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Background: Peripheral biomarkers are becoming an important method by which to monitor the progression of coronary artery
disease (CAD). Not only are they minimally invasive and early detection, but they can also be used for classification and diagnosis of
disease as well as prognostic assessment. Currently, this approach is still in the exploratory stage. The purpose of this research is to
determine the diagnostic value and therapeutic potential of the endoplasmic reticulum stress (ERS) genes in CAD.

Methods: The clinical information and RNA sequence data were obtained from the GEO database and subsequently subjected to a
series of optimization and visualization processes using various analytical techniques, including WGCNA, LASSO, SVM-RFE feature
selection, random forest (RF), and XGBoost, as well as R software and Cytoscape. Finally, immunofluorescence was used to validate
the analysis.

Results: We identify 6 key ERS differentially expressed genes (ERS-DEGs) (UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3) for
constructing diagnostic models. They showed qualified diagnostic ability as biomarkers of CAD within training dataset (AUC = 0.803) and
validation dataset (AUC = 0.776 and 0.797). Association analyses showed that peripheral immune cells, immune checkpoint genes and
Human Leukocyte Antigen (HLA) genes had characteristic distributions in CAD and were closely related to specific ERS genes.
Meanwhile, we found that HSPA1A may involve the MAPK signaling pathway in CAD.

Conclusion: We constructed an efficient diagnostic model based on 6 key ERS-DEGs and explored their regulatory networks and
effects on the CAD immune microenvironment. UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3 are expected to be biomarkers
for CAD.
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Introduction
Coronary artery disease (CAD) is defined as myocardial dysfunction and/or organic lesions due to coronary artery stenosis
and inadequate blood supply, mostly caused by risk factors such as smoking, obesity, malnutrition, hypertension,
hyperlipidemia and diabetes. It is the foremost cause of death globally and places a heavy burden on societies and
individuals.' In addition, the immune response is associated with CAD.* Molecular targeted therapy is a promising
research direction in precision medicine. For this reason, it is crucial to uncover biomarkers for prognostic analysis of CAD.
Endoplasmic reticulum (ER) consists of biological membranes involved in protein synthesis, modification, and transport in
eukaryotic cells and regulates lipid and steroid metabolism as well as calcium levels.”’ Oxidative stress, ischemic injury,
disturbances in calcium homeostasis and enhancement of normal and/or defectively folded proteins can lead to unfolded
proteins accumulating in the ER, resulting in ER dysfunction, which is called endoplasmic reticulum stress (ERS).® ERS
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triggers the unfolded protein response (UPR) to maintain ER homeostasis.” The UPR has three classical pathways, inositol-
requiring enzyme-1lo (IRE1a), protein kinase RNA like ER kinase (PERK) and activating transcription factor 6 (ATF6), which
reduce unfolded proteins through increasing ER-binding proteins, inhibiting protein biosynthesis and accelerating unfolded
protein degradation.'®'" UPR is an adaptive response, but persistent or excessive activation of UPR initiates cell death through
multiple pathways.'> When UPR is over-activated, three transmembrane proteins induce autophagy through IRE1o0/TRAF2/
JNK/Beclinl signaling pathway, PERK/ATF4/ATG12/CHOP signaling pathway and ATF6/CHOP signaling pathway. In
addition, UPR activates the IRE10/TRAF2, IRE1a/XBP1/CHOP, PERK/ATF4/CHOP, ATF6/CHOP signaling pathway,
which play a key role in the association between ERS and apoptosis. It also mediates apoptosis by degrading certain
mRNA. Furthermore, UPR is mainly induced ferroptosis through PERK/SLC7A11 and IRE1a/JNK pathways, involved in
pyroptosis through activation of NLRP3, and induced necroptosis through RIPK1/RIPK3/MLKL and RIPK3/CaMKKII
signaling pathways.'*'* These extensive cellular processes, triggered by ERS initiation of UPR, disrupt ER homeostasis and
thus contribute to the threshold and evolvement of cardiovascular disease.® Therefore, ER is now considered to be an
important organelle that determines cell survival and death. Growing evidence shows that ERS is associated with CAD. Chen J
et al found that SERCA2a attenuates myocardial ischemia-reperfusion injury through inhibition of ERS.'® Liu Z et al showed
that advanced glycation end products exacerbate coronary microvascular dysfunction by activating ERS-mediated PERK/
CaN/NFATc4 signaling in Cardiac microcirculation endothelial cells.'® However, the potential impact of ERS on CAD
requires a more comprehensive analysis.

