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Purpose: This study aims to evaluate the inter-observer variability in assessing the optic disc in fundus photographs and its 
implications for establishing ground truth in AI research.
Methods: Seventy subjects were screened during a screening campaign. Fundus photographs were classified into normal (NL) or 
abnormal (GS: glaucoma and glaucoma suspects) by two masked glaucoma specialists. Referrals were based on these classifications, 
followed by intraocular pressure (IOP) measurements, with rapid decisions simulating busy outpatient clinics.In the second stage, four 
glaucoma specialists independently categorized images as normal, suspect, or glaucomatous. Reassessments were conducted with 
access to IOP and contralateral eye data.
Results: In the first stage, the agreement between senior and junior specialists in categorizing patients as normal or abnormal was 
moderately high. Knowledge of IOP emerged as an independent factor influencing the decision to refer more patients. In the second 
stage, agreement among the four specialists varied, with greater concordance observed when additional clinical information was 
available. Notably, there was a statistically significant variability in the assessment of optic disc excavation.
Conclusion: The inclusion of various risk factors significantly influences the classification accuracy of specialists. Risk factors like 
IOP and bilateral data influence diagnostic consistency among specialists. Reliance solely on fundus photographs for AI training can 
be misleading due to inter-observer variability. Comprehensive datasets integrating multimodal clinical information are essential for 
developing robust AI models for glaucoma screening.

Plain Language Summary: Glaucoma is a leading cause of irreversible blindness, and early detection is critical in preventing 
blindness. Screening for glaucoma using fundus photographs is one approach, but there is significant variability in how specialists 
interpret these images. This study evaluated how consistently different eye specialists assess these photographs and what this 
variability means for developing artificial intelligence (AI) tools to detect glaucoma. 

The study involved 70 individuals screened for glaucoma using fundus photographs. Two specialists initially classified the images 
as either normal or abnormal (including glaucoma suspects). The agreement between the specialists was moderate, showing that 
different clinicians sometimes reach different conclusions based on the same images. The study also tested how additional information, 
like intraocular pressure (IOP), affects these classifications. Surprisingly, including IOP data introduced more variability, making 
agreement between the specialists even lower. 

The research highlights that relying solely on fundus photos without considering other clinical factors, like IOP or data from both 
eyes, could be misleading when developing AI tools. For AI to effectively assist in glaucoma detection, it must be trained on 
comprehensive datasets that include more than just fundus images. 

These findings emphasize the importance of using a broad range of clinical data when training AI models for glaucoma screening to 
improve accuracy and reliability in real-world settings. 
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Introduction
Glaucoma is the leading cause of irreversible blindness worldwide, affecting 3.5% of individuals aged 40 to 80 years.1 Over half 
of cases remain undiagnosed due to the asymptomatic nature of early disease,2 often leading to advanced stages with significant 
visual impairment, impacting the quality of the patient’s life. Additionally, the economic burden associated with late-stage disease 
is substantial; the direct care costs for advanced glaucoma (stages 4–5, Bascom Palmer system) are 1.7 times higher than for 
early-stage disease.3 These challenges highlight an urgent need for improved strategies for early detection to prevent blindness.

However, mass screening faces logistical and clinical challenges, including reliance on skilled personnel, limited 
diagnostic tools, and high patient volumes in underserved regions. Inter-observer variability in optic disc assessment 
further complicates glaucoma diagnosis, emphasizing the need for innovative tools to enhance accuracy.

Recent advancements in artificial intelligence (AI), particularly deep learning, have demonstrated diagnostic perfor-
mance exceeding 95% AUC in internal datasets.4–6 AI has the potential to reduce variability and provide consistent 
evaluations, making it invaluable in busy clinics and resource-limited settings.

This study originated from a glaucoma screening campaign conducted on World Sight Day. Seventy individuals were 
screened, and fundus photographs were rapidly classified as normal or abnormal, reflecting the time constraints typical of 
a busy outpatient clinic condition. The observed unexpected variability during this rapid decision-making process among 
trained professionals motivated further investigation with masked evaluations by experienced colleagues, transforming 
this campaign into a research opportunity.

Purpose
To evaluate inter-observer variability in optic disc classification using colour fundus photographs, with and without 
intraocular pressure (IOP) data, and to assess the reliability of ground truth labels based solely on fundus images for the 
external validation of AI algorithms in glaucoma detection.

