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Aim: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS). While extensively studied, 
its molecular subtypes and mechanisms remain poorly understood, hindering the identification of effective therapeutic targets.
Methods: We used ConsensusClusterPlus to analyze transcriptome data from 215 MS patient samples, identifying distinct molecular 
subtypes. Differential expression analysis and variability assessments were conducted to further characterize these subtypes. 
Additionally, circular RNAs (circRNAs) and microRNAs (miRNAs) were screened for potential ceRNA interactions.
Results: Three molecular subtypes were identified: MS-FCRL1 (C1), MS-BTG1 (C2), and MS-RPL38 (C3). Each subtype was 
involved in key MS-related pathways (as annotated by KEGG), but the core genes regulating these pathways differed significantly 
among the subtypes. Subtype C3 exhibited neurodegenerative pathway enrichment, increased immune activity, and immune cell 
infiltration, suggesting a more severe disease course. Further analysis revealed 18 differentially expressed circRNAs and 22 miRNAs, 
with EEF1D and TUBA1A as hub targets in C3.
Discussion: Differential activation of immune pathways across MS subtypes suggests specific gene expression drives disease 
heterogeneity. We propose a circ_0045537/miR-196a-5p/TUBA1A axis in subtype C3, modulating microtubule dynamics and worsen-
ing MS severity.
Keywords: multiple sclerosis, molecular subtypes, circRNA, miRNA, TUBA1A

Introduction
MS is an autoimmune disease characterized by diffuse and focal inflammation, demyelination, gliosis, and neuronal 
damage in the optic nerve, brain, and spinal cord.1,2 Globally, MS affects over 2 million people, predominantly young 
adults aged 20–40, especially women. As the disease progresses, patients often develop cognitive deficits, mobility 
impairments, and loss of sphincter control, severely impacting their quality of life.2–4 Clinically, MS is traditionally 
categorized into relapsing–remitting multiple sclerosis (RRMS), primary progressive multiple sclerosis (PPMS), and 
secondary progressive multiple sclerosis (SPMS), which guide treatment strategies.4,5 However, despite these clinical 
categories, increasing evidence suggests that this simplistic classification does not fully capture the underlying complex-
ity of MS pathology.

MS is a complex immune-mediated disease involving a combination of genetic, environmental, and epigenetic 
factors. Approximately 25% of MS risk is attributed to genetic heritability, while the remaining risk is influenced by 
environmental exposures, gene-environment interactions, and epigenetic modifications.6,7 This intricate interplay among 
various factors highlights the need for a more refined understanding of the disease, particularly at the molecular level.

To advance this understanding, identifying new molecular subtypes of MS based on transcriptomic data has become 
crucial. Transcriptomics allows for a more objective, reliable, and reproducible classification system, addressing the 
limitations of traditional clinical subtyping.8 By analyzing gene expression profiles, we can identify distinct molecular 
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signatures that may reflect different disease mechanisms and response to treatment. This approach has been successfully 
applied to various diseases, including cancer,9–12 and holds promise for uncovering novel molecular pathways and 
therapeutic targets in MS.

A growing body of evidence underscores the importance of non-coding RNAs (ncRNAs) in regulating gene 
expression. NcRNAs, including miRNAs, circRNAs, and long non-coding RNAs (lncRNAs), play crucial roles in 
both immune and neural systems by modulating mRNA stability and translation.13 While lncRNA-miRNA-mRNA 
networks have been extensively studied, emerging evidence highlights that circRNAs are equally critical in regulating 
gene expression, particularly through their unique covalently closed loop structure.14 CircRNAs act as molecular 
sponges, sequestering miRNAs and thereby regulating downstream gene expression involved in processes such as 
immune modulation and neuroinflammation.15–17 For instance, circINPP4B promotes Th17 differentiation in RRMS 
patients, reflecting MS pathogenesis,18 while circ_0000518 exacerbates MS progression by modulating macrophage/ 
microglia polarization.19 These findings underscore the indispensable role of circRNA-miRNA-mRNA regulatory net-
works in disease progression, suggesting the need for further investigation into their specific contributions to MS 
molecular subtyping and therapeutic targeting.