In this context, one of the crucial tools to analyze the role of ERS in CAD is through bioinformatics. We screened and
optimized ERS genes related to CAD, developed a promising diagnostic prediction model and validated it in vitro.

Materials and Methods

Data Acquisition

The following datasets were downloaded from the GEO (http://www.ncbi.nlm.nih.gov/geo/): GSE20681: 198 human blood
samples were collected as the training dataset, which included 99 CAD patients and 99 healthy controls. GSE20680: 195
human blood samples with 143 CAD patients and 52 healthy controls were used as the validation dataset. GES42148:24
human blood samples with 13 CAD patients and 11 healthy controls were used as the validation dataset.

Acquisition and Optimization of Differential ERS Genes
Screening for Significantly Different ERS Genes
ERS genes were obtained by MSigDB of the GSEA (http:/software.broadinstitute.org/gsea/downloads.jsp).!” The

corresponding genes were extracted from the GSE20681 and were divided into CAD and Control (CTRL) groups. The
218

ERS differentially expressed genes (ERS-DEGs) was analyzed using the R software “limma” ® and “cor” was used for

correlation calculations.

WGCNA Screens Modules for Significant Correlation of Disease States

We used “WGCNA” of R software to screen for modules that were significantly associated with the phenotypic grouping of
the samples (the set of modules contained a minimum of 150 genes and cutHeight = 0.995)."” We selected the genes highly
associated with the phenotype in GSE20681 and compared with the ERS-DEGs, keeping the overlapping part. The
“clusterProfiler” of R software performed enrichment analysis of GO and KEGG on the screened significantly ERS-DEGs
(FDR < 0.05).%° Interaction proteins with overlapping ERS-DEGs were obtained from the STRING (http://string-db.org/) and

made visualization via “Cytoscape”.?'**

Construction of a Diagnostic Model

One-way logistic regression analyses of ERS-DEGs in GSE20681 were conducted using “rms” in R software.”> The LASSO
algorithm, SVM-RFE feature selection, random forest (RF) and XGBoost algorithms were employed in conjunction to
identify the most optimal ERS-DEGs.** 2° Kruskal-Wallis was utilized to assess the risk values of CAD and CTRL samples.
A diagnostic model based on ERS-DEGs was developed in GSE20681 using a support vector machine approach.”’ The

reliability of the diagnostic model was assessed by receiver operating characteristic (ROC) curve.”®
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Construction of Nomogram

The “rms” in R software was used to construct the nomogram and draw the correction folds for the ERS-DEGs.* The
C-index coefficients were calculated using “survcomp”.® In addition, we plotted decision curves for each of the ERS-
DEGs using “rmda” to see the benefit of each factor on survival.*'

Diagnostic ERS-DEGs and Immune Correlation Analysis

Evaluation of Immune Cell Proportions

We analyzed the distribution of immune cells in GSE20681 using CIBERSORT and Kruskal-Wallis tests.>> We then
conducted correlation analyses using the R software “cor”.

Immune Checkpoint Gene and Human Leukocyte Antigen Gene Correlation Analysis
Immune checkpoint genes and Human Leukocyte Antigen (HLA) family genes were extracted from GSE20681 and
correlations with diagnostic ERS-DEGs were calculated by “cor” in R software.

Constructing a KEGG Pathway- ERS-DEGs-Immune Landscape Network
The KEGG pathway-ERS-DEGs-immune landscape network was constructed based on immune cells, immune check-
point genes, HLA genes and signaling pathways associated with ERS. The network is presented via Cytoscape.**

Immunofluorescence

H9C2 Rat cardiomyocytes were purchased from The Cell Bank of Type Culture Collection of The Chinese Academy
of Sciences (Shanghai, China), cultured in DMEM (Gibco; Thermo Fisher Scientific, Inc.) with 10% FBS (Gibco;
Thermo Fisher Scientific, Inc.) and 1% penicillin-streptomycin (Gibco; Thermo Fisher Scientific, Inc.), at 37 °C
under 5% CO,. We set up two groups: Control (Con) and hypoxia/reoxygenation (H/R) and intervention after cell
adhesion (hypoxia 8h, reoxygenation 12h). Immunofluorescence was performed according to the previous method.>
Antibodies: HSPATA (1:100), GRP78 (1:200), ATF6 (1:100), PERK (1:100), IREla (1:100), p38 MAPK (1:50),
p-p38 MAPK (1:50), JNK (1:200), p-JNK (1:200), ERK (1:200). The relative fluorescence intensity was calculated
via Imagel.

