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Abstract: Glioma is the most common primary malignant brain tumor with a poor survival rate. It is characterized by diffuse and 
invasive growth and heterogeneity, which limits tumor identification and complete resection. Therefore, the precise detection and 
postoperative adjuvant therapy of gliomas have become increasingly important and urgent. Nanotechnology, with its excellent 
biocompatibility and controllable chemical properties, has attracted much attention in recent decades. Metal nanoparticles are widely 
used in the field of biomedical imaging and detection, and have shown promising applications in targeted drug delivery and therapy. 
The current review aims to systematically summarize the application of different types of metal nanoparticles in the treatment and 
detection of glioma. We also discussed the advantages and mechanisms of metal nanoparticles when used for glioma therapy, including 
chemotherapy, radiotherapy and photothermal therapy. We hope to promote the application of metallic nanoparticles in glioma 
diagnosis and treatment, moving towards clinical translation to benefit patients. 
Keywords: metal nanoparticles, glioma, treatment

Introduction
Despite tremendous development in biomedical technology, malignant brain gliomas has been one of the most malignant 
and aggressive diseases, posing an extremely serious threat to human survival. Since the 21st century, the mortality rate of 
brain gliomas has risen significantly in the world.1 Most malignant brain gliomas are treated with maximum safe 
aggressive surgery followed by adjuvant therapy, eg chemotherapy and radiotherapy.2,3 Numerous studies are trying to 
overcome obstacles in the treatment and detection of glioma.4 However, the inherent aggressive growth of malignant 
glioma results in limited therapeutic efficacy.

Based on the molecular pathology of glioma, these tumors are classified as astrocytoma, oligodendroglioma or glioblas-
toma (GBM) according to WHO.5 GBM is the most aggressive form of glioma, its cell density and nuclear atypia are 
significantly increased, with multi nuclear fission and pathological mitosis, showing obvious endovascular hyperplasia and 
necrosis.6 After undergoing surgical resection, it is inevitable that there will be local residual tumor micro-infiltration and 
recurrence. In addition, radiotherapy resistance and chemotherapy resistance are prominent problems encountered in GBM 
treatment.7 Therefore, GBM remains one of the most difficult tumor to treat and the median survival time of GBM patients is 
less than 14.6 months.8,9 It is urgently needed to develop new methods to combat glioma and improve the life quality and 
survival time of patients.

Nanotechnology is an emerging field that has made huge advances in biomedicine and shown promising prospects in clinical 
trials for cancer treatment, detection, and precise targeted therapy (Table 1). Metal nanoparticles offer an unprecedented 
opportunity to revolutionize and invent novel detection methods for gliomas or to boost the effectiveness of therapy.10 They 
possess several unique properties, thereby establishing a prominent position in the field of drug delivery system. First, metal 
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nanoparticle drugs not only exhibit improved absorption and enhanced bioavailability in vivo, but also offer potential advantages 
in pharmacokinetics, biocompatibility, and controlled degradability. Second, metal nanoparticles reach GBM sites through both 
passive and active targeting mechanisms. They can also accumulate at tumor sites through the enhanced permeability and 
retention (EPR) effect in passive targeting. Additionally, surface modifications and targeting ligands enable active targeting to 
specific tumor cells.11 Third, metal nanoparticles present an advantage in tumor target therapy. They not only provide improved 
specificity and increased sensitivity for medical imaging detection.12 All of these properties contribute to the future treatment and 
detection of glioma.

In this review, we will firstly introduce different types of metal nanomaterials, including gold nanoparticles, magnetic 
iron oxide nanoparticles and some metal-based quantum dots, illustrating advantages of nanoparticles in the treatment 
and detection of glioma. Secondly, we will reveal the capacity of metal nanoparticles in drug delivery, tumor target 
therapy and detection of malignant glioma. Finally, we will explore the mechanisms of metal nanoparticles in glioma 
imaging as well as the application of nanotechnology in radiotherapy, chemotherapy, and photothermal therapy.