MiRNAs, small (~22 nucleotides) single-stranded RNAs, regulate biological processes by binding to the 3’ UTR of 
target mRNAs to suppress their translation.20,21 MiR-548a-3p has been identified as a biomarker for the absence of 
disease activity in MS patients treated with fingolimod.22 Additionally, miR-126a-5p levels in microglia correlate with 
blood-brain barrier (BBB) integrity, highlighting its role in early MS lesions.23

Given the involvement of non-coding RNAs in MS pathogenesis, this study integrates transcriptomic data to develop 
a novel MS classification scheme. By combining circRNA and miRNA datasets, we construct a competing endogenous 
RNA (ceRNA) network, enabling a more comprehensive investigation of the molecular mechanisms underlying MS. 
This approach provides a promising framework for uncovering novel biomarkers and therapeutic targets that may lead to 
more precise and individualized treatment strategies for MS.

Materials and Methods
Data Collection
Gene expression profile datasets for peripheral blood samples from individuals with MS and healthy controls (HC) were 
retrieved from the Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo). The mRNA datasets 
included three series: GSE17048 with 99 MS cases and 45 HC; GSE190847 with 93 MS cases and 28 HC; and 
GSE173789 with 23 MS cases and 14 HC. Together, these datasets contain 215 MS patient samples and 87 HC samples. 
The circRNA dataset GSE161196 consists of samples from 10 MS cases and 10 HC. The miRNA dataset, GSE17846, 
contains samples from 21 MS cases and 20 HC. Finally, the GSE235357 dataset for human MS disease and the 
GSE253318 dataset for the mouse model of experimental autoimmune encephalomyelitis (EAE) were downloaded and 
used to test the results of the analysis.

Cluster Analysis for Subtyping
Prior to the elimination of potential batch effects, the mRNA dataset underwent normalization via log2(x+1) transforma-
tion, as facilitated by the SVA package’s combat function. Subsequently, 215 MS patients were classified into subtypes 
using the ConsensusClusterPlus package, and the resulting clustering was visualized using principal component analy-
sis (PCA).

Identifying Molecular Markers for MS Subtypes
Differentially expressed genes (DEGs) for each subtype compared to HC were identified using the limma package, with | 
logFC| > 1 and P < 0.05 as the thresholds. The coefficient of variation (CV) of the DEGs was calculated across samples 
for each subtype. Among the top ten genes with the smallest CV values, the gene with the highest differential expression 
was selected as the stable and specific molecular marker for each subtype.
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GSEA Enrichment Analysis and Immunological Profiling for MS Subtypes
Utilizing pathway information from the bioinformatics database Kyoto encyclopedia of genes and genomes (KEGG) as 
a functional gene set file, gene set enrichment analysis (GSEA) was conducted using the clusterProfiler package. Protein- 
protein interaction (PPI) networks were analyzed using the STRING (https://string-db.org/) database with default 
parameters. All network visualizations in this study were further optimized using Cytoscape software. Immune scores 
for each sample in the combined MS dataset were calculated using the estimate package, and one-way analysis of 
variance (ANOVA) was performed on the scores grouped by subtype to evaluate statistical significance of differences. 
Single-sample gene set enrichment analysis (ssGSEA) is a computational method utilized to estimate the presence and 
activity levels of various biological processes or cell populations within complex tissue samples.24 This technique has 
been particularly valuable in quantifying the relative infiltration of a diverse array of immune cell types into disease.

Functional Analysis of DEmiRNAs and Their Target Genes
Using the GEO2R tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/), differentially expressed microRNAs (DEmiRNAs) 
were identified based on screening criteria of |logFC| > 1 and P < 0.05. The targeting relationships between DEmiRNAs 
and mRNAs were explored by the miRTarBase database. Subsequently, a KEGG enrichment analysis was performed on 
the target genes of DEmiRNAs to uncover their impacts on biological processes.