Methods
This cross-sectional observational study was conducted at our hospital in accordance with the principles of the 
Declaration of Helsinki. The Institutional Ethical Commission of the Cliniques Universitaires Saint-Luc in Brussels 
approved the study protocol (OVO-AI Study: Observer Variability in Optic disc and AI Implications). This research 
adheres to the principles outlined in the Declaration of Helsinki for studies involving human subjects. It complies with all 
relevant national ethical guidelines, including the General Data Protection Regulation (GDPR) for data privacy and 
confidentiality within Europe. While HIPAA is specific to the United States, the GDPR ensures similar standards in the 
European context. Written informed consent was obtained from each participant before inclusion in the study.

Fundus images from both eyes were obtained from a cohort of 70 individuals presenting randomly during a glaucoma 
screening campaign in the hospital. The only two exclusion criteria were age and a confirmed diagnosis of glaucoma. The 
minimum age for screening was set at 30 years due to the racial heterogeneity (Caucasians, Asians, Latinos, and African 
descendants) in Brussels. The clinical parameters were age, bilateral fundus pictures, taken with a Crystalvue NFC600 
camera and intraocular pressure measured with air tonometry, NIDEK Tonoref III.

The Crystalvue NFC600 camera is equipped with MONA AI-driven software capable of providing a probability score 
for glaucoma based on fundus images. MONA, a Belgian healthcare AI startup, is a spin-off of KULeuven and VITO 
(the Flemish technology agency). Initially developed for detecting diabetic retinopathy (DR) and diabetic macular edema 
(DME), MONA AI was trained on an extensive dataset of over 273,000 retinal images. The system achieved a sensitivity 
of 90% and specificity of 95% for referable DR and similarly high accuracy for DME detection. Its convolutional neural 
network (CNN) architecture leverages these vast datasets to identify subtle pathological changes with high consistency. 
Although specific details about MONA’s glaucoma training dataset are unavailable, it likely employs a comparable AI 
framework, assigning optic disc scores from 0.0 to 1.0, with higher scores indicating a greater likelihood of glaucoma.

While the MONA AI system is not yet commercially available, its use in this study was dictated by camera availability. 
AI-generated probability scores were accessed post hoc for supplementary analysis and were not part of the initial 
evaluations. The inclusion of MONA was not intended as validation or a comparative assessment of the software.
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Fundus photographs were visually evaluated by two masked glaucoma specialists (SP and GB) who categorized the 
images as normal (NL) or abnormal (GS) including glaucoma and glaucoma suspects, in real-time, simulating the time 
constraints of a busy outpatient clinic. The classification adhered to the European Glaucoma Society (EGS) guidelines,7 

using parameters such as optic disc size and rim, vessel bearing, peripapillary haemorrhages, and cup-to-disc ratio.
Intraocular pressure (IOP) was subsequently measured using an air tonometer (NIDEK Tonoref III), which underwent 

routine calibration per manufacturer recommendations to ensure accuracy. Elevated IOP values were defined as 
>21 mmHg. Patients with abnormal fundus classifications (GS) and/or elevated IOP were referred for further ophthal-
mological evaluation. During the screening, one asymptomatic patient showed an important branch occlusion (Figure 1) 
and was directly sent to the Ophthalmology emergency for further examination and was diagnosed with a toxoplasmosis- 
caused occlusion. He was discarded from the study.

In the second phase, the fundus photographs of 138 optic discs were reanalyzed by four ophthalmologists (three 
glaucoma specialists and one resident). The images were categorized into three groups: normal (N), glaucoma-suspect 
(S), and glaucomatous (G) per EGS guidelines. Vertical Cup-to-Disc Ratio (VCDR) values were recorded for each optic 
nerve. The classifications were conducted in a masked manner without knowledge of IOP or the condition of the 
contralateral disc. Following unblinding, IOP and contralateral disc appearance were revealed sequentially, allowing 
observers to update their classifications.

Statistical Analysis
The Kappa coefficients were used to assess the agreement among different specialists for categorical variables and the 
Weighted Kappa coefficients for categorical ordinal variables. Kappas with their standard error are reported.