Results

Screening for ERS-DEGs

We extracted 295 ERS-related genes from GSE20681 and calculated the differences between CAD and CTRL groups.
Next, we screened 22 ERS-DEGs. HSPA1A, ERO1A, TRIM25, CEBPB, LRRK2, NRBF2, ERLIN1, CASP4, ERNI1,
MAP3KS, TMEM33, ALOX5, HERPUD1, TMBIM6, SERINC3, EXTL3,CDKSRAP3 were up-regulated (P < 0.05),
while RNFS5, UFL1, YIF1A, TP53, GET4 were down-regulated (P < 0.05). Some of them showed obvious positive
correlations, as for HSPA1IA/CEBPB (r=0.705) and CASP4/LRRK2 (» = 0.643). The other parts showed negative
correlations, such as YIFIA/LRRK2 (» = —0.551) and UFL1/TRIM2S5 (r = —0.419) (Figure 1A-B). The WGCNA was
performed in GSE20681 and the value of the power was 8 (Figure 2A). We categorize the ERS-DEGs into eight modules
and select two with correlation absolute values higher than 0.3 for a total of 638 genes (Figure 2B—C). We then compared
some of these with 22 ERS-DEGs and obtained 10 overlapping ERS-DEGs (ALOXS, CEBPB, ERLINI, ERNI,
HSPA1A, LRRK2, NRBF2, SERINC3, TRIM25, UFL1). Next, we performed GO and KEGG analysis for 10 ERS-
DEGs and verified that these genes are associated with ERS, protein processing and autophagy (Figure 2D-E). We finally
constructed 10 ERS-DEGs product protein interactions networks and retained connections with linkage coefficients
higher than 0.4. We found that HSPA1A was in the core (Figure 2F).

Construction of a Diagnostic Model

Single factor logistic regression demonstrated that P < 0.05 for all 10 ERS-DEGs in GSE20681 (Figure 3A). We
subsequently applied four algorithms—LASSO (Figure 3B), SVM-RFE (Figure 3C), RF (Figure 3D), and XGBoost
(Figure 3E)—to identify relevant features. The features selected by these methods were intersected using Venn analysis
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Figure | ERS-DEGs identification. (A) Distribution of significantly ERS-DEGs; (B) Heatmap of the correlation of significantly ERS-DEGs.

(Figure 3F), leading to the identification of 6 key ERS-DEGs (UFL1, HSPA1A, ERLIN1, LRRK2, ERNI, and
SERINC3) for constructing a diagnostic model. We compared risk score in disease and control in GSE20681,
GSE20680 and GSE42148 (Figure 4A) and the distribution of the 6 key ERS-DEGs (Figure 4C). Diagnostic efficacy
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of the 6 key ERS-DEGs was assessed by ROC curves (Figure 4B) for the training dataset (AUC = 0.803), validation
dataset (AUC = 0.776 and 0.797). The results demonstrate that these 6 key ERS-DEGs exhibit favourable diagnostic
potential.

Construction of the Nomogram

We constructed nomogram with 6 key ERS-DEGs in GSE20681 and GSE20680. Each gene was projected upward to a
point and the sum of the variable scores was translated into the disease risk of the patient. A high total score corresponds
to a high risk of disease (Figure 5A). The calibration curve (Figure 5B), decision curve analysis (DCA) and clinical
impact curve (CIC) reveal the significant ability of nomograms to predict in CAD (Figure 5C).
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Immunity Assessment and Construction of KEGG Pathway-6 Key ERS-DEGs