Analysis of DEcircRNAs and the Functional Characterization of Their Target Genes
Using the edgeR package, differentially expressed circRNAs (DEcircRNAs) were identified with screening criteria of | 
logFC| > 0.5 and P < 0.05. Annotate DEcircRNAs using the circBase database. Download the spliced sequence lengths 
of the annotated DEcircRNAs and compare them to the reference genome from the Ensembl database (GRCh37.p13, 
GCA_000001405.14) to identify DEcircRNA types. We conducted a KEGG pathway enrichment analysis on the source 
genes of the annotated DEcircRNAs. By integrating predictions from miRanda and TargetScan along with circBank data, 
we constructed the interaction network between DEcircRNAs and miRNAs.

Machine Learning-Based Screening for Feature Target Genes in MS Subtypes
We identified feature immune genes specific to each subtype using random forest (RF) algorithms and least absolute 
shrinkage and selection operator (LASSO) regression. LASSO regression was implemented using the glmnet package to 
reduce data dimensionality, selecting the minimum lambda value as the optimal parameter. Initially, the RF model was 
constructed with the randomForest package, setting “ntree” at 500 for exploratory analysis. Subsequently, an optimized 
analysis was performed based on the “ntree” value that resulted in the lowest error rate, to identify feature genes. 
Ultimately, the feature target genes for each subtype were defined by the overlap of gene lists obtained from both 
analytical approaches.

Results
mRNA Analysis Reveals MS Subtypes and Biomarkers
Integrating mRNA datasets, we derived co-expression profiles for 9848 genes across 302 samples, comprising 215 MS 
cases and 87 HC. Subsequently, consensus clustering analysis was conducted, initially dividing the MS samples into 
k clusters (k = 2–9). The consensus score matrix, in conjunction with the cumulative distribution function (CDF) curve of 
the proportion of ambiguous clustering (PAC) statistics, suggested an optimal cluster number of k = 3. Accordingly, we 
classified MS into three subtypes: C1, C2, and C3, consisting of 127, 43, and 45 MS patient samples, respectively 
(Figure 1A). PCA analysis confirmed the clear differentiation between these subtypes (Figure 1B).

For each subtype, differential expression analysis was performed to identify DEGs. Subtype C1 featured 2 down-
regulated genes and 141 upregulated genes (Figure 1C); subtype C2 presented 44 downregulated genes and 27 
upregulated genes (Figure 1D); subtype C3 displayed 1102 upregulated genes (Figure 1E). A Venn diagram analysis 
of the DEGs across subtypes disclosed that subtype C1 possessed only 1 unique DEG, subtype C2 held 34 unique DEGs, 
and subtype C3 contained 954 unique DEGs (Figure 1F).
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To ascertain stable molecular markers, we computed the CV for HC and MS patient samples within each subtype’s 
expression matrices. Among the top ten uniquely DEGs with the highest |logFC| values per subtype, those with the 
lowest CV values were chosen. Ultimately, FCRL1 (logFC = 1.04, CV = 0.043) was designated as the molecular marker 
for subtype C1, BTG1 (logFC = −1.03, CV = 0.039) for subtype C2, and RPL38 (logFC = 1.15, CV = 0.009) for subtype 
C3 (Figure 1F). Hence, the three subtypes were labeled as MS-FCRL1, MS-BTG1, and MS-RPL38 (Figure 1A-I).

Figure 1 Disease typing of MS and screening for stable molecular markers. (A) Consensus score matrix for all samples when k=3. The higher the consensus score between 
two samples, the more likely they are to be grouped into the same cluster across different iterations. (B) PCA analysis of samples post-clustering; (C–E) Volcano plots for 
differential expression of each subtype, sequentially for C1, C2, C3; (F) Venn diagram illustrating the overlap of DEGs across subtypes; (G–I) Boxplots of the expression 
levels of the selected stable molecular markers. **P < 0.01.
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GSEA Analysis Explores Pathway Signatures in MS Subtypes
We chose the KEGG database as our functional gene set and performed GSEA for each subtype, referencing the HC. 
Among the significant outcomes, 27 shared pathways across the three subtypes (Figure 2A) fell into five main categories, 
primarily linked to organismal systems and human diseases. Further analysis of secondary classifications revealed that 
these pathways predominantly concerned the immune system and viral infections, aligning with the etiology of MS. 
Noteworthy, key MS-related pathways in the KEGG database include “antigen processing and presentation”, “Th1 and 
Th2 cell differentiation”, and “Th17 cell differentiation”.