Intraclass correlation coefficients (ICC) were used to evaluate agreement in VCDR scoring on the image level for 
continuous variables.

Results
138 images of 69 subjects were taken. The statistical descriptive data of the continuous variables are shown in Table 1.

Results from the Hospital Screening
During the screening in the hospital, the flow of incoming patients limited the decision and scoring time. It was nearly 
instantaneous, less than one minute per eye mimicking a normal clinical setting.

Of the total 138 right and left eye pictures, 120 were labelled NL (61/ 69 for the RE, 61 and 59/ 69 for the LE). 
Eighteen subjects were referred for further examination based solely on their fundus photographs when either observer 
classified one or both eyes as GS. The number of referred subjects increased to 27, based on their initial allocation to the 

Figure 1 Asymptomatic patient during screening with branch occlusion and vasculitis caused by recent toxoplasmosis infection.
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GS group and, or high IOP, after revealing the eye pressure (Table 2). It indicates that IOP, for clinicians, is considered 
a crucial and independent risk factor for further investigation.

The concordance between the 2 masked observers (Table 3) during the screening, where the observers took the pictures and 
scored them only as NL or GS without knowing the IOP, is quantified by the kappa’s values for both eyes (kappa ± SE = 0.55 ± 0 
0.11, p < 0.001). It means an acceptable reproducibility between the glaucoma specialist (SP) and her junior resident (GB) score.8

The Kappa values for the initial assessment (without IOP) indicate “moderate” agreement (Table 4).
The values of the weighted Kappa’s decline when the IOP is revealed. The lower Kappa values after including IOP 

fall into the “fair” agreement category, suggesting less consistency when IOP data is factored in. This reduction in Kappa 

Table 2 Number of Referred Patients with or 
Without Knowledge of the IOP

Referral Based  
on Pictures

Referral Based on  
Pictures and IOP

SP 5 4

GB 8 6

Both 5 17

total 18 27

Table 1 Descriptive Analysis of the 
Participants

F/M 47.7/52.3%

Variable Mean ± SD Min-max

Age (years) 57 ± 12 33–82

IOP RE 15.5 ± 4.5 10–28

IOP LE 15.8 ± 4.4 10–30

Table 3 Reproducibility Between SP & GB 
Based on Fundus Pictures

Cohen’s Weighted  
Kappas

p

RE 0.53 ± 0.17 0.001

LE 0.57 ± 0.15 < 0.001

BE 0.55 ± 0.11 <0.001

Table 4 Reproducibility Between SP & GB Based on Fundus 
Pictures with or Without IOP

Cohen’s Weighted Kappas p

Without IOP With IOP Without IOP With IOP

RE 0.38 ± 0.12 0.24 ± 0.13 0.001 0.015

LE 0.35 ± 0.19 0.29 ± 0.14 < 0.001 0.007
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values suggests that the inclusion of IOP data may have introduced some variability in the assessment, leading to a lower 
level of agreement between the observers. This variability could arise from differing interpretations of the significance of 
IOP values in the context of fundus images.

Results from the Masked Picture Analysis
In the second phase of the study, three glaucoma specialists (SP, LO, CM) and one glaucoma resident (GB) independently 
reviewed the fundus photographs under various conditions to assess classification consistency. The evaluations were 
performed in the following scenarios:

1. Separate Classification: Each eye was assessed individually without additional information or time constraints.
2. Incorporating Contralateral Eye Information: Observers compared the images of both eyes from the same subject.
3. With and Without IOP Consideration: Observers classified the images without IOP data initially, followed by 

a second round where IOP values were revealed, allowing for potential reclassification.

The images were categorized into three groups: Normal (N), Suspect (S), and Glaucoma (G). Additionally, the vertical 
cup-to-disc ratio (VCDR) was recorded for each optic disc. Table 5 and Table 6 summarize the descriptive analysis of 
classifications and inter-observer agreement, respectively.