-Immunity Landscape Network
Considering the importance of multiple immune components in CAD, we screened 5 immune cell types (B cell naive,
CDS8" T cell, NK cell activated, Eosinophil, Neutrophil) with markedly different distributions in the CTRL and CAD
groups (Figure 6A). Next, we explored the intrinsic linkage of immune cells in CAD to the 6 key ERS-DEGs. The
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expression of ERLIN1, HSPA1A, LRRK2, SERINC3 were significantly upregulated in neutrophils, with LRRK2 being
the most significant (P < 0.005), while UFL1 was significantly downregulated in neutrophils (P < 0.005). The same trend
was observed for ERLIN1, HSPA1A, SERINC3 and UFL1 in NK cells, but LRRK?2 was not significantly correlated with
NK cells. Interestingly, ERLIN1, HSPAIA, LRRK2 and SERINC3 were down-regulated in CD8" T cell, with LRRK2
being the most significant (P < 0.005) and UFL1 being their opposite. (Figure 6B). To find the potential of the 6 key
ERS-DEGs in immunotherapy and gene therapy, we correlated the immune checkpoint genes and HLA family genes in
GSE20681 with 6 key ERS-DEGs. The results indicated that ERN1 was significantly up-regulated in CTLA4, CD86 and
TIGIT, with the strongest association with CRLA4 (P < 0.005), and showed significant down-regulation in CD27 (P <
0.005). HSPA1A was significantly up-regulated in CD274 (P < 0.005) and down-regulated in CD40 and ICOS (P <
0.005). LRRK2 was associated with most of the immune checkpoint genes except CD86 and IDO1, most of which
showed a trend of down-regulation (P<0.005). UFL1 was significantly up-regulated in CD40, TIGIT and ICOS in
addition to being down-regulated in CD27 (P < 0.005). While SERINC3 and ERLIN1 were associated with a few
immune checkpoint genes (Figure 6C). In HLA gene association analysis, HSPA1A was upregulated with all currently
known HLA-I molecules (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G) and some HLA-II molecules (HLA-
DMB, TAP1) (P < 0.005), with the strongest positive correlation with TAP1 (P < 0.005). SERINC3 was up-regulated
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only in HLA-G (P < 0.01), down-regulated in the rest of HLA genes and significant in HLA-DMA (P < 0.005)
(Figure 6D). To screen for pathways that are potentially participating in immune regulation, we recombined the immune
information obtained above that was notably correlated with the 6 key ERS-DEGs, and constructed the KEGG pathway-6
key ERS-DEGs-immunity landscape network. In this network, we found that HSPA1A was associated with the MAPK
signaling pathway (Figure 6E).
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Expression of ERS-Related Proteins and MAPK Pathway Proteins in H9C2

H/R H9C2 cardiomyocytes were used to simulate the pathogenesis of CAD to investigate whether ERS occurred. The

results showed that the relative fluorescence intensity of GRP78, the companion molecule of ER and master of the UPR,

was enhanced in cardiomyocytes after hypoxia reoxygenation. The same is true for the three downstream ER proteins of
UPR: PERK, ATF6 and IREla (Figure 7). Next, we explored the possibility of HSPA1A contributing to the simulated
CAD via the MAPK pathway. The relative fluorescence intensity of HSPA1A was higher in H/R group than that in Con
group (Figure 8). The same happened to the three key proteins in MAPK pathway-p38 MAPK, JNK and ERK. Notably,
p-p38 MAPK and p-JNK were also upregulated in the H/R group (Figure 9).

Discussion

ERS is both a cause and consequence of CAD, imposing significant stress on the ER environment. This leads to the

accumulation of misfolded proteins and disruption of ER homeostasis, which are closely linked to cardiovascular

dysfunction.® Our study identified significant expression of key proteins from the three classical UPR pathways in H/
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Figure 6 Immunization assessment. (A) Distribution of immune cells; (B) 6 key ERS-DEGs-immune cell correlation analysis; (C) 6 key ERS-DEGs-immunity checkpoint
correlation analysis; (D) 6 key ERS-DEGs and HLA gene correlation analysis; Red: upgrade; Blue: downgrade. (E) KEGG pathway-6 key ERS-DEGs-immunity landscape.

R-treated H9C2 cardiomyocytes. Based on these findings, 6 key ERS-DEGs (UFL1, HSPA1A, ERLIN1, LRRK2, ERNI,
SERINC3) were identified as potential diagnostic markers for CAD. Additionally, an immune landscape network and a
nomogram were developed for clinical application. HSPA1A, validated through immunofluorescence, is speculated to
influence CAD progression via the MAPK pathway.