Different Types of Metal Nanoparticles in Glioma Therapy
Since liposomes were first used in the biomedical field, a large number of nanoparticles have been approved by the FDA 
for medical applications.13 Nanoparticles are defined as ultrafine particles, the size of which is in the range of 1–100 nm. 
These small size nanoparticles have a good ability to cross the Blood-Brain Barrier (BBB) without causing damage to 
normal tissues.14 Recently, metal nanomaterials are becoming increasingly important in the field of medical imaging and 
cancer treatment. The excellent biocompatibility and drug delivery capability of the metal nanomaterials make them to 
possess a promising future in the controlled drug release, cancer detection, drug delivery and tumor therapy. Actually, 

Table 1 Clinical Trials of Nanomaterials in Brain Cancers

Nano Agents Brain Tumor NCT ID Phase Status Refs

Liposomal-Irinotecan Recurrent high-grade glioma NCT02022644 I Completed [13,14]

MTX110 Newly diagnosed diffuse intrinsic pontine glioma NCT03566199 II Completed [15]

ABI-009 Recurrent high-grade glioma and newly diagnosed 
glioblastoma

NCT03463265 II Completed

MTX110 Newly diagnosed diffuse midline gliomas NCT04264143 I Completed [15]

Nanoliposomal CPT-11 Recurrent high-grade gliomas NCT00734682 I Completed [16]

AGuIX Nanoparticles Newly diagnosed glioblastoma NCT04881032 II Recruitment [17]

INCMGA00012 and Epacadostat Recurrent gliomas NCT03532295 II Active, not 
recruitment

EGFR(V)-EDV-Dox Recurrent glioblastoma NCT02766699 I Unknown status

Irinotecan Liposome Diffuse intrinsic pontine glioma NCT03086616 I Completed [18]

NL CPT-11 Recurrent high-grade gliomas NCT00734682 I Completed [19]

Rhenium Nanoliposomes Recurrent glioma NCT01906385 II Recruitment [20]

RNA-lipid Particle 
Vaccines

Newly diagnosed pediatric 
high-grade gliomas and adult glioblastoma

NCT04573140 I Recruitment [21]

Pegylated Liposomal Doxorubicine and Prolonged 
Temozolomide

Newly diagnosed glioblastoma NCT00944801 II Completed [22]

Liposomal verteporfin Recurrent high-grade EGFR-mutated glioblastoma NCT04590664 I, II Recruitment [23]

AGuIX® Nanoparticles Brain metastases NCT04094077 II Terminated [24,25]

AGuIX Gadolinium Based Nanoparticles Brain metastases NCT02820454 I Completed [24,25]

AGuIX® Multiple brain metastases NCT03818386 II Active, not 
recruiting

[24,25]

Liposomal Cytarabine Central nervous system metastases from breast 
cancer

NCT00992602 II Completed [26]

Nal-IRI Brain metastases in breast cancer NCT03328884 II Active, not 
recruitment

[27,28]

MM-398 (Nanoliposomal Irinotecan, Nal-IRI) Metastatic breast cancer with active brain 
metastasis

NCT01770353 I Completed [27,28]

NU-0129 (SNA gold nanoparticle) Recurrent glioblastoma or gliosarcoma 
undergoing surgery

NCT03020017 I Completed [29]
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metal nanoparticles have been used in tumor diagnosis and treatment for decades.15 Since the 1990s, magnetic 
nanoparticles have been utilized for imaging detections and have been combined with various other contrast agents for 
the diagnosis of liver cancer.16 Many noble metal nanoparticles,17 such as gold and silver, are widely used in tumor 
radiotherapy, drug loaded chemotherapy, photothermal treatment and immunotherapy.18

Additionally, metal nanoparticles are involved in glioma resistance to therapies, with the PI3K/AKT, MAPK, and NF- 
κB signaling pathways contributing to this resistance.19 To overcome this resistance, current strategies focus on 
improving therapeutic efficacy and targeting the underlying resistance mechanisms, including selective inhibition of 
critical signaling pathways (eg PI3K/AKT, MAPK), combination with other treatment modalities,20,21 the use of 
functionalized nanoparticles for precise targeting,22,23 integration with gene therapy,24 and immune system modulation.25

In this chapter, we will not only introduce different types of metal nanoparticles, including noble metal nanoparticles, 
metal quantum dots, metal oxide nanoparticles, but also review their unusual advantages of nanotechnology in glioma 
treatment.