The comparison of classification performance across the different conditions is summarized below:

Table 5 Descriptive Analysis of Patient Classifications Across Different Conditions and Comparisons, with Data Provided by Multiple 
Observers. N= Normal, S= Suspect, G= Glaucoma

RE RE + IOP RE 
Compared to 
LE

RE+IOP 
Compared to 
LE

LE LE + IOP LE 
Compared to 
RE

LE + IOP 
Compared to 
RE

N S G N S G N S G N S G N S G N S G N S G N S G

SP 60 8 1 60 8 1 60 7 2 60 7 2 59 8 2 59 8 2 59 8 2 59 8 2

GB 59 8 2 60 7 2 60 6 3 60 9 3 59 9 1 61 8 0 57 10 2 58 10 1

LO 56 10 1 54 13 1 53 13 1 53 14 1 57 8 2 55 13 0 54 11 2 55 12 1

CM 56 10 3 49 16 3 56 9 4 55 9 4 57 9 3 47 19 3 54 12 3 53 12 3

Table 6 Comparison of Classification Performance Across Different Conditions and Among Different Specialists. The Bolded Values 
Reflect the Highest Agreement for Each Specialist

Weighted Kappas ± SE

Condition 1 Condition 2 Condition 3 Condition 4

Separate Classification for Each 
Eye (With & Without IOP 

Consideration)

Classification with 
Contralateral Eye 

Consideration 
(With & Without IOP)

Classification with and 
Without Consideration 

of the Other Eye 
(IOP unknown)

Classification with and 
Without Consideration 

of the Other Eye 
(IOP known)

RE LE RE LE RE LE RE LE

SP 0,42±0,19 0,56±0,15 1,00±0,00 1,00±0,00 0,84±0,09 0,71±0,10 0,39±0,19 0,45±0,16

GB 0,95±0,05 0,82±0,09 0,91±0,07 0,82±0,08 0,91±0,06 0,77±0,08 0,95±0,05 0,77±0,10

LO 0,72±0,11 0,61±0,11 0,42±0,12 0,57±0,10 0,87±0,08 0,87±0,08 0,72±0,09 0,77±0,09

CM 0,80±0,08 0,69±0,10 0,74±0,09 0,71±0,09 0,96±0,03 0,89±0,06 0,89±0,06 0,92±0,05
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● SP (Senior Specialist) achieved perfect agreement (Kappa = 1.00) when using contralateral eye information 
(Condition 2). However, performance declined when relying solely on IOP or without any additional information.

● GB (Resident) demonstrated consistently high performance across all conditions, indicating robust diagnostic 
capability irrespective of data inputs.

● LO (Specialist) showed significant improvement when contralateral eye information was available (Conditions 2 
and 3) but lower agreement when relying only on IOP.

● CM (Specialist) consistently performed well in all conditions, with the highest agreement observed when both 
contralateral eye information and IOP were included (Condition 3).

Table 6 shows that SP performs perfectly when the other eye’s information is available (Condition 2), but its 
performance is lower when relying solely on IOP or without any additional information. GB performs consistently 
well across all conditions, indicating its robustness to various data inputs. LO performance benefits most when the 
other eye’s information is available (Conditions 2 and 3) but shows lower performance when relying solely on IOP. 
CM performs strongly in all conditions, with the highest agreement when other eye information is available 
(Conditions 2 and 3).

In Condition 3, where classifications were based on contralateral eye information but excluded IOP, emerged as 
the optimal scenario, showing high inter-observer agreement. This condition provides a balance where all raters 
perform well, suggesting that using the other eye’s information without IOP gives the most reliable classification 
across the board and makes it the most robust scenario for ground truth classification. In conclusion, including 
contralateral eye information significantly improved classification reliability across all observers. In contrast, 
including IOP often introduced variability, leading to lower agreement in several conditions. Condition 3—lever-
aging contralateral eye data without IOP—proved to be the most reliable for establishing ground truth. The 
consistently high performance of GB and CM further highlights the potential for enhanced diagnostic accuracy 
when incorporating bilateral information.

Results from VCDR Scoring
Estimation of the optic disc excavation by all the raters is shown in Table 7.

This table shows that the more “experimented” ophthalmologists rate the excavations smaller than the “younger” 
colleagues.

Figure 2 shows the Vertical Cup to Disc scoring (VCDR) for each rater.

