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Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine 
learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at 
different stages.
Patients and Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports 
(6,280 cancer and 13,257 noncancer cases). To clean and obtain the data ready for modelling, preprocessing steps such as feature 
standardization and missing value removal were used. Several cutting-edge classifiers were employed for the prediction analysis. In 
addition, we experimented with the dataset’s missing values using the histogram gradient boosting (HGB) model.
Results: The feature ranking method demonstrated the ability to distinguish cancer patients from healthy individuals based on 
hematological features such as WBCs, red blood cell (RBC) counts, and platelet (PLT) counts, in addition to age and creatinine level. 
The random forest (RF) classifier, followed by linear discriminant analysis (LDA) and support vector machine (SVM), achieved the 
highest prediction accuracy (ranging from 0.69 to 0.72 depending on the scenario and method investigated), reliably distinguishing 
between malignant and benign conditions. The HGB model showed improved performance on the dataset.
Conclusion: After investigating a number of machine learning methods, an efficient screening platform for non-invasive cancer 
detection is provided by the integration of haematological indicators with proper analytical data. Exploring deep learning methods in 
the future work, could provide insights into more complex patterns within the dataset, potentially improving the accuracy and 
robustness of the predictions.
Keywords: cancer, machine learning, complete blood count, RF model, HGB model

Introduction
Cancer is a condition characterized by the uncontrolled growth and spread of cells in the body. According to the World 
Health Organization (WHO), cancer is a prominent global cause of mortality and was responsible for approximately 
10 million deaths in 2020, accounting for nearly one-sixth of all deaths.1 The identification of patient populations that are 
more susceptible to the disease is necessary to control the overall cancer burden within a population. Risk assessment 
techniques are widely used to estimate a patient’s likelihood of contracting an illness by taking into account established 
biological, behavioral, and demographic traits.2 Therefore, evaluating typical clinical markers, such as demographic 
information and conventional laboratory tests, can help to increase the efficacy of population screening.

Jordan is recognized for its unique demographic and epidemiological profiles. Registry data from the Jordanian 
Ministry of Health indicate an increasing trend in both the incidence and impact of cancer.3 The ability to predict cancer 
incidence is crucial for understanding the magnitude of the problem and developing effective interventions.
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Lab testing is frequently the first step when cancer is suspected. A complete blood count (CBC) can be used to 
determine a person’s high-risk status for a particular form of cancer. This is justified because many cancer patients will 
inevitably have particular CBC patterns. Abnormalities in blood haemoglobin (HGB) levels, neutropenia, severe 
anaemia, or thrombocytopenia are consistent with the diagnosis of common blood malignancies such as lymphoma.4 

Moreover, among elderly patients in particular, unexplained anaemia is a significant predictor of gastrointestinal 
malignancies (GICs).5 According to reports, a significant proportion of GIC patients have one or more blood 
abnormalities.6 Studies on women with breast cancer have shown that hematological parameters, such as the MCV, 
RDW, MPV, MPV/PLT, NLR, and PLR, can distinguish breast cancer patients from healthy individuals.7 The mean 
corpuscular volume (MCV) and red blood cell distribution width (RDW) have demonstrated a high degree of sensitivity 
and specificity in predicting individuals with colon cancer.8 According to a different study, MCH is an independent 
predictor of disease relapse9 and survival in patients with breast cancer.10 Giannakeas and his team reported that a high 
platelet count was linked to a greater likelihood of developing several types of cancer.11 By applying multivariable 
logistic regression analysis for early laboratory detection of colorectal cancer, Záhorec and his team showed that using 
a panel of frequently examined blood parameters, such as HGB concentration, albumin (ALB) and the neutrophil-to- 
lymphocyte ratio (NLR), has the potential to distinguish patients with benign tumors from those with malignant tumors.12 

Thus, studies on cancer prognosis based on CBC data are valuable.
At present, many supplementary cancer diagnosis methods use artificial intelligence and machine learning (ML), with 

one of the greatest advantages of these technologies being non-invasive cancer diagnosis.13 In this prospect, using of the 
real world electronic health record data facilitates cancer prediction with a sufficient level of precision.14 The incorpora-
tion of medical records potentially enhances forecasting, demonstrating the practical benefits of introducing fundamental 
laboratory testing in the early stages of cancer patient diagnosis.15 A large dataset derived from medical records can be 
utilized to test and train ML models. Specifically, it has been shown that cancer detection can be enhanced by using 
machine ML to CBC data. In related work, age, sex, and CBC data combined with decision trees and cross-validation 
techniques were employed to accurately predict colorectal cancer.16 The model obtained between 98 and 99% accuracy 
when applied to data from different populations. Several studies have employed ML in laboratory tests to detect many 
cancer types. In,17 the authors used ML to detect CRC using several models. Their experiments were conducted on a total 
of 1164 electronic medical records, including normal and abnormal cases. The authors reported satisfactory results, with 
an AUC of 0.865, sensitivity of 89.5%, specificity of 83.5%, PPV of 84.4%, and NPV of 88.9%. Tsai et al claimed that 
the limitations of conventional urine cytology can be overcome by utilizing clinical laboratory data and ML to improve 
bladder cancer detection.18 It uses a two-step feature selection process and assesses five ML models using data analysed 
from 1336 patients with different types of cancer. With accuracy rates ranging from 84.8% to 86.9%, sensitivities ranging 
from 84% to 87.8%, specificities ranging from 82.9% to 86.7%, and AUCs ranging between 0.88 and 0.92, the light 
gradient boosting machine (lightGBM) model proved to be the most successful. This method shows how clinical data and 
ML can be used to enhance the detection of bladder cancer.