Noble metal nanoparticles
Noble metal nanoparticles include gold, silver, and platinum.26 These nanoparticles have good water dispersion and 
biocompatibility, they can effectively accumulate in the tumor site and have a long internal circulation time. Therefore, 
noble metal nanomaterials are considered as excellent CT contrast agent.27,28 For example, gold nanoparticles (Au NPs) 
have been widely studied and used in biomedical applications.29 Different shapes of gold nanostructures have been 
prepared, including gold spheres, gold rods, gold shells and gold cages.30 On the other hand, high Z metals are capable to 
deposit radiation energy and produce a series of secondary electrons, such as Compton electrons and Auger electrons. 
These electrons can either directly damage DNA of tumor cells or react with water, resulting in the generation of reactive 
oxygen species (ROS). This process may enhance the anti-tumor effect.31,32 Therefore, high Z metal nanoparticles can 
accumulate in the tumor area through the EPR effect, absorbing radiation energy, and sensitizing the effect of radio-
therapy. Liu et al found that silver nanoparticles (Ag NPs) could enhance the radiotherapy efficacy in hypoxic glioma 
cells through promoting cell apoptosis and enhancing destructive autophagy.33 Nowadays, high Z metal nanoparticles 
have introduced a new therapeutic approach for GBM.34 Following chemical innovations with temozolomide, an 
alkylating agent, and subsequent biological innovations utilizing humanized IgG1 monoclonal antibody like bevacizu-
mab, which targets all isoforms of VEGF-A, the first generation of nanoparticles has been developed. These nanopar-
ticles aim at optimizing drug delivery and controlling the release rate of medications such as doxorubicin (Figure 1). 
Therefore, high Z metal nanoparticles have shown potential application value in the diagnosis and treatment of glioma.

Metal oxide nanoparticles
Metal oxide nanoparticles and sulfide nanoparticles have higher chemical reactivity and unique physical properties due to 
its small size and large surface area. In general, metal oxide nanoparticles have the following advantages in the 
application of cancer treatments. First, the chemotherapy drugs, when loaded with metal oxides or their hybrid 
nanoparticles, such as Fe3O4 nanomaterials, have the potential to accumulate within the tumor core.35,36 This selectivity 
targets and kills tumor cells, with less side effects on normal tissue. Second, metal oxide nanoparticles can induce tumor 
cell apoptosis by generating ROS, which plays an important role in the damage of cancer cells. Third, metal oxide 
nanoparticles are significant for radiotherapy due to their enhanced action of sensitization and ionization. Owing to the 
advantages of metal oxide nanoparticles, their primary applications include magnetocaloric therapy, magnetic targeting 
therapy and magnetic resonance imaging. Photothermal therapy with metal nanoparticles can accelerate the speed of the 
blood circulation in tumor vessels and increase the amount of oxygen in the blood. Gu et al developed a new type of 
photosensitizer by combining photosensitive molecular porphyrin with iron oxide nanoparticles for photodynamic 
therapy and magnetocaloric therapy.37 This photosensitizer can improve the hypoxic microenvironment, and further 
enhance the sensitivity of photodynamic therapy, ultimately achieving the optimal therapeutic effect. In addition, 
magnetic oxide nanoparticles also have potential applications in molecularly targeted therapy. By applying a high 
gradient magnetic field at specific external locations, magnetic nanoparticle drugs can be concentrated within tumor 
tissue and can be released by altering certain parameter38,39 (Figure 2).
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Sulfide nanoparticle, another kind of metal oxide nanomaterial, possesses high absorption coefficient and strong 
X-ray attenuation ability. These characteristics make the material, such as Bi2S3 use in photothermal therapy. Liu et al 
reported a nanodrug based on Bi2S3 nanorods. The Bi2S3 nanorods have ideal photothermal effect and enhanced imaging 
contrast under multispectral photoacoustic tomography and X-ray computed tomography image navigation. This nano-
material can accurately target the tumor after intravenous injection, effectively inhibiting tumor growth and metastasis. In 
addition, the Bi2S3 nanorods have good biocompatibility.41,42 Taken together, sulfide nanoparticle could simultaneously 
enable precise cancer therapy and diagnosis monitoring.

