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Abstract: Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal 
tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this 
condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic 
periodontitis. We first explore the relationship between diabetes and mitochondrial dysfunction, then analyze the specific manifesta-
tions of mitochondrial dysfunction in diabetic periodontitis, including morphological changes, energy metabolism disorders, increased 
oxidative stress, and enhanced apoptosis. We further delve into the connections between mitochondrial dysfunction and the pathogenic 
mechanisms of diabetic periodontitis, such as exacerbated inflammatory responses, decreased tissue repair capacity, and autophagy 
dysregulation. Finally, we discuss potential therapeutic targets based on mitochondrial function, including antioxidant strategies, 
mitochondria-targeted drugs, and autophagy regulators. We also propose future research directions, emphasizing the need for in-depth 
exploration of molecular mechanisms, development of new diagnostic markers and therapeutic strategies, and personalized treatment 
approaches. This review provides new insights into understanding the pathogenic mechanisms of diabetic periodontitis and offers 
a theoretical basis for developing targeted prevention and treatment strategies to improve oral health in diabetic patients. 
Keywords: diabetic periodontitis, mitochondrial dysfunction, inflammation, therapeutic targets

Introduction
Diabetic periodontitis is a chronic inflammatory disease commonly observed in diabetic patients, characterized by 
progressive destruction of periodontal tissues.1 This condition not only affects oral health but may also negatively 
impact the overall control of diabetes, creating a vicious cycle.2 Epidemiological studies indicate that diabetic patients 
have a significantly higher risk of developing periodontitis compared to non-diabetic individuals. Statistics show that 
approximately 45% of patients with type 2 diabetes suffer from moderate to severe periodontitis, a proportion far 
exceeding that of the general population.3

The clinical manifestations of diabetic periodontitis are typically more severe than those in non-diabetic patients. 
Common symptoms include gingival bleeding, swelling, deepening of periodontal pockets, and accelerated alveolar bone 
resorption.4 Notably, diabetic periodontitis often progresses more rapidly, exhibits more severe tissue destruction, and 
responds relatively poorly to conventional treatments.1 These characteristics underscore the necessity of in-depth 
research into its pathogenic mechanisms to develop more effective prevention and treatment strategies.

The pathological changes of diabetes and their impact on periodontal disease are mainly reflected in the following points: 
(1) The characteristic of diabetes is chronic hyperglycemia, which has a profound effect on multiple organ systems, including 
periodontal tissues. Hyperglycemia induces the formation of advanced glycation end products (AGEs), which accumulate in 
periodontal tissues and bind to their receptors (RAGE).5 This interaction activates inflammatory pathways, including NF-κB, 
leading to the overproduction of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6.6 (2) Diabetes also impairs the 
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immune system by reducing neutrophil chemotaxis, phagocytosis, and pathogen clearance. This compromised host defense 
makes individuals with diabetes more susceptible to periodontal infections.7 (3) Endothelial dysfunction caused by diabetes 
leads to reduced bioavailability of nitric oxide, thereby impairing vascular tone and reducing blood flow to periodontal tissues. 
This results in delayed wound healing and reduced oxygen delivery to periodontal tissues, exacerbating tissue damage.8 

(4) Hyperglycemia increases the production of reactive oxygen species (ROS), leading to oxidative stress and further 
amplifying the inflammatory response. In periodontal tissues, excessive ROS can damage cellular components such as 
proteins, lipids, and DNA, ultimately causing cell death and exacerbating periodontal destruction.9,10

Mitochondria, serving as the “power plants” of cells, play a crucial role in maintaining normal cellular functions.11 

These organelles are not only responsible for energy production but also participate in various important cellular 
processes, including calcium ion balance regulation, ROS generation and elimination, and apoptosis regulation.12 The 
basic structure of mitochondria includes the outer membrane, inner membrane, intermembrane space and matrix.13 In 
terms of energy metabolism, mitochondria synthesize ATP through the tricarboxylic acid cycle and electron transport 
chain, providing energy for cells. Additionally, mitochondria play important roles in cellular signal transduction, 
including the transmission of stress response signals and sensing of metabolic states.14 In recent years, researchers 
have increasingly recognized the complex communication between mitochondria and cell nucleus, which is crucial for 
maintaining cellular homeostasis.15