Another ML approach was adopted in19 to develop a pan cancer early warning system. The authors have conducted 
their experiments on a large dataset that includes 174,894 prospective testing cases, 184,012 validation cases, and 
737,503 training instances. The authors claim that their system improves physicians’ capacity to choose accurate 
diagnostic signs and assess cancer risk more accurately.

Furthermore, a noteworthy survey was conducted by Kumar et.al, as detailed in.20 This work is a comprehensive 
literature review of the methods and various data types employed for cancer detection, including laboratory tests, 
imaging tests, biopsy procedures, and bone scans. It provides a foundational platform for researchers in this field, 
offering insights into the latest methodologies and data types utilized for cancer detection.

Previous studies have highlighted the vital role that laboratory testing plays in the early diagnosis of cancer and the 
use of ML to improve diagnostic precision. Building on this foundation, our study focused on the Jordanian population in 
an effort to identify potentially distinctive patterns or indicators that are important to this particular population. By doing 
so, we close a significant knowledge gap about cancer patterns in Jordan and add to the body of knowledge on cancer 
detection worldwide. By attempting to evaluate the efficacy of ML models in a novel geographic and epidemiological 
location, this study may open the door to the development of regionally tailored cancer detection techniques.
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We focused on evaluating the performance of predictive modelling techniques utilizing ML algorithms, including 
support vector machines (SVMs), random forests (RFs), neural networks (NNs), and other methods. Our objective was to 
explore the predictive power of these algorithms in accurately identifying patients with malignant conditions from those 
with benign conditions based on a new dataset that contains CBC data and other laboratory findings obtained from 
medical datasets across various hospitals in Jordan.

Data and Methods
Ethics Approval
This study complies with the Declaration of Helsinki; involved the analysis of retrospective data. All patient information 
was anonymized, deidentified, and then transferred to Excel files prior to analysis. These files used unique study-specific 
patient numbers to maintain confidentiality, ensuring that any linkage to patient names, medical record numbers, or other 
personally identifiable information was securely protected. The research project was approved by the Royal Medical 
Services Human Research Ethics Committee under meeting number 6/2024. The informed consent requirement was 
waived because of the retrospective data study’s exemption from this requirement.

Furthermore, the compliance officer of the National E-health Program HAKEEM in Jordan authorized the data 
exchange and file transfer procedures.

Data
The dataset contains four files: Two for cancer patients and their laboratory tests and two for noncancer patients and their 
laboratory tests. These files are combined based on the patent ID. The main attributes in the dataset are described in 
Table 1.

The column TestNameEn, in Table 1, has the testes reported in Table S1. Each test was conducted zero, one or more 
times for each patient, corresponding to different visits and appointment dates, and whether this test was needed.

Data Processing
Several steps are performed to transform the data from being in different files to a format that facilitates statistical and 
predictive modelling, that is, tabular format.

Table 1 Column Names and Descriptions of the Dataset

Column Name Data Type Description

ID Numeric The ID of the patient

DateOfBirth Date The date of birth.

Gender Categorical The gender of the patient

Governorate Categorical The governorate of the patient.

Nationality Categorical The nationality of the patient.

TestNameEn Categorical Name of the conducted test.

DateTimeTaken Date The date and time of the test.

Value Numeric The value of the test.

DiagnosisType Categorical The type of the diagnosis.

Diagnosis Categorical The disease that the patient suffers from.

Class Numeric The class, 1 and 0 for cancer and no cancer, respectively.
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Data Structuring
To construct the data, we extracted a set of statistical features for each test for each patient. For example, for Patient 1, the 
minimum, maximum, and mean values of each test are calculated and added to the feature vector of that patient. These features 
are concatenated with demographic features, ie, date of birth, sex, etc., to form a feature vector for each patient in the dataset. 
The demographic information and laboratory test results, which are located in two different files (tables), are retrieved based 
on the patient ID from both files (primary key and foreign key relationship). This process is performed for cancer and normal 
controls. Details about the features extracted from the tests will be presented later.

This process results in a dataset in tabular format (one table), where each row represents an observation. The number 
of observations at this stage is 19,537.

One important point to mention here is that the age of each patient, which is not explicitly defined in the dataset, is 
calculated from its date of birth. Additionally, the gender column is factorized to convert it from categories (male and 
female) to numerical representations (0 and 1).

Data Cleaning
Real-life datasets often have their own set of challenges, including missing values. Our dataset is no exception, 
particularly for laboratory test results. It is not uncommon for certain tests to be omitted for specific patients, depending 
on their health assessments. The distribution of missing values across different tests is visualized in Figure 1.

For the purposes of predictive analysis and machine learning, ensuring data integrity by cleaning the dataset is crucial. 
This allows for a more accurate exploration of the relationships between variables (features) and outcomes (diagnosis of 
cancer or noncancer).

Given the detrimental impact of outright removing observations with missing values—potentially leading to 
a significant loss of data—we opted to first eliminate features with a high prevalence of missing entries. This strategy 
aimed to preserve as much data as possible. As a result, the dataset was refined by excluding the following columns due 
to their substantial missing values: high-density lipoprotein cholesterol (HDL), urea serum, triglyceride, and partial 
thromboplastin time (TPL or PTT).