Moreover, each MS subtype displayed uniquely enriched pathways significantly divergent from others (Figure 2B–D), 
indicative of specific underlying influences on each subtype. For subtype C1, noteworthy pathways include immunity- 
related ones such as “Fc gamma R-mediated phagocytosis” and “N-Glycan biosynthesis”, along with the virus-specific 

Figure 2 Pathway analysis of MS molecular subtypes. (A) KEGG pathways commonly engaged in the GSEA analysis across the three subtypes. (B–D) KEGG pathways 
uniquely involved in the GSEA analysis for each subtype, sequentially for C1, C2, and C3.
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“viral life cycle - HIV-1” (Figure 2B). Subtype C2 featured immunity-related pathways, including “primary immunodefi-
ciency”, and virus-specific pathways like “Virion - Herpesvirus” (Figure 2C).

Subtype C3 encompassed a broad spectrum of pathways, including immunity (eg, toll-like receptor signaling), 
metabolism (eg, citrate cycle), viruses (eg, human cytomegalovirus infection), as well as nervous system-related path-
ways (dopaminergic synapse) and those linked to neurodegeneration (Figure 2D). Thus, we hypothesize that subtype C3 
patients might experience more severe disease manifestations.

Investigating the Hub Gene Sets of Pathways in MS Subtypes
Our subsequent analysis centered on PPI among proteins encoded by hub genes within annotated pathways for each 
subtype, while simultaneously contrasting the disparities in hub gene sets among the subtypes (Figure 3A–C). 
Specifically, in subtype C1, RFXAP played a singular role in antigen processing and presentation, while NFATC2 was 

Figure 3 Analysis of hub gene sets involved in pathways for MS subtypes. (A-C) Interaction networks of proteins encoded by hub genes participating in pathways, with 
genes uniquely contributing to pathways in each subtype annotated. (D–F) GSEA normalized enrichment score plots for pathways in C1, C2, and C3, respectively, with 
pathway colors consistently applied across the three figures. (G) GSEA normalized enrichment score plot for TCA cycle in C3. (H) Annotative chart of hub genes involved 
in the citrate cycle for C3.
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uniquely involved in Th17 cell differentiation. Distinctive core genes were notably enriched at the apex of the running 
enrichment score (RES) curves (Figure 3D–F), suggesting potential increased activity in pathways pertinent to MS, 
thereby promoting pathway activation.

The citrate (TCA) cycle is of paramount significance in organismal metabolism. It functions not only as the primary 
source for energy acquisition but also as a critical nexus connecting carbohydrate, fat, and protein metabolism. Moreover, 
it provides small-molecule precursors essential for other metabolic pathways. Our findings showed that in subtype C3, 23 
genes were actively involved, stimulating the TCA cycle (Figure 3G and H).

Deciphering the Immune Cell Infiltration Characteristics of MS Subtypes
The etiology of multiple sclerosis (MS) is highly complex and closely associated with dysregulated immune system 
activity. To explore this phenomenon, we generated a heatmap illustrating 28 distinct immune cell clusters, providing 
a clear visualization of the relative abundance of infiltrating immune cell types (Figure 4A). The analysis revealed that 
subtype C3 had significantly higher immune cell density compared to the other subtypes, a finding supported by the 
immunoscore data. Specifically, subtype C3 exhibited significantly elevated immunoscores, reflecting a stronger overall 
immune infiltration (Figure 4D). Collectively, these findings suggest that subtype C3 is characterized by a unique and 
highly active immune microenvironment compared to other subtypes.

Analysis of immune cell infiltration levels revealed that most cells in subtype C3 differed significantly in score from 
those in the other subtypes. Exceptions included: activated B cells differed significantly between subtypes C1 and C2; 
activated dendritic cells and memory B cells, between subtypes C2 and C3; MDSCs and effector memory CD8 T cells, 
across all three subtypes (Figure 4C).