Metal quantum dots
Quantum dots (QDs), also known as semiconductor nanocrystals, are inorganic semiconductor nanoparticles with small 
radius or close to the radius of exciton Bohr.42 Due to their special optical properties, the surface of QDs is easy to be 
functionalized with different ligands. QDs have potential application prospects in drug modification, affinity ligands, and 
medical imaging detection43 (Figure 3). In particular, near infrared (NIR) fluorescent QDs can penetrate human tissues, 
and the fluorescence is rarely eliminated by metabolism in the human body, which makes QDs become a good in vivo 
imaging method.44 Gao et al designed a multifunctional QDs probe capable of simultaneously targeting tumor cells and 
capturing biological imaging in vivo. They conducted preliminary research on the application of QDs.45

The Advantages of Metal Nanoparticles
Firstly, the surface of metal nanoparticles can be modified with different kinds of ligand molecules, such as small 
molecule compounds, polymers, and biological macromolecules. Under certain conditions, these molecules can be self- 

Figure 1 The development history of treating GBM with nanotechnology. 
Note: Reprinted from Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug 
Deliv Rev. 2019;138:344–357.34
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assembled or polymerized intelligently by changing hydrogen bonds, metal coordination, and electrostatic interaction. 
Polyethylene glycol, an amphiphilic molecule, is an ideal material for modifications. The hydrophobic end possesses 
a high affinity for nanoparticles, while the hydrophilic end can improve the water solubility of metal nanoparticles in 
liquid environment, thus reducing the toxicity of metal nanoparticles and improving the biocompatibility.47 Tian et al 
reported a design using polyethylene glycol-lysine-oleic acid to encapsulate magnetic nanoparticles, which is expected to 
serve as a magnetic resonance imaging (MRI) contrast agent and also for cancer therapy.48 Lai et al modified two groups 
of gold nanoparticles with chemical groups of o-nitrobenzyl alcohol and lipoic acid 4-aminomethylbenzylamine 
respectively. The photosensitive o-nitrobenzyl group was first photolyzed to an active nitrous intermediate under UV 
irradiation, which was then coupled with benzylamine-modified gold nanoparticles.52

Secondly, metal nanoparticles can be aggregated into tumor tissue through the EPR effect.49 Nanoparticles are cleared 
by lymphatic vessels in normal tissues, while in tumor tissues, these particles can reach the tumor sites due to leaky 
tumor vasculature and poor lymphatic drainage, known is the EPR effect.40 Yu et al prepared gold nanoparticles that were 
modified with DNA and protected by α-cyclodextrin to realize selective aggregation of gold nanoparticles in tumor 
lesions through the EPR effect.50 When the gold nanoparticles reach the tumor site, single stranded DNA is released from 
α-cyclodextrins, resulting in single chain complementary pairing.51

Thirdly, the surface of metal nanoparticles decorated with a variety of specific ligands is capable of recognizing tumor 
cells, thereby achieving active targeting function.46,53 Ag Seleci et al developed transferrin-modified magnetic iron oxide 
nanoparticles or QDs that allow for efficient dual imaging detection of glioma. These novel nanoparticles are not only 
beneficial for MRI, but also show great potential in active targeting effect.54 Xu et al encapsulated magnetic iron oxide 
nanoparticles, QDs and cilengitide (CGT) into liposomes, and this nanoparticle can actively target gliomas under the 
action of magnetic field and improve cellular uptake efficiency of drugs.55 In addition, the functionalized and chemically 
modified metal nanoparticles play a crucial role in minimizing direct contact between metals and normal cells, as well as 
biological tissues. This results in fewer side effects and enhanced biocompatibility.

Figure 2 The applications of Magnetic nanoparticle (MNP) for disease detection and therapy. 
Note: Reprinted from Materials Today, volume 31, Tong S, Zhu H, Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. 86–99, copyright 2019, with 
permission from Elsevier.39
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The Application of Metal Nanoparticles in Glioma Treatments
Chemotherapy
Malignant brain tumors grow aggressively and rapidly infiltrate into surrounding tissues.56,57 The blurred boundary between 
malignant tissue and health tissue limits the effectiveness of surgery. Postoperative chemotherapy is a necessary adjuvant 
therapy to kill residual cancer cells. BBB is an important biological structure for the brain to resist harmful substances entering 
the brain tissue, such as bacteria, viruses and microorganisms. It is a structure between plasma and brain tissue composed of 
cerebrovascular endothelial cells, basement membrane, glial cells, pericytes and microglial cells. The tight connections 
between endothelial cells allow small molecules in plasma to enter the brain selectively. However, macromolecule chemother-
apeutic, eg vincristine, can hardly cross the BBB. Moreover, conventional chemotherapeutic drugs also have bad influence on 
normal tissue and cause toxic side effects. Therefore, it is challenging for these drugs to accumulate in the tumor area due to the 
lack of specific targeting.