Figure 1 Distribution of missing values across laboratory tests in the dataset.
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The observations with missing values are then removed from the dataset. The resulting NaN free dataset contains 
9,222 observations (5,763 noncancer and 3,459 cancer observations).

Data Standardization
The dataset exhibits disparities in attribute scales, with certain features confined to a narrow range of values, while others extend 
across a broader range. Such variations can compromise the effectiveness of predictive models. As a remedy, z-score normal-
ization is employed to standardize the feature scales, ensuring a more uniform and balanced representation across the dataset.

The z-score is given by the following equation:

where z is the z-score, x is the original value of the feature, µ represents the mean of the feature, and σ represents the 
standard deviation of the feature.

Figure 2 illustrates the pre-processing steps performed on the dataset from the original Excel files to the dataset used 
for modelling. Additionally, it tracks the number of observations after each step.

Figure 2 Data inclusion/exclusion, including the pre-processing steps starting from the original files.
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Dataset Statistics
After reformatting the dataset, we proceeded to analyse the age distribution of the patient cohort. This analysis was 
facilitated by calculating ages from the “Date-of-Birth” column within the dataset. The resulting age distribution is 
illustrated in Figure 3, which displays the demographic spread across different age groups within our structured dataset.

The dataset includes data on approximately 78 patients of various nationalities, including Gulf Arabs, Egyptians, 
Palestinians, Iraqis, and others. The percentage of patients from Jordanian governorates is illustrated in Figure 4(a).

Palestinians constitute the largest percentage of foreign patients in the proposed dataset, although the number of all 
other nationalities, except Jordanians, is low. Furthermore, as Figure 4(b) illustrates, the highest percentage of patients, 
70%, comes from Amman, the capital, followed by Zarqa at approximately 9%. The lowest percentage of patients, 
meanwhile, was from Aqaba (3.5%).

Figure 3 Distribution of the age groups in the proposed dataset.

Figure 4 Percentages of patients from other nations (A) and percentages of patients from different governorates in Jordan (B).
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Method
As mentioned before, several features are extracted from the tests to reformat them from different files to a single table 
that contains rows as observations. These tests cannot be flattened on their initial format because the number of 
laboratory tests performed varies by patient and test. Thus, we summarize these tests using several statistical methods. 
These variables are the minimum value (Min), maximum (Max), mean, first quartile, median, third quartile, and standard 
deviation. Using these summary statistics provides a more informative dataset as each statistical feature for components, 
like RBC and WBC, etc., captures the variability and trends in blood parameters over time. By using multiple tests of 
each component, we improve prediction accuracy as it allows the model to identify subtle patterns that may not be visible 
in a single-time-point analysis. Table 2 shows the statistical characteristics of these medical tests.

Furthermore, in medical testing, it is advised to calculate the coefficient of variation (CV).21 We opted to compute the 
average analytical error (AAE) rather than the total analytical error, which is commonly calculated as the sum of bias and 1.65 
times the imprecision (CV%).22 This choice was based on the changing number of tests, which might bias the total toward 
patients who had more tests for a certain medical test. In addition, we calculate the AAE by averaging the bias but not including 
the CV. This technique was used to keep the AAE as a single feature for machine learning purposes because adding one feature 
to another may not meaningfully contribute to the learning process. The imprecision (CV%) is calculated as follows

and AAE

where Xi represents each test within a certain medical test, X̂ represents the mean of all observations, and m represents 
the total number of observations.

All nine aforementioned statistics were calculated for each of the 9 medical tests shown in Table 2. This process 
involves the creation of training/testing sets to predict positive (cancer) cases from negative (normal) cases. Figure 5 
illustrates the flowchart of the proposed prediction system.

We included the age and sex of every patient in the training and testing datasets in addition to the previously given 
information. However, as these factors have no bearing on cancer prediction, we eliminated data such as patient ID, 
governorate, nationality, date, and time. Furthermore, the diagnostic feature was eliminated since it indicates cancer and 
normal cases.

Table 2 Statistical Characteristics of the Laboratory Tests Conducted on the Subjects

Laboratory Test Class=Cancer (1) Class=Normal (0)

Min Mean Max Min Mean Max

Creatinine 0.01 1.16 87.8 0.01 1.02 312

International Normalized Ratio (INR) 0.29 1.22 14.54 0.35 1.22 20

Hemoglobin (Hb) 0.2 12.69 35 0.7 11.99 39.2

Mean Corpuscular Hemoglobin (MCH) 3 27.9 143.1 1 27.93 80.3

Mean Corpuscular Volume (MCV) 3 83.78 142.7 50 84.02 135.6

Platelet Count (PLT) 1 267.86 3294 1 268.97 1711

White Blood Cells Count (WBC) 0.01 9.04 15,680 0.02 8.98 2860

Red Blood Cells Count (RBC) 0.13 4.58 1600 0.02 4.34 1120

Prothrombin Time (PT) 1 15.94 133 0.92 15.71 135.3
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Predictive Modelling and Experimental Setup
This work uses several classifiers to test their performance on the proposed dataset. The classifiers used are the Random 
forest (RF), Artificial neural network (ANN), K-nearest neighbors (KNN), XGBOOST-logitraw (XGB1), XGBOOST- 
logistic (XGB2), Support vector machine (SVM), the Linear discriminant analysis (LDA), Constant-time ensemble 
learning classifier (CTELC), 23 Bagging Classifier (BC) and easy ensemble classifier (EE).24

Several sets of experiments are performed:

● Experiments with instances with missing values removed.
● Experiments without removing missing values using classifiers that work with missing-valued datasets
● Experiments using imputation methods to impute missing values before using ML

To ensure that every data sample was trained and evaluated throughout various runs, we employed 5-fold cross- 
validation in all of our experiments. In the first set of our experiments, we use the default parameters (in sklearn and 
xgboost packages) without parameter tuning to simplify the replication of our experiments.25,26 After that, we select the 
best-performing classifiers and perform grid search for hyperparameter optimization.