Figure 4 Immunophenotyping analysis of MS molecular subtypes. (A) ssGSEA was performed to identify the relative infiltration of immunocyte clusters in 215 MS samples 
using expression data. The relative infiltration of each cell type was normalized as a z-score. (B) Anti-disease immunity (ActCD4, ActCD8, TcmCD4, TcmCD8, TemCD4, 
TemCD8, Th1, Th17, ActDC, CD56brightNK, NK, NKT) and cell types executing pro-disease, immune-suppressive functions (Treg, Th2, CD56dimNK, immDC, TAM, 
MDSC, Neutrophil, pDC) were analyzed. The Pearson’s correlation coefficient (R) was calculated. The shaded area indicates the 95% confidence interval. (C) Violin plot 
depicting the immunological scores. (D) Boxplots were drawn to statistically group the results from C according to the defined subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.
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Pearson correlation analysis of the infiltration densities of activated immune cells (eg, activated CD8+ T cells, type 1 
T helper cells, and activated dendritic cells) and those providing immunosuppressive functions (eg, MDSCs, regulatory 
T cells, immature dendritic cells, and neutrophils) revealed a positive correlation in their abundances within the local 
environment (Figure 4B). This indicates a potential feedback regulatory mechanism within the immune system of MS 
patients: activated immune cells might not only directly assault self-antigens in the CNS through cytokine release and 
other signaling molecules, but also indirectly stimulate the recruitment and differentiation of immunosuppressive cells.25

Analysis of miRNAs in MS Patients
Through analysis of miRNA expression profiles, we identified 54 DEmiRNAs—19 downregulated and 35 upregulated 
(Figure 5A). Querying miRTarbase with these DEmiRNAs yielded predictions for 13,115 target genes. KEGG pathway 

Figure 5 Analysis of miRNAs in MS patients. (A) Volcano plot depicting differential expression of miRNAs. Each point represents an individual miRNA, with the x-axis 
showing the log2 fold change and the y-axis showing the negative log10 of the p-value. (B) Heatmap illustrating the expression profiles of target genes for miRNAs. Rows 
represent different genes, and columns represent samples. The color scale reflects the normalized expression level of each gene across the samples. (C) KEGG pathway 
enrichment analysis chart for target genes of DEmiRNAs. Bar charts indicate the significance of enrichment, and line graphs represent the ratio of genes involved in each 
pathway to the total number of genes in that pathway.
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enrichment analysis of the predicted targets uncovered 32 pathways related to immunity, neurology, metabolism, and 
viral infection (Figure 5C), involving 778 genes in total.

Of the 778 genes, 52 miRNAs regulate them (Figure 5B), with pronounced upregulation noted in subtype C3, then 
subtype C1, and minimal differences seen in subtype C2 relative to HC. This suggests DEmiRNAs influence critical 
pathways for disease progression in subtype C3 MS patients by binding to target mRNAs. Thus, priority should be given 
to validating how downregulated miRNAs affect disease progression in subtype C3 MS patients and assessing their 
potential as therapeutic targets.

Concurrently, it is worth noting that reduced gene expression in subtype C2 might indicate actions of upregulated 
miRNAs, suggesting this subtype may have unique pathophysiological mechanisms requiring additional scrutiny.

Analysis of circRNAs in MS Patients
Through circRNA expression analysis, we identified 158 DEcircRNAs, including 71 downregulated and 87 upregulated 
ones (Figure 6A). The annotation of DEcircRNAs was performed in accordance with the chromosomal position information 
provided by circBase. In light of the sequencing error, this paper employs a screening method wherein the length of 
sequenced fragments is aligned with that of known circRNA sequences. The ratio of the overlapping region to the combined 
length of both sequenced and known fragments is set at a minimum of 99%, resulting in a total of 145 fragments annotated, 
with an annotation rate of 91.8%. This represents a notable enhancement over the findings of the original article.26

When comparing logFC values of DEcircRNAs and their parent genes across subtypes, subtype C3 showed the 
highest differential expression, followed by C1, and C2 displayed the smallest deviations (Figure 6B and C). KEGG 
pathway analysis of parent genes disclosed engagement in numerous pathways, notably the MAPK signaling pathway 
(Figure 6D) and long-term potentiation, crucial for neuronal signal transduction.