Mitochondrial dysfunction has been confirmed to be closely associated with various chronic diseases, including 
neurodegenerative diseases, cardiovascular diseases, and metabolic syndrome.16,17 In the context of diabetes, persistent 
hyperglycemic conditions can lead to significant alterations in mitochondrial function, including mitochondrial DNA 
(mtDNA) damage, energy metabolism disorders, and increased oxidative stress.18 These changes may play important 
roles in the occurrence and development of diabetic complications, including diabetic periodontitis.19

In recent years, significant advances have been made in mitochondrial biology research, particularly in the 
areas of mitochondrial dynamics (fusion and fission), quality control mechanisms, and mitochondria-targeted 
therapeutic strategies.20,21 This new knowledge provides fresh perspectives for understanding the pathophysiolo-
gical processes of diabetic periodontitis, while also indicating directions for developing innovative treatment 
methods.

This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in 
diabetic periodontitis. We will first explore the relationship between diabetes and mitochondrial dysfunction, then analyze 
the specific manifestations of mitochondrial dysfunction in diabetic periodontitis in detail. Next, we will delve into the 
connections between mitochondrial dysfunction and the pathogenic mechanisms of diabetic periodontitis, including 
exacerbated inflammatory responses, increased apoptosis, and decreased tissue repair capacity. Finally, we will discuss 
potential therapeutic targets based on mitochondrial function and propose future research directions. Through this review, 
we hope not only to provide new insights into understanding the pathogenic mechanisms of diabetic periodontitis but also 
to provide a theoretical basis for developing targeted prevention and treatment strategies, ultimately improving the oral 
health and quality of life for diabetic patients.

Diabetes and Mitochondrial Dysfunction
Diabetes is a common metabolic disorder characterized by chronic hyperglycemia.22 In recent years, accumulating evidence 
suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of diabetes.23–25 This 
dysfunction not only affects insulin secretion from pancreatic β-cells but also influences insulin sensitivity in peripheral 
tissues, thereby exacerbating the pathological process of diabetes.

Mitochondrial Metabolic Dysfunction
Persistent hyperglycemia exerts multiple adverse effects on intracellular mitochondria. Firstly, high glucose levels lead to 
over-activation of the mitochondrial electron transport chain, increasing the production of ROS. Excess ROS not only 
directly damage mtDNA, proteins, and lipids but also trigger a series of inflammatory responses, further exacerbating 
cellular damage.26 Secondly, hyperglycemia affects mitochondrial energy metabolism function. Studies have found that 
in diabetic conditions, mitochondrial oxidative phosphorylation efficiency decreases, resulting in reduced ATP 
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production. This energy metabolic disorder may be caused by decreased activity of electron transport chain complexes 
and impaired mitochondrial inner membrane integrity caused by hyperglycemia.27,28 Additionally, hyperglycemia 
interferes with mitochondrial calcium ion balance. Mitochondria are important intracellular calcium ion storage orga-
nelles, and calcium ion balance is crucial for maintaining mitochondrial function.23 Under diabetic conditions, mitochon-
drial calcium overload is common, which may lead to mitochondrial membrane potential collapse and trigger cell 
apoptosis.29

Diabetes-Related MtDNA Damage
MtDNA is more susceptible to oxidative stress damage than nuclear DNA due to its unique structure and repair 
mechanisms.30 In diabetic patients, researchers have found significantly increased rates of mtDNA mutations and 
deletions.31 These damages may originate from hyperglycemia-induced oxidative stress and the accumulation of AGEs.32

mtDNA damage directly affects the synthesis of mitochondrial proteins, leading to respiratory chain dysfunction and 
forming a vicious cycle.33 For example, a study on patients with type 2 diabetes found a significant decrease in mtDNA 
copy number in peripheral blood, which negatively correlated with patients’ blood glucose levels.34 Furthermore, 
mtDNA damage may exacerbate systemic inflammatory responses by activating inflammatory signaling pathways, 
such as the NLRP3 inflammasome, which plays an important role in the development of diabetic complications.35