Some of the selected models deal with the problem of class imbalance implicitly, such as CTELC and EE.
To assess the performance of the predictive models, we employ a comprehensive set of evaluation metrics to provide 

a multifaceted assessment of their effectiveness. These metrics offer insights into various aspects of model performance, 
enabling a thorough understanding of their strengths and limitations. Among the key evaluation metrics utilized are accuracy, 
precision, recall, and F1-score, which collectively capture the model’s ability to classify instances across classes correctly.

Additionally, we considered metrics such as the calibration curve, the area under the receiver operating characteristic 
curve (AUC-ROC), and the area under the precision–recall curve (AUC-PR), which provide valuable insights into the 
model’s discrimination and trade-off between precision and recall.

Experiments and Results
Several experiments on our data were conducted to determine the best machine learning model for the proposed cancer 
prediction system. LDA, RF, and ANN were among the classifiers studied, as they are commonly used in many related 
studies, such as.27,28 The prediction results of the first set of experiments are shown in Table 3.

Figure 5 Flowchart diagram of the proposed cancer prediction system.
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The performance metrics shown in Table 3 suggest that SVM and RF, followed by the LDA, LR and XGB1 
classifiers, outperform other classifiers. With a precision range of 0.69 to 0.72, SVM and RF consistently perform 
well and slightly outperform their counterparts, XGB1, XGB2 and LDA, which have an average precision around 0.69.

In Figure 6, the distribution of precision scores for various classifiers is illustrated over five runs. The classifiers’ 
precision scores are predominantly positioned towards the higher values, indicating their overall effectiveness and 

Table 3 Accuracy, Precision, Recall and F1-Score of Several Classifiers on the 
Proposed Dataset Using 5-Fold Cross-Validation. The Results Show the Mean 
± Standard Deviation. Bolded Values are the Highest, for Each Metric

Classifier Accuracy Precision Recall F1-score

SVM 0.705 ± 0.040 0.713 ± 0.045 0.705 ± 0.040 0.664 ± 0.056

RF 0.704 ± 0.044 0.700 ± 0.051 0.704 ± 0.044 0.672 ± 0.059

LR 0.699 ± 0.051 0.691 ± 0.059 0.699 ± 0.051 0.672 ± 0.063

ANN 0.668 ± 0.034 0.654 ± 0.041 0.668 ± 0.034 0.653 ± 0.043

XGB1 0.695 ± 0.037 0.690 ± 0.044 0.695 ± 0.037 0.661 ± 0.051

XGB2 0.683 ± 0.037 0.670 ± 0.044 0.683 ± 0.037 0.663 ± 0.049

KNN1 0.595 ± 0.016 0.592 ± 0.022 0.595 ± 0.016 0.593 ± 0.019

KNN3 0.647 ± 0.029 0.631 ± 0.037 0.647 ± 0.029 0.632 ± 0.037

BC 0.678 ± 0.035 0.665 ± 0.043 0.678 ± 0.035 0.648 ± 0.048

CTELC 0.651 ± 0.030 0.634 ± 0.036 0.651 ± 0.030 0.634 ± 0.038

EEC 0.653 ± 0.033 0.657 ± 0.043 0.653 ± 0.033 0.653 ± 0.037

LDA 0.699 ± 0.049 0.691 ± 0.058 0.699 ± 0.049 0.669 ± 0.062

Figure 6 Boxplot for the precision scores across the utilized models.
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reliability. The RF, support vector machine SVM, XGB1 and XGB2 classifiers exhibit strong and consistent performance, 
as evidenced by their relatively tight interquartile ranges and high median precision scores.

These models maintain stability across the folds, demonstrating their robustness under various data conditions. In 
contrast, the LDA classifier shows less stable performance, with a broader spread of precision scores indicating 
variability in its effectiveness. This instability suggests that the LDA performance is more sensitive to changes in the 
data distribution. KNN and CTELC, on the other hand, show less variability but poor performance across the different 
folds compared to the other models. Table 4 shows the P-values calculated using the Wilcoxon signed-rank test (α = 0.05) 
on the results recorded in Table 3.

The statistical test results, as presented in Table 4, show a significant difference between SVM and all other methods 
except RF, LR, and LDA, as the p-values for these pairs exceed the significance level of 0.05. Similarly, RF demonstrates 
statistically significant differences compared to XGB2, KNN, CTELC, EEC, and ANN.

In terms of the ROC and PR curves and their AUC values, as shown in Figures 7 and 8, SVM and LR achieved 
superior results (0.75 AUC), followed by LDA (0.74). The EEC had the lowest AUC value (0.34).

The AUC values and all of the other metrics of these models were barely satisfactory. This is true even for the best 
model examined. To investigate the potential reason behind these results, we employed IsoMap and principal component 
analysis (PCA) to visualize the proposed dataset in lower dimensions. Figure 9 illustrates the projection of the proposed 
dataset on the first two components of the two projection methods used.