CircRNAs are classified into three categories based on their spliced sequence origins: exonic circRNAs (EciRNAs) 
from exons alone, intronic circRNAs (IciRNAs) from introns exclusively, and exon-intron circRNAs (EIciRNAs) from 
both exons and introns combined. Generally, EciRNAs are enriched in the cytoplasm,27 whereas IciRNAs and EIciRNAs 
mainly accumulate in the nucleus.28

Concentrating on the competitive ceRNA network involving circRNAs and miRNAs, we specifically analyzed pairs 
displaying inverse expression patterns among DEcircRNAs and DEmiRNAs. Our results suggested that 18 DEcircRNAs 
(6 EciRNAs and 12 IciRNAs) serve as molecular sponges for 22 DEmiRNAs (Figure 6E).

Regulation of Immune Cell Feature Genes by DEmiRNAs
We found that the 22 previously identified DEmiRNAs regulate 161 feature genes in 28 distinct immune cell types 
(Figure 7A). Analysis of the mean expression levels of these genes across MS subtypes and HC revealed that most genes 
were significantly upregulated in subtype C3, with subtype C1 showing a lesser extent of upregulation. Conversely, 
subtype C2 showed high variability in gene expression, with negligible changes in overall expression levels (Figure 7B). 
Hence, it is imperative to highlight the effect of downregulated miRNAs on target gene expression regulation and their 
likely critical role in MS pathogenesis. Our results showed that 9 downregulated miRNAs control the expression of 97 
feature genes in 24 immune cell types, underscoring their extensive impact, thus demanding additional research to 
uncover their mechanistic underpinnings.

Identification of Hub Target Genes for MS Subtypes
Within the MS co-expression profile, we identified 3501 target genes associated with the 22 DEGs. Referencing the HC, 
we utilized LASSO regression and RF methodologies to identify hub target genes unique to each MS subtype. Using the 
LASSO logistic regression algorithm, we identified 12, 11, and 10 hub genes for subtypes C1, C2, and C3, respectively 
(Figure 8A and B, E and F, I and J). Employing the RF model, we discerned 92, 102, and 40 hub genes for subtypes C1, 
C2, and C3, respectively (Figure 8C and D, G and H, K and L). 

Venn diagram analyses revealed the intersection of hub target genes identified by both LASSO and RF methods, resulting 
in 5, 2, and 2 shared genes for subtypes C1, C2, and C3, respectively (Figure 8M–O). Remarkably, one shared gene, EEF1D, 
was detected between subtypes C1 and C3 (Figure 8P), hinting at possible shared mechanisms among subtypes.
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Screening the Regulatory Network of Hub Target Genes
The findings of this study were integrated to construct a ceRNA regulatory network of pivotal functional genes across the 
spectrum of MS subtypes. The results demonstrated that 16 circRNAs functioned as molecular sponges for 10 miRNAs, 
competitively binding to these miRNAs and thereby influencing their expression and regulation of hub target genes 
(Figure 9A). Our analysis and expression data (Figure 9B) from MS patient samples indicate that circ_0045537, an 
EciRNA, may influence the regulation of TUBA1A in the cytoplasm by competitively binding to miR-196a-5p. 
Concurrently, the human MS disease dataset and the mouse EAE model dataset were downloaded once more for further 
analysis. The disease samples exhibiting high expression of RPL38 were designated as the C3 type, whereas the low- 

Figure 6 Analysis of cirRNAs in MS patients. (A) Volcano plot displaying differential expression analysis of circRNAs. (B) Scatter plot depicting the expression fold change of 
highly expressed circRNAs in MS patients versus their parental genes. (C) Scatter plot showing the expression fold change of lowly expressed circRNAs in MS patients 
compared to their parental genes. (D) Bar chart presenting the KEGG pathway enrichment analysis of DEcircRNAs. (E) Schematic diagram illustrating the splicing pattern of 
circRNAs acting as miRNA sponges. White sections indicate the splice segments derived from introns, whereas colored sections denote splice fragments originating from exons.
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expression healthy samples were classified as the control group. TUBA1A expression was then observed, and the results 
were found to align closely with those of the previously analyzed data set, indicating the reliability of the findings 
(Figure 9C). This regulatory pathway may affect the dynamic balance of microtubules in neuronal and immune cells in 
MS patients with type C3 (Figure 9D), thus contributing to disease progression.