Mitochondrial Dynamics Abnormalities
Mitochondria are highly dynamic organelles, their morphology and function finely regulated by fusion and fission 
processes.36 This dynamic balance is crucial for maintaining the integrity and function of the mitochondrial network. 
However, under diabetic conditions, this balance is often disrupted.37 Studies have found that hyperglycemic environ-
ments promote the activation of mitochondrial fission proteins (such as Drp1) while inhibiting the expression of fusion 
proteins (such as Mfn1, Mfn2, and OPA1).38,39 This imbalance leads to fragmentation of the mitochondrial network, 
affecting mitochondrial function and cellular metabolic state. For instance, in a diabetic nephropathy model, researchers 
observed significant fragmentation of mitochondria in glomerular podocytes, accompanied by mitochondrial dysfunction 
and increased cell apoptosis.40,41

Manifestations of Mitochondrial Dysfunction in Diabetic Periodontitis
Diabetic periodontitis is a common oral complication of diabetes, with a complex pathogenesis involving multiple 
cellular and molecular level alterations.17 In recent years, increasing research has focused on the crucial role of 
mitochondrial dysfunction in diabetic periodontitis.42 This dysfunction not only affects the metabolic state of periodontal 
tissues but also participates in the regulation of inflammatory responses and tissue damage processes (Figure 1).43

Morphological Changes of Mitochondria in Periodontal Tissues
Significant morphological changes in mitochondria have been observed in the periodontal tissues of patients with diabetic 
periodontitis.44 Electron microscopy studies have shown that compared with healthy controls, mitochondria in gingival 
fibroblasts and periodontal ligament cells of diabetic patients exhibit characteristics of swelling, disorganized cristae 
structure, and even fragmentation.45 These morphological changes are generally considered to be visual manifestations of 
mitochondrial dysfunction.46 A study on experimental diabetic rats found that as diabetes progressed, the number of 
mitochondria decreased while their volume increased.47 This change may reflect the attempt of mitochondria to 
compensate for functional decline by increasing volume, ultimately leading to the destruction of the mitochondrial 
network. Furthermore, a significant decrease in mtDNA copy number was observed in the diabetes.48 The reduction in 
mtDNA copy number is typically closely associated with mitochondrial dysfunction and may lead to decreased 
mitochondrial protein synthesis and reduced energy production efficiency.49

Mitochondrial Energy Metabolic Disorders
Mitochondria are the center of cellular energy metabolism, and their dysfunction directly affects cellular energy supply.50 Energy 
metabolic disorders not only affect normal cellular function but may also trigger adaptive responses. For instance, studies have 
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found increased activity of AMP-activated protein kinase (AMPK) in the periodontal tissues of patients with diabetic.51 AMPK is 
a cellular energy sensor, and its increased activity may be a compensatory response to mitochondrial dysfunction.52 The 
tricarboxylic acid (TCA) cycle, a central pathway in mitochondrial energy metabolism, exhibits significant perturbations in 
diabetic periodontitis. A metabolomic analysis of gingival tissues from patients with diabetic periodontitis revealed substantial 
alterations in TCA cycle-associated metabolites.53 Notably, elevated levels of citrate and α-ketoglutarate were observed, 
concurrent with decreased succinate concentrations. These metabolic shifts suggest inhibition of key enzymes of TCA cycle, 
potentially compromising energy metabolism efficiency.54 The etiology of these metabolic disruptions is postulated to be linked to 
persistent hyperglycemia-induced enzyme glycation and oxidative stress.55 Moreover, fatty acid β-oxidation, another crucial 
mitochondrial energy pathway, is similarly impaired in diabetic periodontitis. Under hyperglycemic conditions, periodontal tissue 
cells demonstrate reduced fatty acid oxidation capacity.56 These alterations may precipitate intracellular lipid accumulation, 
potentially exacerbating mitochondrial dysfunction and inflammatory responses.57 Such metabolic dysregulation underscores the 
complex interplay between diabetes and periodontal pathology, highlighting potential therapeutic targets for intervention.

