (Figure 4B), and GSE46602 (Figure 4C) cohorts were created. The 
findings showed that the high-risk group had a far poorer prognosis than the low-risk group in every cohort. The ROC 
curve evaluated the predictive ability of the model for patient prognosis. The results from the TCGA cohort showed an 
AUC of 0.69 for 1-year BCRFS, 0.73 for 3-year BCRFS, and 0.68 for 5-year BCRFS (Figure 4D). The results from the 
GSE70768 cohort showed an AUC of 0.76 for 1-year BCRFS, 0.69 for 3-year BCRFS, and 0.79 for 5-year BCRFS 
(Figure 4E). The results from the GSE46602 cohort showed an AUC of 0.74 for 1-year BCRFS, 0.82 for 3-year BCRFS, 
and 0.76 for 5-year BCRFS (Figure 4F). Collectively, these findings indicate that our prognostic model performed well 
across several cohorts.

Construction of a Nomogram and Calibration
The clinical features of the patients, including age, PSA levels, and AJCC stage, were subjected to a multivariate Cox 
regression analysis to ascertain if RS may function as an independent prognostic indicator. The findings demonstrated that 
RS functioned as an independent predictive risk indicator for patients (Figure 5A). The multivariate Cox regression 
analysis was utilized to build a nomogram. The findings revealed that RS is a strong predictor of clinical outcomes 
(Figure 5B). Furthermore, the slopes of the calibration curves for the 1-, 3-, and 5-year nomograms were near 1, 
suggesting that the nomogram was able to successfully forecast the prognosis of PCa patients with BCR. (Figure 5C).

Figure 4 Validation of the BCRFS predictive model. (A-C) KM survival curves for patients in the TCGA, GSE70768, and GSE46602 cohorts indicate high- and low-risk 
groups, respectively. (D-F) Time-dependent ROC curves of models for the TCGA, GSE70768, and GSE46602 cohorts at 1, 3, and 5 years.
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Figure 5 Continued.
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Differences in Mutation Spectrum Characteristics
Genetic mutations significantly contribute to the occurrence and progression of cancer. Hence, improving the compre-
hension of genetic mutations in PCa would facilitate the development of precise medications and novel tumor treatments. 
The waterfall diagram was constructed by analyzing the top 20 genes that were mutated most frequently in patients from 
both the high- and low-risk groups. The result indicated that compared to the low-risk group, the high-risk group had 
more gene mutations (Figure 6A). TMB was also computed, and the lower quartile was utilized to categorize the patients 
into high- and low-TMB groups (Table S8). Both the low- and high-TMB patient groups were analyzed using a KM 
survival curve. The outcomes demonstrate that patients with lower levels of TMB had a better prognosis (Figure 6B). 
The scatter plot displays a substantial positive association between RS and TMB (Figure 6C).

Characteristics of Infiltrating Immune Cells in the Model
Infiltrating immune cells in the TME influenced the incidence and progression of tumors. The fraction of 22 different 
kinds of immune cells that infiltrated PCa was evaluated using the CIBERSORT algorithm (Table S9). A visualization 
displays the distribution of 22 different kinds of immune cells among the patients in the high- and low-risk groups 
(Figure 7A and B). There was a notable difference between the high- and low-risk groups in the proportions of immune 
cells infiltrating tumors. The results revealed substantial differences between the two groups in the fraction of immune 
cells infiltrating tumors, including M1 macrophages, M2 macrophages, resting mast cells, CD8+ T cells, and resting 
dendritic cells (Figure 7C). Immune checkpoints are substances produced by immune cells that are responsible for 
controlling the level of immunological activation. They are essential in the incidence of autoimmune illnesses. As a 

Figure 5 Nomogram construction using RS and clinical features. (A) Multivariate Cox regression analysis shows the correlation of BCRFS with RS and various clinical 
features based on TCGA dataset. **P<0.01, ***P<0.001. (B) The prognostic nomogram constructed using the RS and different clinical features can predict the 1-, 3-, and 5- 
year BCRFS rates of PCa patients. (C) Calibration curves show the predicted and actual BCRFS for 1, 3, and 5 years.
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result, we investigated the relationship between five different types of immunomodulators27 and the expression of four 
model genes (Table S10). The findings revealed an important relationship between LAMP5 and immunological 
checkpoints (Supplementary Figure 4).

Clinical Correlation and Prognostic Value of LAMP5
Further analysis revealed that in the TCGA cohort, the BCRFS rate was noticeably lower for PCa cases with higher 
levels of LAMP5 expression (Figure 8A). The same trends of the results were observed in the GSE70768 (Figure 8B) 
and GSE46602 cohort (Figure 8C). We conducted a statistical analysis on the mRNA expression of LAMP5 in PCa 

Figure 6 Landscapes of somatic mutations in the two groups. (A) The waterfall plot displays the top 20 genes that were mutated most frequently in two different RS groups. 
(B) The KM survival curve for two different TMB groups. (C) The scatter plot depicts a relationship between RS and TMB.
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Figure 7 Continued.
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patients with diverse clinical features to comprehend the association between LAMP5 and other clinical features in PCa 
patients. A significant correlation was determined between LAMP5 expression and the following variables in PCa 
patients: tissue type, T stage, and N stage (Figure 8D–G). In comparison to normal samples, PCa samples showed an 
elevated expression level of LAMP5 (Figure 8D). The expression level of LAMP5 consistently increased stepwise within 
each subgroup of the T and N stages (Figure 8E–G).