Figure 9 demonstrates the nature of our medical data, which shows a significant inseparability of the data classes. 
This explains the low performance of some models. The classes’ overlapping nature makes it difficult for the classifier to 
distinguish between them.

It is important in medical fields to investigate which features help make the classification decision (cancer or not). For 
this purpose, we employ permutation feature importance (PFI) to define the most important features for making 
predictions. This is done by using the RF classifier for two main reasons. The first is that RF proved to be applicable 
for use in PFI29, and the second is that RF already provides good precision on the proposed dataset. Figure 10 provides 
information about the most important features, based on which the decision prediction is made.

Table 4 The Bottom Triangle of the Table Shows the p-Values from the Wilcoxon Signed-Rank Test, Calculated 
for the Results in Table 4, Comparing the Performance of Each Pair of Classifiers. The Top Half of the Table 
Displays the Maximum Mean Precision for Each Classifier Pair, Indicating the Better-Performing Classifier in 
Terms of F1-Score

SVM RF LR ANN XG1 XG2 KNN 1 KNN 3 BC CTELC EEC LDA

SVM 1 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713

RF 0.161 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

LR 0.074 0.529 1 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691

ANN 0 0.003 0.033 1 0.69 0.67 0.654 0.654 0.665 0.654 0.657 0.691

XGB1 0.029 0.159 0.935 0.004 1 0.69 0.69 0.69 0.69 0.69 0.69 0.691

XGB2 0.006 0.028 0.207 0.078 0.012 1 0.67 0.67 0.67 0.67 0.67 0.691

KNN 1 0.001 0.004 0.007 0.005 0.002 0.004 1 0.631 0.665 0.634 0.657 0.691

KNN 3 0 0.004 0.008 0.008 0.002 0.004 0.008 1 0.665 0.634 0.657 0.691

BC 0.002 0.004 0.16 0.157 0.006 0.579 0.007 0.021 1 0.665 0.665 0.691

CTELC 0 0.007 0.01 0.031 0.006 0.014 0.006 0.359 0.057 1 0.657 0.691

EEC 0.001 0 0.079 0.563 0.004 0.199 0.01 0.042 0.079 0.097 1 0.691

LDA 0.075 0.543 0.959 0.034 0.945 0.238 0.006 0.008 0.166 0.009 0.083 1
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Figure 7 ROC curves and their corresponding AUC values of different classifiers using 5-fold cross-validation.

Figure 8 Precision-recall curves and their corresponding AUC values of different classifiers using 5-fold cross-validation.
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Figure 9 Data visualization based on the first two components provided by IsoMap (A) and PCA (B).

Figure 10 Ranking of the most important features used by the RF classifier in making its predictions.
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The second set of experiments is conducted to test the prediction performance without removing any observations or 
features with missing values. This is done with the help of several classifiers that support training predictive models on 
data in the presence of missing values, such as XGBOOST and Hist Gradient Boosting. The results of the experiments on 
the data without removing any missing values are included in Table 5.

The results shown in Table 5 are quite expected as more information (features) is used to make the predictions. The 
performance of XGBOOST (XGB1, XGB2) improved by 1–4%. The histogram gradient boosting classifier 
(HistGrBoost)30,31 is another method that can naturally handle missing data. From the same table, we can see that 
HistGrBoost achieved the best performance on the proposed dataset, with an average precision of 0.701.

The p-values seen in Table 6 indicate a significant statistical difference between XGB1 and XGB2, favoring XGB1 
and between HistGrBoost and XGB2, favoring HistGrBoost. However, the difference between XGB1 and HistGrBoost is 
not statistically significant.

Figure 11 shows the performance of each model on the dataset that includes observations with missing values. The 
boxplot summarizes the precision scores across 5 validation folds.

As shown in Figure 11, HistGrBoost generally outperforms the XGBOOST variants. For additional validation of the 
performance of the models without excluding observations with missing values, we applied KNNimpute.32 Unlike simple 
imputation methods that use statistical metrics such as the mean, median, and mode, KNNimpute proved robust and 
provided an accurate estimation of the missing values according to.32 Table 7 illustrates the results of the models on the 
proposed dataset using the best-performing models (from the previous experiments) after applying the KNNimpute 
method.

The results after performing imputation, to avoid excluding observations from the original dataset, show improvement 
in the performance of some of the models used. As shown in Table 7, compared to Tables 3 and 5, the SVM and LR 
evaluation metrics have slightly increased, in terms of precision and recall. However, the other models’ performances 
remain almost unchanged.

Table 5 The Results of Several Methods That Support Prediction on Data with 
Missing Values. These Results are Obtained Using 5-Fold Cross-Validation. The 
Results Show the Mean ± Standard Deviation. Bolded Values are the Highest, for 
Each Metric

Method Accuracy Precision Recall F-Measure

XGB1 0.714 ± 0.027 0.698 ± 0.043 0.714 ± 0.027 0.659 ± 0.042

XGB2 0.703 ± 0.033 0.675 ± 0.045 0.703 ± 0.033 0.669 ± 0.045

HistGrBoost 0.718 ± 0.032 0.701 ± 0.047 0.718 ± 0.032 0.669 ± 0.047

Table 6 The Bottom Triangle of the Table Shows 
the p-Values from the Wilcoxon Signed-Rank Test, 
Calculated for the Results in Table 6, Comparing 
the Performance of Each Pair of Classifiers. The 
Top Half of the Table Displays the Maximum Mean 
Precision for Each Classifier

XGB1 XGB2 HistGrBoost

XGB1 1.000 0.698 0.701

XGB2 0.002 1.000 0.701

HistGrBoost 0.332 0.001 1.000
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It is anticipated that employing the KNNimpute approach will result in an increase in performance, as shown in 
Table 7. This method works by determining the nearest neighbour instances for each case with missing data and then 
using these examples to impute the missing value using methods such as average, mode, or weighted average.