Increased Mitochondria-Related Oxidative Stress
Oxidative stress is a key factor in the pathogenesis of diabetic periodontitis, and mitochondria are the main source of ROS in 
cells.58 In diabetic periodontitis, mitochondrial dysfunction leads to increased ROS production, while the antioxidant defense 
system is impaired, ultimately resulting in exacerbated oxidative stress.54 Studies have found that in the gingival tissues of 
patients with diabetic periodontitis, the activity of mitochondrial superoxide dismutase (MnSOD) is significantly reduced, 
while lipid peroxidation levels are elevated.59 This disruption of the oxidative-antioxidative balance not only directly damages 
cellular components but may also activate inflammatory signaling pathways, such as the NF-κB pathway, further exacerbating 
the inflammatory response.60 Moreover, the increase in mitochondria-derived ROS may lead to oxidative damage of 
mtDNA.61 A study on diabetic mice showed significantly elevated levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), 
a marker of DNA oxidative damage, in periodontal tissues.62 Damage to mtDNA may further exacerbate mitochondrial 
dysfunction, forming a vicious cycle.63

Increased Mitochondria-Mediated Cell Apoptosis
Mitochondria play a central role in regulating the apoptosis process.64 In diabetes, researchers have observed a significant 
increase in apoptosis in periodontal tissue cells, which may be closely related to mitochondrial dysfunction.65 Specifically, in 
the periodontal tissue of rats with diabetes, the expression of pro-apoptotic protein Bax is increased, while the expression of 
anti-apoptotic protein Bcl-2 is decreased.66 These changes lead to increased mitochondrial membrane permeability, promoting 
the release of cytochrome c, which in turn activates downstream caspase cascades, ultimately resulting in cell apoptosis.67 

Figure 1 The main manifestations of mitochondrial dysfunction in diabetic periodontitis.
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Furthermore, mitochondrial dysfunction may promote cell apoptosis through other mechanisms. For example, mitochondrial 
calcium ion homeostasis imbalance may activate calcium-dependent proteases, triggering the apoptosis process.29 

Additionally, the increase in mitochondria-derived ROS may directly damage DNA, activating p53-mediated apoptotic 
pathways.68

Mitochondrial Dysfunction and Pathogenic Mechanisms of Diabetic 
Periodontitis
Mitochondrial dysfunction plays a central role in the pathogenic mechanisms of diabetic periodontitis, influencing 
disease progression through multiple pathways.69 These mechanisms interact to form a complex network, ultimately 
leading to periodontal tissue destruction and functional loss. A thorough understanding of these mechanisms is crucial for 
developing new prevention and treatment strategies (Figure 2).

Exacerbation of Inflammatory Responses
Mitochondrial dysfunction is a significant factor contributing to the exacerbation of inflammatory responses in diabetic 
periodontitis.54 Firstly, excessive production of mitochondria-derived ROS can activate various inflammatory signaling 
pathways, such as NF-κB and the NLRP3 inflammasome.70 A study on diabetic rat periodontal tissues found that ROS 
increase due to mitochondrial dysfunction positively correlated with NF-κB activation, subsequently promoting the 
expression of inflammatory factors IL-1β, TNF-α, and IL-6.71