Experimental Validation of LAMP5 in PCa
The impact of LAMP5 regulation on tumor characteristics was evaluated through the loss of function experiment. The 
RT-qPCR showed the levels of LAMP5 expression in the normal control prostate line RWPE-1 and the PCa cell lines 
PC3, DU145, and LNCaP (Figure 9A). The findings demonstrated that the mRNA expression of LAMP5 was substan-
tially increased in PC3, DU145, and LNCaP. In subsequent tests, si-LAMP5 was transfected into PC3 and DU145, 
and the two lines were chosen for further experiments. The levels of LAMP5 expression in both lines were quantified 
using RT-qPCR and Western blotting techniques (Figure 9B and C). The original Western blot is shown in 
Supplementary Figure 5. The CCK-8 assay showed that when LAMP5 was downregulated relative to the control cells, 
cell proliferation of PC3 and DU145 decreased (Figure 9D). According to the wound-healing experiment, compared to 
the control cells, PC3 and DU145 cells transfected with si-LAMP5 exhibited significantly bigger wound-healing regions 
and a decreased migration rate (Figure 9E). The Transwell Invasion Assay showed that PC3 and DU145 cell invasion 
was noticeably inhibited by downregulating LAMP5 expression (Figure 9F).

Discussion
The incidence of PCa has been shown to be noticeably rising in recent years.28 Despite undergoing radiation and surgery, 
patients with PCa who develop BCR are more likely to have distant metastases and develop castration-resistant prostate 
cancer (CRPC).29 In most cases, CRPC results in mortality in 2 to 4 years.30 OS involves complex regulations and 
different mechanisms. Accumulating evidence suggests that OS is tightly involved in the occurrence and progression of 

Figure 7 Characteristics of Infiltrating Immune Cell in the Model. (A) The proportion of infiltrating immune cells in the two different RS groups. (B) The proportion of 22 
different kinds of immune cells infiltrating tumors. (C) The proportion of 22 different kinds of immune cells infiltrating tumors in the two different RS groups. *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001.
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cancer.31,32 Consequently, our work has offered substantial support for the search for new biomarkers related to OS, the 
prediction of BCR in PCa patients, the discovery of novel therapeutic targets, and the provision of new directions for 
further investigation.

This work uses single-cell data from patients with PCa that were obtained from the GEO database to annotate and 
identify several cell subgroups. The outcomes demonstrated that the TME of various PCa patients differed notably. We 
identified eight different kinds of cells in PCa samples through manual annotation. Through the gene intersections 
between specific genes associated with OS responses and cell subgroups, 52 ROS genes were identified. We determined 
active cell subgroups and their functions according to the expression patterns of the 52 ROS genes. Research has 
demonstrated OS improves tumor cell metabolism by activating signaling pathways, modifying the activity of crucial 
enzymes, and causing gene mutation linked to metabolism. Together, these factors cause the cells to change malignantly.-
33 The GO and KEGG pathways revealed a notable enrichment of cytokine-related pathways in cancer. Hence, it is 
logical to conclude that OS has an impact on the metabolic interaction between tumor cells and TME in PCa.

The next step was to find the marker genes differently expressed in PCa patients using bulk RNA-sequencing data. 
We constructed the recurrence score model using the expression pattern of four genes correlated with prognosis: 
AURKA, UFSP1, LAMP5, and ALDH1A2. Both the validation and training data sets showed that the model was 
dependable, according to the KM and ROC curves. The survival analysis revealed that individuals in the high-risk group 
had a worse BCRFS rate than those in the low-risk group. We investigated genetic mutations in these individuals to 

Figure 8 KM survival and Clinical correlation analysis of LAMP5. (A-C) KM survival curve of LAMP5 in the TCGA, the GSE70768, and the GSE46602 cohorts. (D-G) 
LAMP5 expression in different tissue types, T stages, and N stages.

Advances and Applications in Bioinformatics and Chemistry 2024:17                                                      https://doi.org/10.2147/AABC.S489131                                                                                                                                                                                                                       

DovePress                                                                                                                         
133

Dovepress                                                                                                                                                              Wu et al