Table 7 Estimation of the Optic Disc Excavation by All the Raters

Nr Minimum C/D Maximum C/D Average C/D ±SD

SP OD 69 0.00 0.60 0.27 0.13

SP OG 69 0.10 0.60 0.27 0.12

GB OD 69 0.00 0.75 0.30 0.19

GB OG 69 0.00 0.75 0.32 0.18

LO OD 67 0.00 0.70 0.33 0.16

LO OG 67 0.00 0.70 0.33 0.18

CM OD 69 0.10 0.65 0.27 0.16

CM OG 69 0.10 0.65 0.29 0.16

Valid Nr 67
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Result from AI-MONA
The MONA algorithm analyzes fundus images to assess the likelihood of glaucoma, as shown in Figure 3. While the 
system does not provide a numeric image-quality score, it automatically rejects poor-quality images where the optic 
nerve head is not visible or is improperly centred. For acceptable images, MONA generates a probability score between 0 
and 1, where higher scores indicate a greater likelihood of glaucoma.

● The algorithm operates with a defined threshold: Scores below 0.73: Classified as healthy and Scores of 0.73 or 
higher: Indicate a high probability of glaucoma.

Figure 2 Shows the Vertical Cup to Disc scoring (VCDR) for each rater.

Figure 3 The original picture and the processed picture by MONA.
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Notably, the algorithm does not classify images as “Suspect”, focusing only on binary outcomes (healthy or glaucoma-
tous). Table 8 provides a descriptive analysis of the risk scores generated by MONA, illustrating the distribution of scores 
and their correlation with the likelihood of glaucoma (Table 8). Figure 4 shows the Scatter Plot of MONA- AI risk factors 
for both eyes separately.

The Pearson correlation coefficient between the RE and LE is 0.23 indicating a weak positive correlation.
Figure 5 shows the different histograms and kernel density estimates (KDEs) for both eyes to represent the 

distribution differences.

Discussion
Initially designed as an awareness campaign, this study uncovered significant inter-observer variability in clinical 
glaucoma diagnostics. Despite shared training and adherence to standardized methodologies, the findings highlighted 
the inherently subjective nature of optic disc evaluation. Notably, each specialist’s diagnostic reasoning, shaped by 
individual experience and cognitive processes, operated like a distinct “black box”, even within a structured framework. 
For example, while intraocular pressure (IOP) often introduced complexity, assessing both optic discs simultaneously 
improved diagnostic accuracy in some cases, further illustrating the variability in clinical approaches.

The small sample size of 70 subjects reflects the practical limitations of data collection during the campaign. However, 
the results provide valuable insights into diagnostic variability and decision-making processes under real-world conditions. 
The increase in referrals from 18 to 27 when intraocular pressure (IOP) data was included underscores IOP’s role as an 
independent glaucoma risk factor, though its inclusion introduced more significant variability and lowered agreement 
among observers. Notably, Condition 3, where bilateral fundus information was available, but IOP was excluded, showed 
the highest inter-observer agreement, indicating its potential as a reliable framework for establishing ground truth.

Table 8 The Descriptive Analysis by MONA, Based on Risk Scores. The Higher the 
Risk Scores, the Higher the Possibility of Having Glaucoma

Risk Score Mean ± SD Min Max Rejected

RE 0,587,494,512 ± 0,11,121,722 0,282,902,298 0,282,902,298 7/69

LE 0,586,386,255 ± 0,12,020,194 0,319,392,204 0,831,739,731 1/69

Figure 4 The Scatter Plot of MONA- AI risk factors for both eyes separately.
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Clinical and AI Implications
The moderate agreement observed in this study highlights limitations in using fundus photographs as the sole basis for 
training and validating AI models. Despite employing the European Glaucoma Society (EGS) Guidelines, subjective 
interpretations of these criteria led to inconsistencies, complicating comparisons between AI and human evaluations. 
These findings align with prior research showing that AI models trained on datasets with comprehensive clinical 
parameters demonstrate superior generalizability compared to those reliant solely on fundus photo-based labels.

While not a validation focus in this study, the MONA AI system generated probability scores post hoc, revealing 
a weak positive correlation between scores for both eyes. This contrasts with the higher agreement among clinicians 
when bilateral images were evaluated together. MONA’s inability to classify “Suspects” or identify non-glaucomatous 
pathologies, such as visible vasculitis, underscores the limitations of narrow task-specific training. This further empha-
sizes the need for broader and more diverse clinical datasets to enhance AI robustness and generalizability.