Owing to their unique physical and chemical properties, noble metal nanoparticles are designed as popular nano 
delivery system with targeting and responsive release abilities.58,59 Au NPs are readily adjustable in their particle size, 
and they not only have a larger specific surface area, but also offer flexibility for surface modification. For example, 
Au NPs show a strong affinity for the chemical reagent mercaptan, and these nanoparticles can be modified with 
various ligands such as polyethylene glycol (PEG) and oligonucleotides. Enhancing the time of blood circulation and 

Figure 3 Quantum dots in drug delivery. (a) Schematic illustration of the nanovectors preparation protocol and their enzyme sensitive behavior. (b) Schematic illustration of 
the nanovectors delivering GEM to pancreatic cancer cells. 
Note: Reprinted from Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int j Nanomed. 2017;12:5421–5431.43,
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the stability of nanoparticles in the blood is advantageous.60 Ruan et al designed a delivery system based on Au NPs. 
Au NPs were loaded with doxorubicin (DOX) by using an acid-reactive adaptor hydrazone. Angiopep-2, a specific 
ligand of low-density lipoprotein receptor associated protein-1 (LRP1), was used for nanoparticle functionalization. 
This nano delivery system can penetrate the BBB and target glioma cells, and thus realize precise chemotherapy. In 
vivo experiments showed that the modified nanoparticles can effectively prolong the median survival time of glioma- 
bearing mice. The Au NPs can also be decorated with PEG, allowing them to overcome the obstacle of BBB and enter 
the brain tumor area.61 Some Au NPs are coated with epidermal growth factor (EGF) peptides to kill cancer cells 
specifically. This type of nanoparticle protects EGF peptides from degrading in the blood and releases them into the 
slightly acidic microenvironment via the EPR effect, and also could minimize the toxic and side effects.62,63 The 
peptide sequence THRPPMWSPVWP, which interacts with transfer ferritin receptor of the microvascular endothelial 
cell, was conjugated with Au NPs. This conjugation enhances the therapeutic effect.64 Albertini et al injected Au NPs 
coated with arginine-glycine-aspartic acid-like peptide into the brain of mice. Two hours later, they observed that the 
number of peptide-modified nanoparticles aggregated in glioblastoma was 1.5 times higher than that of unmodified Au 
NPs.65 These data demonstrate the great potential of the Au NPs delivery system in the treatment of brain tumors.

Recent advances in magnetic nanomaterials have shown promising prospects for improving MRI and treating tumors. 
These nanoparticles, usually in a small nanoscale, are widely used in the biomedical field. Magnetic nanoparticles 
(MNPs) play an important role in the targeted therapy of brain cancer. One of the most useful MNPs is the Fe3O4 

nanoparticles.66 Cole et al developed magnetic iron oxide nanoparticles modified with PEG. By applying an external 
magnetic field to the lesion area, these nanoparticles can help chemotherapy drugs accumulate in the tumor area.67 This 
approach prolongs the circulation duration of nanodrugs within the body, demonstrating the efficacy of MNPs. Wu et al 
synthesized superparamagnetic iron oxide nanoparticles (SPION) that were coated with a silicate and carbon shell. The 
hydrothermal synthesis of these ferrofluid composite nanoparticles demonstrated a significant ability to inhibit the 
migration of glioma cells.68 EGFR or mutant EGFRVIII was highly expressed in glioblastoma. Iron oxide nanoparticles 
coupled with the antibody against EGFR can effectively improve the targeting effect of chemotherapy drugs.69 Overall, 
MNPs offers a promising platform for innovative drug delivery system and for optimizing the targeting strategies in brain 
tumor treatments.

To date, various QDs have been used for surface modification of nanoparticles to improve their stability, payload 
capacity and cellular uptake efficiency. Wahab et al found that QDs can inhibit tumor growth, reduce the invasiveness of 
glioma, and decrease the stemness of glioblastoma cells.70 Mansur et al developed a ZnS QD biopolymer nanodrug 
system based on the method of host guest chemistry. The ZnS QDs were synthesized under normal pH physiological 
conditions, and then these QDs were chemically modified with carboxymethylcellulose (CMC) and polysaccharide. The 
chemotherapy drug DOX was electrostatically bound to the QDs. This newly formed supramolecular nanostructure can 
serve as an active fluorescent nanoprobe and a nano carrier for chemotherapy drugs, capable of controlling drug release 
and killing glioma cells.71 The further modification of QDs with targeted ligands can be used in the specific detection and 
treatment of glioma. Magnetic iron oxide nanoparticles and QDs modified with transferrin have be utilized for the 
treatment of glioma.54