Secondly, the release of mtDNA can act as damage-associated molecular patterns (DAMPs), triggering innate immune 
responses.72 In the gingival tissues of patients with chronic periodontitis, researchers detected significantly elevated levels 
of circulating mtDNA, which positively correlated with inflammatory marker levels.73 This mtDNA release may be caused 
by impaired mitochondrial membrane integrity. Furthermore, mitochondrial dysfunction may regulate inflammatory 

Figure 2 Pathogenic Mechanisms and Potential Therapeutic Targets for Mitochondrial Dysfunction in Diabetic Periodontitis.
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responses by influencing the metabolic reprogramming of immune cells.74 For instance, under diabetic conditions, impaired 
mitochondrial oxidative phosphorylation in macrophages leads to a preference for glycolytic metabolism, which is 
associated with a pro-inflammatory phenotype.75 An in vitro study demonstrated that targeted improvement of macrophage 
mitochondrial function could significantly alleviate high glucose-induced inflammatory responses.76

Decreased Periodontal Tissue Repair Capacity
Mitochondrial dysfunction also affects the repair capacity of periodontal tissues, playing a crucial role in the sustained 
progression of diabetic periodontitis.77 Firstly, mitochondrial dysfunction impacts the self-renewal and differentiation abilities 
of periodontal ligament stem cells (PDLSCs).78 A study found that PDLSCs derived from diabetic patients exhibited 
significant mitochondrial dysfunction, including decreased mitochondrial membrane potential and reduced ATP production, 
which was closely related to their diminished osteogenic differentiation capacity.79 Secondly, mitochondrial dysfunction 
affects the balance between synthesis and degradation of the extracellular matrix (ECM).80 This imbalance ultimately results 
in excessive ECM degradation and reduced periodontal tissue support capacity.81 Additionally, mitochondrial dysfunction 
interferes with the blood supply to periodontal tissues by affecting vascular endothelial cell function.82 Studies have shown 
that mitochondrial dysfunction in vascular endothelial cells under hyperglycemic conditions leads to decreased expression of 
angiogenic factors (such as VEGF), ultimately affecting vascular regeneration during tissue repair processes.83

Autophagy Dysregulation
Autophagy is an important mechanism for cellular stress response, with mitophagy being a key process for clearing 
damaged mitochondria.84 In diabetic periodontitis, there is a complex interaction between mitochondrial dysfunction and 
autophagy dysregulation.85 On one hand, persistent mitochondrial dysfunction can lead to overactivation of the 
autophagy pathway, potentially resulting in autophagic cell death.86 In the periodontal tissues of diabetic rats, researchers 
observed significantly increased expression of autophagy markers LC3-II and p62, which positively correlated with the 
degree of tissue damage.87 On the other hand, long-term hyperglycemic environments may lead to impaired autophagy 
function, especially in the mitophagy process.88 This decline in autophagy function results in the accumulation of 
damaged mitochondria, further exacerbating oxidative stress and inflammatory responses.89 An in vitro study showed 
that pharmacological activation of PINK1/Parkin-mediated mitophagy could significantly improve mitochondrial func-
tion and cell viability in periodontal ligament cells under high glucose conditions.90

Potential Therapeutic Targets for Mitochondrial Dysfunction in Diabetic 
Periodontitis
As our understanding of the role of mitochondrial dysfunction in diabetic periodontitis deepens, mitochondria-targeted 
therapeutic strategies have gradually become a research hotspot. These strategies primarily focus on reducing oxidative 
stress, improving mitochondrial energy metabolism, regulating mitochondrial dynamics, and promoting mitochondrial 
biogenesis.56,91

Antioxidant Strategies
Given the crucial role of oxidative stress in diabetic periodontitis, mitochondria-targeted antioxidant strategies have 
become an important therapeutic direction.92

Mitochondria-Targeted Antioxidants
Traditional antioxidants have shown limited efficacy in treating diabetic periodontitis, partly due to their difficulty in 
effectively entering mitochondria.93 Consequently, researchers have developed a series of mitochondria-targeted anti-
oxidants, such as MitoQ, SkQ1, and SS-31.94 These compounds can specifically accumulate in mitochondria, effectively 
scavenging excess ROS.95
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Nrf2 Activators
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the expression of antioxidant 
genes.96 In diabetic periodontitis, Nrf2 activity is often suppressed.97 Therefore, activating Nrf2 has become a potential 
therapeutic strategy.