AI employment in clinical decision-making as a support system faces several challenges. Several studies indicate that 
high image quality is essential for accurately classifying fundus images.9,10 Standard fundus cameras lack integrated 
software to assess image quality. In contrast, optical coherent tomography (OCT) and angio-OCT devices provide an 
image quality score and recommend discarding images that fall below a certain threshold.11 The determination of image 
quality in fundus photography is often subjective. An observer may choose to classify the optic disc even if the image 
exhibits mild blurriness. Additionally, many patients participating in screening programs are elderly and may have 
cataracts or corneal ageing, leading to inherently lower image quality. The data’s quality should represent the expected 
data level that the model will encounter in practice,12 meaning elderly with mild to pronounced blurriness of the media. 
Therefore, the ground truth is fundamentally subjective by default.

Consequently, comparing the performance of AI algorithms to such variability becomes complex. These findings are in 
keeping with our previous work,13,14 where the performance of a robust glaucoma-AI model trained on a dataset with ground truth 
labels based on deep phenotyping including all available clinical parameters had excellent generalizability in various external 
databases, but with the least good performance in datasets which had ground truth labels bases on only fundus photo evaluation.

In this study, other important clinical parameters, such as visual field, optic nerve head measurements with optical 
coherence tomography, and corneal thickness, were not performed to confirm the presence of glaucoma at the end. In 
a similar study by Al Aswad. et al,15 the deep learning AI (Pegasus) could be compared to a gold standard of glaucoma 
versus healthy diagnosis because the testing was performed on a known database of patients: fundus images randomly 
selected from the Singapore Malay Eye Study (SiMES).16

Figure 5 Histograms and kernel density estimates (KDEs) for both eyes to represent the.
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This study utilized a small cohort of 69 subjects obtained during a glaucoma screening campaign. While small sample 
sizes can be useful for initial exploratory studies, they pose significant generalizability and statistical power limitations. In 
glaucoma screening, the disease prevalence may vary across different populations, making it essential to have a representative 
sample size to draw accurate conclusions. A larger patient sample would improve the robustness and external validity of the 
results, allowing for better assessments of AI performance and generalizability to real-world clinical settings. In comparison, in 
a large systematic review of 2021 including 6 original studies comparing the performance of ophthalmologists and AI, the rate 
of included patients with glaucomatous optic neuropathy ranged from 41.4% to 50%. In our study, the subjects were in 
hospital for different reasons with a much lower rate of glaucoma, closer to the actual prevalence in the population. This 
difference in prevalence in our cohort was also a source of lower inter-observer reproducibility.

VCDR scoring, we observed considerable variation in how clinicians rated excavation. In this study, the longer 
a clinician had been practicing, the smaller their evaluation of the excavation tended to be, highlighting both inter- and 
possible intra-clinician variability in C/D ratings.17,18

Conclusion
The limitations of inter-observer variability and small cohort highlighted in this discussion, emphasize the need for 
cautious interpretation of studies evaluating AI systems for glaucoma screening in clinical practice solely based on 
fundus photos. These observations should remind AI researchers that the performance of AI algorithms relies on the 
robustness of the ground truth labels. We should consider a hybrid approach, for example, supplementing “Condition 3” 
with other clinically relevant information in this study. Future research should address these limitations by incorporating 
larger and more diverse patient cohorts considering multiple diagnostic parameters: specifically for glaucoma, it is 
recommended to determine the ground truth based on not only fundus pictures but also additional metadata such as visual 
field examinations or Optical Coherence Tomography scans.19 Our findings resonate with experiences in other medical 
domains, where AI has been shown to complement rather than replace human expertise. Studies demonstrate that while 
AI and specialists independently achieve similar diagnostic accuracy for recognizing a disease, their combined efforts 
significantly outperform either alone. This underscores AI’s strength in analyzing vast and diverse datasets, particularly 
for rare conditions, while clinicians bring a holistic perspective grounded in clinical experience. Similarly, in glaucoma 
diagnostics, AI has the potential to enhance the accuracy of human assessments by mitigating inter-observer variability 
and identifying subtle features that may be overlooked in busy clinical settings”. By addressing these challenges, the 
potential of AI for glaucoma screening in clinical settings should be more effectively evaluated.
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