The p-values, Table 8, indicate a significant difference between SVM and both RF and HistGrBoost, suggesting that 
SVM performs differently from these methods. However, there is no statistical evidence to reject the null hypothesis 
when comparing RF with HistGrBoost, meaning their performance difference is not significant.

Although this approach is more likely to be accurate and can improve decision boundaries and classification results, it 
cannot be guaranteed to be completely precise. Additionally, there are concerns about the reliability of synthetic data 
based on “more likely” estimates in medical decision-making. Recent research33,34 suggests that synthesizing new data is 
a risky approach, especially in medical fields where misdiagnosis can have serious repercussions; therefore, other 
approaches such as ensemble learning or data partitioning35 may be better alternatives.

The final set of experiments in this study is conducted using the best classifiers from the previous experiments. That is 
from the experiments of the clean data (without any missing values) we select RF and SVM and from the experiments on 
the dataset with missing values we select XGB1, XGB2 and HistGrBoost. In this experiment, we do not use the default 
parameters of the classifiers. Instead, we perform a grid search to find the best possible parameters that might increase the 

Figure 11 Boxplot illustrating the precision scores of models capable of handling missing data.

Table 7 The Results of the Best Performers on the Proposed Dataset After 
Applying KNN Imputation. The Results Show the Mean ± Standard Deviation. 
Bolded Values are the Highest, for Each Metric

Method Accuracy Precision Recall F-Measure

SVM 0.718 ± 0.025 0.720 ± 0.040 0.718 ± 0.025 0.652 ± 0.041

RF 0.716 ± 0.028 0.690 ± 0.045 0.713 ± 0.028 0.664 ± 0.042

HistGrBoost 0.714 ± 0.030 0.703 ± 0.045 0.719 ± 0.030 0.667 ± 0.045
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performance on the corresponding dataset. Table S2 shows each of these classifiers and their corresponding parameters 
that might impact the learning in each model. For more information about these parameters and their meaning, we refer 
the reader to SKlearn and XGBoost documentation pages.

After performing the grid search, we find the best parameters for each one of these classifiers as presented in Table 9.
Table 10 and 11 show the results and the p-values, respectively, of SVM and RF classifiers trained on the clean 

version on the dataset using the parameters mentioned in Table 9.
Tables 12 and 13 show the results and the p-values, respectively, of XGb1, XGB2 and HistGrBoost classifiers trained 

on the dataset with missing values using the parameters mentioned in Table 9.
As one can observe from Table 10, Table 11, there is no significant difference of these optimized parameters from the 

default parameters. SVM and RF show high p-values, indicating that their performance is almost similar. However, 
Tables 12 and 13 show that optimized XGB1 and XGB2 are now performing better than the HistGrBoost according to 
their corresponding p-values, which provide a strong evidence to reject the null hypotheses. While the performance of 
XGB1 and XGB2 is almost similar without any significant difference.

It is important to note that examining the performance of models on such datasets is not only intriguing but also yields 
significant opportunities for further research, each of which could be a study in its own right. However, in our 

Table 8 The Bottom Triangle of the Table 
Shows the p-Values from the Wilcoxon Signed- 
Rank Test, Calculated for the Results in Table 8, 
Comparing the Performance of Each Pair of 
Classifiers. The Top Half of the Table Displays 
the Maximum Mean Precision for Each 
Classifier

SVM RF HistGrBoost

SVM 1.000 0.720 0.720

RF 0.002 1.00 0.703

HistGrBoost 0.008 0.15 1.000

Table 9 The Best Hyperparameter Values for Each Used Classifier

Classifier Parameter values

SVM C: 10, coef0: 0.5, degree: 2, gamma: auto, kernel: poly

RF Bootstrap: False, max_depth: 30, min_samples_leaf: 6, min_samples_split: 10, n_estimators: 75

XGB1 Colsample_bytree: 0.8, gamma: 0.1, learning_rate: 0.2, max_depth: 7, n_estimators: 200, objective: binary:logitraw, subsample: 1.0

XGB2 Colsample_bytree: 1.0, gamma: 0, learning_rate: 0.1, max_depth: 5, n_estimators: 200, objective: binary:logistic, subsample: 0.8

HistGrBoost l2_regularization: 0, learning_rate: 0.2, max_depth: None, max_iter: 300, max_leaf_nodes: 63

Table 10 Results of SVM and RF Best Parameters Reported in Table 11. The 
Results Show the Mean ± Standard Deviation Over a 5-Fold Cross-Validation 
Test. Bolded Values are the Highest, for Each Metric

Classifier Accuracy Precision Recall F1-score

SVM 0.706 ± 0.038 0.704 ± 0.042 0.706 ± 0.038 0.665 ± 0.054

RF 0.707 ± 0.041 0.705 ± 0.046 0.707 ± 0.041 0.676 ± 0.056
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experimental study, we outline potential research paths that future researchers might consider exploring. This approach 
not only showcases our contributions but also sets the stage for ongoing inquiry and development in the field.