R
E
T
R
A
C
T
E
D

R
E
T
R
A
C
T
E
D

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 9 Experimental Validation of LAMP5 in PCa. (A) RT-qPCR of LAMP5 expression in PCa cell lines. (B and C) RT-qPCR and Western blot analysis verified the efficacy 
of LAMP5 knockdown; Original blots/gels are presented in Supplementary Figure 5. (D) CCK-8 assay detected the proliferative activity of PCa cells. (E) Wound-healing assay 
showed the migration ability of PCa cells. (F) Transwell invasion assay showed the invasion ability of PCa cells. ***P<0.001, ****P<0.0001.
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understand further the underlying explanation for the difference in BCRFS rates between the high- and low-risk groups. 
The outcomes demonstrated a more favorable prognosis for individuals in the low-TMB group. Moreover, RS and TMB 
were found to correlate positively. A study found a strong correlation between high TMB level and advanced stage, older 
age, poor BCRFS, positive lymph node, and higher ISUP grade.34 One typical feature of the TME is immune cell 
infiltration, and it is strongly linked to tumor proliferation, invasion, and resistance to treatments.35 The present study 
determined a notable increase in the proportion of M2 Macrophages in the high-risk group in comparison with the low- 
risk group. Conversely, there was a substantial decrease in the proportion of CD8+ T cells. M2 Macrophages express 
abundant scavenger receptors, which correlates with the strong expression of IL-10, IL-1β, VEGF, and MMP.36 M2 
Macrophages facilitate the development and metastasis of tumor cells, inhibit the T cell-mediated anti-immune response 
to tumors, stimulate angiogenesis in tumors, and contribute to the advancement of cancer.37 CD8+ T cells produce 
substantial quantities of IFN-γ and the protease granzyme B, and these two substances work together to effectively 
eliminate infected or tumorigenic cells.38 Previous research has demonstrated that a decrease in T cells is linked to low 
BCR and poor survival in PCa patients,39,40 which is in partial agreement with our findings. Thus, our findings confirmed 
the association between RS and infiltrating immune cells.

We found LAMP5 as a potential key gene in the BCR of PCa patients using the random forest algorithm. The 
expression of LAMP5 was positively correlated with BCR, T stage, and N stage. LAMP5 has been shown to be a new 
inhibitor of autophagy and is also believed to regulate the G2 phase in order to facilitate cell cycle progression.41,42 

LAMP5 also has a crucial function in various types of tumors. In gastric cancer, LAMP5 expression is upregulated in 
metastatic tissues. The finding suggests that LAMP5 facilitates epithelial-mesenchymal transition (EMT) and autophagy- 
related processes, contributing to cancer metastasis.43 In mixed-lineage leukemia (MLL), LAMP5 protects MLL fusion 
proteins from autophagic degradation, thereby promoting leukemia cell survival. Mechanistically, LAMP5 is directly 
activated by the histone methyltransferase DOT1L, linking histone modification to autophagy regulation. Targeting 
LAMP5 enhances the degradation of MLL fusion proteins, suggesting its potential as a therapeutic target in MLL 
leukemia.42 Furthermore, LAMP5 causes constitutive activation of proinflammatory signaling while suppressing inter-
feron signaling, making it a potential immunotherapy target.44 Before this study, however, the function of LAMP5 in PCa 
remained unexplored. Our in vitro investigations showed that LAMP5 can enhance PCa cell proliferation and invasion, 
confirming our hypothesis. These findings suggested that LAMP5 may hold therapeutic promise in the therapy of PCa.

Even though this study produced encouraging results, several limitations must be noted. Firstly, the published datasets 
have limited sample sizes. We acknowledge that the limitations in sample size may impact the generalizability of our 
findings. Given that the TCGA and GEO databases encompass samples from specific clinical and geographic settings, the 
predictive validity of the model may vary across diverse racial, regional, and treatment subpopulations within PCa 
patients. Future studies should aim to validate this model within more heterogeneous patient populations to enhance its 
generalizability. Furthermore, the CIBERSORT utilized in our work relied on a restricted dataset of retrospective gene 
data. Although previous investigations have shown similar findings to ours, prospective research with a larger sample 
size are needed to validate our conclusion since immune cell infiltration analysis in PCa is presently restricted. 
Furthermore, future research should investigate the molecular mechanisms by which LAMP5 influences the occurrence 
and progression of PCa, particularly its role in oxidative stress pathways.

Conclusion
We developed a prognostic model for the BCR of PCa using four genes associated with oxidative stress and identified it 
as an independent predictor of recurrence risk. Analysis of the tumor immune microenvironment and gene mutation 
frequency revealed significant differences between the high- and low-risk score groups, suggesting distinct biological 
characteristics. In addition, we discovered that LAMP5 could promote proliferation and invasion in PCa, a result that has 
never been reported before. We believe that our findings have expanded the current knowledge on the prognosis 
prediction of OS in PCa, and that LAMP5 may be a potential therapy target in PCa.
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Abbreviations
PCa, prostate cancer; OS, oxidative stress; ROS, reactive oxygen species; DEGs, differentially expressed genes; RS, 
recurrence score; RT, radical radiotherapy; RP, radical prostatectomy; BCR, biochemical recurrence; PSA, prostate-specific 
antigen; TME, tumor microenvironment; SOD, superoxide dismutase; LAMP, lysosome-associated membrane protein; TPM, 
Transcripts Per Million; PCs, principal components; BCRFS, biochemical recurrence-free survival; KM, Kaplan Meier; ROC, 
receiver operating characteristic; TMB, tumor mutation burden; LM22, the leukocyte characteristic gene matrix; CRPC, 
castration-resistant prostate cancer; EMT, epithelial-mesenchymal transition; MLL, mixed-lineage leukemia.
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