Heat shock protein family A member 1A (HSPA1A), a key member of the HSP70 family encoded by the HSPA gene,
is often referred to as HSP70 due to its representative function.** Widely recognized as a stress response protein,
HSPA1A is induced by CAD-related stresses, including oxidative, hemodynamic, and inflammatory stress. Its elevated
expression and synthesis in the heart under prolonged hypervolemic load were identified as early as 30 years ago.>

638 our study observed increased serum levels of HSPA1A in CAD patients. Evidence

Consistent with previous findings,
suggests that HSPA1A participates in CAD pathology through the MAPK pathway, as indicated by enhanced fluores-
cence intensity of HSPA1A and MAPK pathway proteins in H/R cardiomyocytes. Additionally, HSPA1A inhibits
ABCA1 and ABCG] via the INK/EIk-1 pathway, while the SIRT1/HSF1/HSP molecular axis promotes arterial lipid
deposition and atherosclerosis progression.®”** HSPAIA also activates monocyte TLR4 signaling, promoting cardiac
inflammation,*' and enhances vascular smooth muscle cell proliferation, collagen secretion, and fibronectin release via
AP-1.*> While some studies indicate its anti-atherosclerotic effects,***** functional differences across the ecological niche

may explain its controversial role in CAD.** Further research is needed to elucidate these mechanisms.
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Endoplasmic reticulum to nucleus signaling 1 (ERN1, also as IRE1a), a critical UPR stress sensor, was found to be
elevated in the peripheral blood of CAD patients. In H/R cardiomyocytes, ERN1 increased JNK phosphorylation and
activated XBP1, regulating pathological precursors of atherosclerosis, including hyperlipidemia, insulin resistance, and
angiogenesis.*> ERN1 promotes ox-LDL uptake and foam cell formation by upregulating PPAR-y and CD36 through
XBP1.% It also mediates T cell differentiation, with CD8" T cell accumulation potentially exacerbating atherosclerosis.”
4748 Additionally, IRE10/XBP1 signaling drives dendritic cell lipid efferocytosis and foam cell formation,**>° while pro-
inflammatory pathways (IRE1o/XBP1s/NF-kB and HIF1a) increase secretion of IL-8, IL-1f, IL-6, TNF-a, and MCP-1.4¢
Beyond UPR signaling, ERN1 contributes to coronary endothelial dysfunction via the IRE1a-JNK-c-Jun/AP-1-sEH
pathway.”'

Leucine rich repeat kinase 2 (LRRK2), implicated in central nervous system and immune disorders,’>>

was elevated
in myocardial infarction periphery. LRRK2-deficient mice showed reduced mortality, infarct size, ventricular fibrosis,
and inflammation post-infarction.”* LRRK?2 facilitates neutrophil chemotaxis,”” enabling LDL cholesterol extravasation
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and plaque destabilization via cytokine and adhesion factor release.’® It also enhances caspase-3 activity, increasing
apoptotic cardiomyocytes and inflammatory cytokines (TNF-a, IL-1, IL-6) in CAD.>*

ER lipid raft associated 1 (ERLIN1) and UFMI specific ligase 1 (UFL1) are associated primarily with CAD.
ERLINI, a regulator of sterol regulatory element-binding proteins, is involved in IP3R processing and lipid metabolism.
> Its interaction with AMBRAI in the MAM raft domain facilitates cholesterol transport and autophagosome formation,
relevant to CAD pathogenesis.”® ® UFL1, a Ufml E3 ligase, protects cardiomyocytes from ERS-induced apoptosis
through the PERK pathway, although its role in NF-xB and calcium regulation remains unproven.®

Serine incorporator 3 (SERINC3) was identified for the first time in this study. While its specific role in CAD remains
unclear, its family members are implicated in cholesterol metabolism,’” suggesting a similar mechanism for SERINC3.

These 6 key ERS-DEGs play critical roles in CAD pathogenesis, including oxidative stress, inflammation, ER dysfunction,
metabolic abnormalities, and apoptosis. Their aberrant expression represents promising biomarkers for early diagnosis and
disease severity assessment. Peripheral blood biomarker detection offers a simpler, non-invasive alternative suitable for
community-level risk screening and progression monitoring. Our ERS diagnostic model, based on these six genes, demon-
strated strong diagnostic performance (training set, AUC = 0.803; validation sets, AUC = 0.776 and 0.797). HSPAIA,
particularly, has been proposed as an early-stage CAD biomarker,*>** with levels positively correlating with disease
severity.*® Additionally, the UFL1-FHLS5 locus is a leading candidate gene for CAD/myocardial infarction risk.®’

Although these 6 key ERS-DEGs were linked to immune checkpoints and HLA genes in this study, their CAD-specific
roles are yet unreported, though associations with other diseases exist.°*® Immune checkpoints like PD-L1 and CTLA4
maintain cardiac immune homeostasis,”® while HLA genes contribute to certain heart diseases.”""* Investigating the interplay
between ERS, immune checkpoints, and HLA in CAD holds significant potential for advancing our understanding of the
disease.