Discussion
This work demonstrated the feasibility of predicting cancer by analysing the components of CBC using a predictive 
modelling method. To maintain objectivity and prevent bias, we implemented a study design involving anonymization of 
patient. Initially, we built and trained the predictive model using an array of derived data. One of the datasets contained 
information about individuals who had been diagnosed with cancer; the second included non-cancer patients who had 
various chronic diseases that impacted the results of their CBC. Future prospective clinical research could offer a more 
precise assessment of the effectiveness of our methodology. The employed modelling approaches accurately distinguish 
between patients with malignant and benign conditions. The CBC findings were acquired from medical records collected 

Table 11 The Bottom Triangle of 
the Table Shows the p-Values from 
the Wilcoxon Signed-Rank Test, 
Calculated for the Results in 
Table 12, Comparing the 
Performance of Each Pair of 
Classifiers. The Top Half of the 
Table Displays the Maximum 
Mean Precision for Each Classifier

SVM RF

SVM 1.000 0.705

RF 0.199 1.000

Table 12 Results of XGboost and HistGrBoost Best Parameters Reported in 
Table 11. The Results Show the Mean ± Standard Deviation Over a 5-Fold Cross- 
Validation Test. Bolded Values are the Highest, for Each Metric

Method Accuracy Precision Recall F-Measure

XGB1 0.722 ± 0.030 0.715 ± 0.045 0.722 ± 0.030 0.665 ± 0.045

XGB2 0.723 ± 0.030 0.702 ± 0.044 0.723 ± 0.030 0.678 ± 0.046

HistGrBoost 0.719 ± 0.032 0.702 ± 0.047 0.719 ± 0.032 0.672 ± 0.042

Table 13 The Bottom Triangle of the Table Shows 
the p-Values from the Wilcoxon Signed-Rank Test, 
Calculated for the Results in Table 13, Comparing 
the Performance of Each Pair of Classifiers. The 
Top Half of the Table Displays the Maximum Mean 
Precision for Each Classifier

XGB1 XGB2 HistGrBoost

XGB1 1.000 0. 715 0. 715

XGB2 0.481 1.000 0.702

HistGrBoost 0.002 0.012 1.000
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from multiple hospitals in Jordan. As a result, the proposed method offers a wider range of population coverage and is 
more generalizable.

We demonstrated the utility of CBC data in providing vital insights into the presence of malignancy and its 
significance in clinical prediction models. In comparison, symptom-based models are limited by their inherent nature, 
as symptoms may not manifest until later stages of the disease. Moreover, individuals have the option to disregard or 
withhold information about their symptoms.2

Initially, we used RF feature priority ranking to highlight important features more efficiently. In this respect, “more 
efficiently” refers largely to the RF model’s capacity to rank features according to their relevance scores, allowing us to 
find the most significant factors for predicting outcomes without requiring considerable manual selection. This method 
not only speeds up the feature selection process but it also improves the accuracy of our model by focusing on the most 
useful features. Since the dataset contains several CBC test results for each patient, it was possible to include every 
statistical feature for every CBC parameters (for instance, the mean, standard deviation, and median), which resulted in 
the identification of the 60 most important features. Including different blood parameters, both as a multiple measurement 
and as a change over time, increased the model’s prediction power and might show a longer-term shift in blood 
parameters rather than a transient one.

In this work, we only used the RF model for feature selection, which may have introduced biases inherent in a single 
model’s perspective. However, we used 5-fold cross-validation during the model training process, which helps to reduce 
biases and offers a more trustworthy assessment of the model’s performance.15 Using a variety of models, such as an 
ensemble method with stacking feature importance, might improve feature selection robustness and generalization.36 

This restriction is significant since it may impact the reproducibility and reliability of our findings. As a result, it is 
critical that we assess and contrast the advantages of ensemble feature selection approaches in our future work.

We constructed a computational model utilizing an extensive dataset consisting of cancer and non-cancerous 
observations. Our methodology utilizes innovative techniques in feature selection, employing z score normalization to 
standardize feature scales. Additionally, we employ both linear and nonlinear modelling approaches to effectively 
manage sparse and chaotic information across time.

Choosing the optimal ML model requires meticulous examination. We assess the efficacy of a composite of classifiers, 
including RF, ANN, KNN, XGBOOST, AdaBoost, SVM, CTELC, and EE, on the provided dataset. Our results demonstrated 
that the RF model exhibited superior performance compared to the other models in accurately identifying cancer patients. This 
discovery illustrates the significant improvement that our model provides compared to current knowledge.14 The RF, SVM and 
LDA models demonstrated greater performance on the dataset of Jordanian patients, further substantiating their superiority, the 
RF model achieved an accuracy of 0.704 ± 0.044, the SVM model reached an accuracy of 0.705 ± 0.040, and the LDA model 
demonstrated an accuracy of 0.699 ± 0.049. In comparison, other models performed similar to LDA or even lower than 69.9% 
of accuracy. Tree-based models outweigh all other models (SVM, NN) in our study as well as in other studies.16

We have demonstrated that our approach outperforms other investigations that rely on a single or limited number of 
blood components for making predictions (e.g.,37). This is accomplished by utilizing the full parameters of the CBC, 
trends in their values, sex, and age.