Discussion
The intricate mechanisms of MS and the constraints of conventional classification have prompted the formulation of 
novel typing strategies to facilitate precision medicine. The ConsensusCluster classification method has been successfully 
applied in a variety of diseases,29 including pancreatic ductal adenocarcinoma (PDAC),9 CRC,30 and breast cancer,29 

demonstrating robust molecular typing capabilities. It is capable of identifying stable molecular subtypes and is therefore 
well suited to MS research, facilitating the elucidation of disease mechanisms. This study employed MS transcriptome 
data to delineate subtypes and, for the first time, classified MS into three molecular subtypes: MS-FCRL1 (C1) type, MS- 
BTG1 (C2) type, and MS-RPL38 (C3) type. This facilitates the accurate diagnosis of MS.

The GSEA analysis demonstrated that each subtype is significantly associated with a multitude of pathways 
pertaining to the immune system and viral infections, particularly those involving Epstein-Barr virus (EBV) infection. 

Figure 7 Regulation of immune cell feature genes by DEmiRNAs. (A) miRNA regulatory network map. Squares represent miRNAs, with the depth of color indicating the 
magnitude of fold change. Circles denote immune cell feature genes, with identically colored circles belonging to the same type of immune cell, and the color coding is 
consistent with that of the heatmap. (B) Heatmap of average expression levels of immune cell feature genes across various subtypes and in the HC.
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Epidemiological, serological, and virological evidence collectively indicate that EBV plays a pivotal role in the aetiology 
of MS.31 It is noteworthy that subtype C3 demonstrates a robust correlation with pathways linked to diverse neurode-
generative disorders, indicating potential parallels in regulatory mechanisms and suggesting a more pronounced neuro-
logical impairment compared to other subtypes. MS is typified by immunological dysregulation, leading to immune cell 
infiltration into the CNS.2,6 The elevated immune cell infiltration density observed in subtype C3 not only substantiates 
the hypothesis of a more severe disease course but also underscores the pivotal role of immune-mediated neuronal injury 
in this subtype.

Pathways associated with MS, such as Th1 and Th2 cell differentiation (hsa04658), Th17 cell differentiation 
(hsa04659), and antigen processing and presentation (hsa04612), play a crucial role in MS pathogenesis.32,33 Our 
study reveals that these pathways are not only commonly involved in all MS subtypes, but the specific genes driving 
their activation differ across subtypes, indicating their potential contribution to the distinct characteristics of each 
subtype. For instance, the involvement of HLA-DOA and IL1B in pathway activation is unique to subtype C3, suggesting 
that these genes may play a key role in the immune dysregulation and inflammatory responses that are characteristic of 
this subtype. HLA-DOA, a member of the human major histocompatibility complex (MHC) family, has been identified as 
a significant genetic risk factor for MS,34,35 with variations in the MHC locus, including HLA-DRB1, being strongly 
associated with disease susceptibility.36,37 Similarly, IL1B, a crucial cytokine involved in inflammatory processes, is 

Figure 8 Identification of hub target genes for MS subtypes through machine learning. (A–D) C1 subtype analysis. (A) Ten-fold cross-validation for tuning parameter 
selection in the LASSO model for C1, with each curve representing an individual gene. (B) LASSO coefficient profiles for C1, with dashed lines indicating the optimal λ. (C) 
Relationship between the number of trees in the RF model and the error rate for C1. (D) Gene importance ranking in the RF tree for C1. (E–H) C2 subtype analysis, 
Details as ABCD. (I–L) C3 subtype analysis, Details as ABCD. (M–O) Venn diagrams showing overlap of marker genes identified by both LASSO and RF algorithms in C1, 
C2, and C3, respectively. (P) Venn diagram showing the intersection of overlapping genes from (M–O).
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likely central to the immune response and exacerbation of inflammation in MS.38 These findings highlight the importance 
of specific gene-pathway interactions in driving the molecular heterogeneity of MS subtypes and underscore the potential 
of targeting these pathways for subtype-specific therapeutic strategies.