Research has found that some natural compounds such as curcumin and resveratrol can improve diabetic periodontitis 
by activating the Nrf2 pathway.98 For example, a clinical trial showed that oral curcumin supplementation could 
significantly reduce gingival inflammation index and periodontal pocket depth in diabetic patients.99

Mitochondria-Targeted Drugs
In addition to antioxidant strategies, drugs directly improving mitochondrial function have also shown therapeutic 
potential.100

Mitochondrial Metabolism Regulators
Mitochondrial energy metabolism disorder is an important feature of diabetic periodontitis.101 Thus, regulating mito-
chondrial metabolism has become a potential therapeutic target. Metformin, a widely used antidiabetic drug, has recently 
been found to improve mitochondrial function.102 It has been shown that metformin improved mitochondrial function by 
activating the AMPK pathway, thereby alleviating inflammatory responses.103 Another potential metabolic regulator is 
pyrroloquinoline quinone (PQQ), which can promote mitochondrial biogenesis.104

Mitochondrial Dynamics Regulators
Given the role of mitochondrial dynamics abnormalities in diabetic periodontitis, regulating mitochondrial fusion 
and fission processes has become a new therapeutic direction.92 For example, the mitochondrial fission inhibitor 
Mdivi-1 induces mitochondrial fragmentation induced by P. gingivalis infection, increased the mtROS levels, and 
decreased the MMP and ATP concentration in vascular endothelial cells.105 On the other hand, promoting mito-
chondrial fusion may also have therapeutic effects. Research has found that overexpression of the mitochondrial 
fusion protein Mfn2 can improve mitochondrial function and inflammatory status in the periodontal tissues of 
diabetic mice.106

Autophagy Regulators
Considering the important role of autophagy in maintaining mitochondrial function, regulating the autophagy process has 
also become a potential therapeutic strategy.107

Rapamycin and Its Analogues
Rapamycin is a classic autophagy activator that promotes autophagy by inhibiting the mTOR pathway.108 Research has 
found that low-dose rapamycin can improve the periodontal condition of diabetic mice, which may be related to its role 
in promoting mitophagy and clearing damaged mitochondria.109,110

SIRT1 Activators
SIRT1 is an important metabolic sensor involved in regulating autophagy and mitochondrial function.111 Based on 
existing studies, it is hypothesized that SIRT1 activators such as resveratrol may alleviate symptoms of diabetic 
periodontitis by promoting autophagy and improving mitochondrial function.112,113

Conclusions and Future Directions
This review highlights the pivotal role of mitochondrial dysfunction in diabetic periodontitis. Mitochondrial impairment 
induced by diabetes, including DNA damage, disrupted energy metabolism, increased oxidative stress, and abnormal 
dynamics, not only compromises periodontal tissue function but also triggers inflammatory cascades, accelerating tissue 
destruction. We have identified several promising therapeutic strategies targeting mitochondrial function, such as 
antioxidants, metabolism regulators, and autophagy modulators. These approaches offer new possibilities for managing 
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diabetic periodontitis. However, further research is needed to validate these treatments in clinical settings and to explore 
personalized approaches based on mitochondrial status.

In summary, understanding mitochondrial dysfunction in diabetic periodontitis provides valuable insights into the 
mechanisms of diseases. Future research endeavors should prioritize the translation of basic scientific findings into 
clinical practice, the development of more efficacious and well-tolerated mitochondria-targeted therapeutic modalities, 
and the exploration of potential links between mitochondrial dysfunction and other diabetic complications. These efforts 
aim to formulate more comprehensive and integrated treatment strategies for individuals with diabetes mellitus and its 
associated periodontal manifestations.
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