Based on the RF feature importance ranking, the WBC counts were determined to have the greatest impact. 
Moreover, the platelet count, age, and red blood cell count are notable attributes. Radiation therapy and chemotherapy 
can lead to a decrease in white blood cell count, as the bone marrow has decreased activity in patients who have been 
diagnosed. During the early diagnostic stage, the WBC count can serve as a reliable indicator of systemic inflammation, 
which has been associated with increased cancer risk and mortality rates in many studies. An association between WBCs 
and the risk of developing cancer has been documented in both lung cancer38 and breast cancer39. An observational study 
in the United Kingdom examined the association between WBC ratios and a heightened risk of cancer and mortality.40 

The study demonstrated a greater occurrence of colorectal and lung cancer risk as the number of cells increased. It has 
also been proposed that the WBC count and WBC ratio might be used as biomarkers to predict the risk of developing 
cancer, allowing for early detection of the disease up to one year before clinical diagnosis.

RBC count is a significant CBC result. RBC count is correlated with several CBC parameters, including haematocrit, 
MCV, MCH, MCHC, and RDW. Several studies have detailed the connections between cancer and these parameters. 
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Moreover, the RBC counts MCV and MCH have been used in ML predictive models in the context of CRC.41 The model 
obtains between 98 and 99% accuracy when applied to data from different populations.16

The correlation between platelet count and cancer incidence is significant since it serves as an indicator of hemostasis in 
clinical settings. An increased platelet count has proven to be a useful indicator of cancer11 and a risk factor for cancer.42 

Furthermore, investigations examining the relationship between platelet count and survival in individuals recently diagnosed 
with cancer have revealed that many patients exhibit thrombocytosis (defined as a platelet count exceeding 450,000/μL).43

Patient age was a strong indicator of the presence of cancer in our predictive model. The significance of age suggests that 
cancer continues to impact individuals who are already susceptible, specifically older people with many health conditions, 
particularly those with compromised physical and mental well-being who are prone to illness. The National Cancer Institute 
(NCI) states that advancing age is the primary risk factor for cancer in general and for many specific forms of cancer.44 Some 
researchers have linked this trend to a decrease in immune system activity45 and a deterioration of cellular function.46 

Research conducted on the Jordanian population indicates that age has a fluctuating impact on the occurrence of cancer.3

Similar to past studies in this field, our research is subject to specific constraints. While CBC data are readily available in 
Jordan, creating accurate forecasts using these data is notoriously difficult due to uneven testing or inadequate data collection. 
One further limitation of our study is that we verified our findings by retrospective analysis. However, we have presented 
a prediction equation that is mathematically bound to align with the principles of biology and medicine for any possible CBC 
test. As mentioned in the methodological description, we chose not to calibrate the model and instead utilized its free 
parameters. This approach enables us to determine the most suitable ML models with greater accuracy.

The current model exhibits good performance when evaluating unseen data by employing 5-fold cross-validation, ensuring 
both training and testing of all the data. However, the maximum diagnostic accuracy reached is merely 72%, which may be 
satisfactory for certain applications but falls short for medical purposes. In comparison to those of medical doctors, our outcomes 
might seem inadequate. This disparity arises because our model solely depends on blood tests and demographic factors such as 
age and sex, whereas medical professionals utilize extra information such as tumor markers, imaging, and scans to enhance their 
diagnoses. By integrating these additional data into the ML model, we could significantly boost its diagnostic accuracy since 
more comprehensive data would enable it to make more precise decisions. Such improvements can be made in our future work.

Conclusion and Future Work
We have introduced a predictive modelling approach to enhance the detection of cancer by evaluating age, sex, and 
comprehensive CBC information, which is often available in the electronic medical records of Jordanian hospitals. Our 
research focused on analysing the frequency and features of cancer in Jordanian patients. Additionally, we examine the 
pros and drawbacks of several predictive modelling methods in this specific context.

In future studies, there is a vast potential to expand upon the predictive modelling techniques used in this research by 
incorporating advanced methodologies. Exploring deep learning methods could provide insights into more complex 
patterns within the dataset, potentially improving the accuracy and robustness of the predictions.47–50

Another avenue for enhancement involves experimenting with different imputation techniques to manage missing 
values in the dataset. Current methods, while effective, have limitations that novel imputation strategies could overcome, 
thereby refining the overall quality of the dataset and the resultant model performance.

Furthermore, broadening the focus of our study to encompass multiclass categorization would provide a more 
thorough evaluation of machine learning’s capacity to forecast different kinds of cancer. The use of numerous tumor 
markers in addition to blood tests and further investigation of their relationship are made possible by the multiclass 
classification approach. This extension would offer a more comprehensive comprehension of the models’ possible 
applications across various cancer classifications.

In addition to other methods, hyperparameter tuning for models such as support vector machines (SVMs) and 
random forests (RFs) represents a crucial area for future research. By optimizing these parameters, the predictive 
accuracy and efficiency of the models can be significantly enhanced, leading to more reliable and actionable 
results. It is important to highlight the need for further research to verify our results with larger and more varied 
datasets, since the incorporation of diverse datasets would allow for a more comprehensive validation of the 
models and their performance across different populations. Also, more advanced feature engineering methods like 
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the interaction between features can be used in future research on this topic as it might increase the performance 
of the system. The comprehensive exploration of these advanced methods and enhancements cannot be adequately 
addressed within the confines of a single study. Each of these areas represents a substantial endeavour that could, 
individually, constitute a focused research project. Thus, our study lays the groundwork for these future explora-
tions, which are essential for advancing the field of predictive modelling in medical diagnostics.
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