In this study, we identified 18 DEcircRNAs that act as molecular sponges for 22 DEmiRNAs, with nine down-
regulated miRNAs controlling signature genes in various immune cell types, possibly contributing to immune cell 
infiltration in subtype C3. Previous research has highlighted the roles of some of these miRNAs in other diseases, 
although direct evidence in MS remains lacking. For example, miR-548b-5p, elevated in subacute sclerosing 
panencephalitis (SSPE), is involved in immune modulation by targeting antiviral responses.39,40 MiR-20b-5p, 
known for its role in Alzheimer’s disease (AD), regulates neuroinflammation and neuronal survival.41,42 Similarly, 
miR-196a-5p, upregulated in Huntington’s disease (HD), is involved in neuroprotective mechanisms and may 
influence neuronal stress responses relevant to MS.43,44 Additionally, miR-574-5p regulates immune responses by 
activating TLR8, and miR-576-3p plays a role in inflammatory pathways that could intersect with MS-related immune 
processes.45,46 MiR-1-3p regulates Th17 differentiation, a key process in MS immunopathogenesis,47 and may 
influence macrophage polarization through the circATP8A1/miR-1-3p/STAT6 axis.48 Although these miRNAs have 

Figure 9 The ceRNA regulatory network of hub target genes. (A) Regulatory network map of hub genes. (B) The following heat map depicts the average expression of hub 
genes across subtypes and HC. (C) Expression heatmap of the validation dataset. In the human dataset, three samples were selected separately, while only two samples each 
were selected in the mouse dataset. (D) The following schematic diagram illustrates the potential regulatory mechanism of circ_0045537/miR-196a-5p/TUBA1A in C3-type 
MS. The red and green lines indicate the possible regulatory pathways that may be involved in this process. The red and green squares illustrate the expression trends of the 
three in patients.
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been implicated in various immune and neurological processes, further validation in MS models is needed to confirm 
their role in disease progression. Future studies should focus on experimental validation of these miRNAs and their 
corresponding circRNA networks in MS, as well as their potential as biomarkers for disease activity and therapeutic 
targets.

After identifying DEmiRNA target genes, machine learning refined our selection, highlighting EEF1D and TUBA1A 
as potential hub targets in subtype C3. EEF1D is involved in protein synthesis by catalyzing GDP-GTP exchange, which 
is critical for eEF1A activity.49,50 EEF1D isoforms are expressed in the brain and spinal cord, suggesting a role in neural 
function and development, and mutations in EEF1D have been linked to neurological conditions.49,51 TUBA1A codes for 
α-tubulin, a core component of microtubules that are essential for neuronal cell processes, such as migration and cargo 
transport, and abnormalities in TUBA1A are associated with neurological disorders.52–55 Additionally, microtubules play 
a crucial role in immune cell integrity and immune responses, including cytokine release and synapse formation during 
immune activation.56–59 These findings suggest that EEF1D and TUBA1A may influence immune and neural cell function 
in MS, but further experimental validation is required to clarify their specific role in MS pathogenesis. Future studies 
should focus on confirming the involvement of EEF1D and TUBA1A in MS, especially in the context of immune cell 
infiltration and neuroinflammation.

In conclusion, differential activation of immune-related pathways across MS subtypes suggests that specific gene 
expression drives disease heterogeneity and may provide targets for subtype-specific therapies. We also propose 
a circ_0045537/miR-196a-5p/TUBA1A regulatory axis in subtype C3, which modulates microtubule dynamics in immune 
and neuronal cells, potentially exacerbating MS severity.
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