Building on the potential of ERS-related genes in CAD, HSPA1A emerges as a promising therapeutic target due to its
antioxidative, anti-inflammatory, and cytoprotective properties. Allicin has been shown to enhance HSPA1A expression,
mitigating atherosclerosis, improving endothelial function, and reducing myocardial injury and thrombosis risk.”
Similarly, 17-AAG stabilizes HSPA1A, significantly reducing cardiomyocyte apoptosis in murine myocardial infarction
models.” In age-related cardiac amyloidosis, HSPAIA inducers such as GGA have demonstrated efficacy in reducing
amyloid fibril deposition and alleviating myocardial conduction abnormalities.”*’®

In parallel, LRRK2 has emerged as a poor prognostic marker in CAD patients, primarily due to its role in mitochondrial
dysfunction and inflammation.>* Targeting LRRK2 has shown promise, with XL01126—a potent, blood-brain barrier-
penetrant LRRK?2 degrader—demonstrating potential in mitigating inflammation and mitochondrial dysfunction in cardio-
vascular diseases.”’

ERNI1 offers a multidimensional therapeutic pathway in CAD. Pharmacological agents such as GLP-1 receptor
agonists and SGLT2 inhibitors suppress ERN1 expression, benefiting CAD patients with glucose metabolism
abnormalities.”® Experimental drugs like GSK2850163, which selectively inhibit ERN1-related signaling pathways,
reduce endothelial dysfunction and oxidative stress.”’ Moreover, Ginkgolide K, by activating the ERN1/XBP1 pathway,
enhances autophagy and reduces infarct size in myocardial infarction models.”

Although research into SERINC3, ERLIN1, and UFLI is still at an early stage, their involvement in ERS regulation
and CAD pathogenesis is gaining recognition. For example, UFL1 deficiency is associated with cardiac hypertrophy,
which can be alleviated by TUDCA, a known ERS inhibitor.*" Further studies are needed to clarify their molecular
mechanisms and validate their roles in CAD.

In summary, targeting HSPA1A, LRRK2, and ERNI, along with emerging ERS-related genes like SERINC3,
ERLINI, and UFL1, represents promising therapeutic directions in CAD management. These findings highlight oppor-
tunities to mitigate oxidative stress, inflammation, mitochondrial dysfunction, and ERS, offering innovative strategies to
enhance cardiovascular outcomes.

This study complements these findings by integrating multi-omics data analysis with experimental validation to
construct a diagnostic model for ERS-related genes in CAD. Using publicly available datasets (GSE20681, GSE20680,
GSE42148) and techniques such as WGCNA and machine learning algorithms (eg, LASSO, SVM-RFE, RF and
XGBoost), the study systematically identified ERS-related genes. Additionally, analyses of immune cell proportions,
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immune checkpoint genes, and HLA gene correlations provided insights into the immunoregulatory mechanisms under-
lying CAD. Immunofluorescence experiments further validated the expression of key ERS signaling proteins, under-
scoring the translational potential of these findings. However, the study is limited by its reliance on publicly available
datasets, which may introduce heterogeneity, and the lack of validation in human samples. While the immune-related
analyses suggest potential mechanisms, further investigation is required to delineate specific molecular pathways and
enhance clinical applicability. Future research should focus on bridging these gaps to advance the scientific and
translational potential of these discoveries.

Conclusion

We developed an efficient diagnostic model utilizing CAD-associated online datasets and investigated the regulatory
networks of the 6 key ERS-DEGs (UFL1, HSPA1A, ERLINI, LRRK2, ERN1 and SERINC3), along with their roles in
modulating the CAD immune microenvironment. These genes show promising potential as biomarkers for CAD, offering
valuable insights for translational research on ERS-DEGs in CAD. Nevertheless, this study remains preliminary and is
limited in scope. To refine and validate our findings, large-scale clinical trials and single-cell analyses are necessary,
marking the direction of our future work.
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