Radiotherapy
Radiotherapy refers to the use of one or more types of ionizing radiation to treat malignant tumors and some benign 
diseases, and it is an important adjunct therapy for malignant glioma.72,73 Malignant glioblastoma shows invasive 
growth, tends to invade the lobes and deep structures of the brain, and even invades the contralateral hemisphere through 
the corpus callosum. Although radiation therapy can compensate for the weakness of surgical resection, there are still 
a large number of patients who can not avoid cancer recurrence and metastasis after radiation therapy.74 Moreover, it has 
some serious side effects because normal brain tissues can also be damaged by radiation. Therefore, researchers have 
been focusing on developing novel nanoparticles that are less harmful to healthy tissues and can boost the effectiveness 
of radiotherapy.

High atomic number (Z) metal nanoparticles have the ability to enhance ionization in their surroundings when 
exposed to ionizing radiation. Au NPs, which are high Z metal nanoparticles, have been shown to enhance the effect of 
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radiotherapy in gliomas.75 Several mechanisms are involved in the sensitization effect of Au NPs in radiotherapy. 
Radiation can generate low-energy secondary electrons, trigger free radical effects, and cause indirect damage to DNA by 
assaulting its bases, demolishing ribose, and degrading oligonucleotide.76,77 In addition, radiation has the potential to 
harm biological membranes and proteins via lipid peroxidation. The Au NPs, characterized by high electron density, can 
effectively enhance the average cross section between tissue and radiation when they accumulate in tumor tissue to 
a certain extent. This accumulation improves the transfer and deposition of the physical dose of radiation during 
irradiation.

Au NPs are widely used in low dose radiotherapy because of their unique optical properties, good biocompatibility 
and excellent radiation sensitization. They can convert light energy into heat energy, showing a photothermal effect. This 
effect further enhances the efficacy of radiotherapy for gliomas. Kefayat et al designed a gold nanocluster modified with 
folic acid and bovine serum protein (BSA), named FA-AuNCs. Compared with traditional gold nanoparticles, these 
nanoparticles can specifically target C6 glioma cells and enhance the sensitivity of radiotherapy.78 In addition, gold 
nanoparticles can effectively overcome the obstacle of BBB.79 Ultra-small gold nanoparticles coated with gadolinium 
chelates (Au@DTDTPA-Gd) were injected intravenously into mice, allowing for accurate tumor location to be displayed 
via MRI. This technique can be beneficial for targeted radiotherapy. Studies have shown that it significantly extends the 
lifespan of tumor-bearing rats.80

Previous studies have demonstrated that Ag NPs possess a strong radio-sensitization ability when used in the 
treatment of U251 glioma cells.81 The mechanism involves promoting the apoptosis of tumor cells and increasing the 
level of autophagy. By employing Ag NPs, the radiation resistance of tumor tissue in hypoxic environment can be 
successfully decreased.33,82 Xu et al tested Ag NPs at concentration of one-tenth of the half maximal inhibitory 
concentration to target tumor cell, and found that Ag NPs, with a size of 20 nm, could significantly enhance the 
radiosensitivity of U251 glioma cells to X-rays without causing any toxic effects. These results indicate that Ag NPs also 
have the potential to be used in the sensitization of radiotherapy in gliomas.83

Magnetic iron oxide nanoparticles have also been used in the treatment of recurrent glioblastoma. Magnetic iron 
oxide nanoparticles were infused into glioblastomas by the neuro navigation technique, and the nanoparticles were then 
heated in an alternating magnetic field, producing thermal energy. In conjunction with stereotactic radiation techniques, 
the tumors were irradiated with a dose of 10 Gy per week. The results showed a significant extension in the overall 
survival of patients with recurrent glioblastoma.84 During the operation of fourteen cases of glioblastoma, aminosilane- 
coated iron oxide nanoparticles were injected into the tumor cavity under the guidance of 3D imaging technology, and 
then all patients received a single radiotherapy. The results showed that all patients had good tolerance to magnetic 
nanoparticles without any side effects. Using magnetic iron oxide nanoparticles for intracranial radiotherapy can further 
improve the sensitivity of radiotherapy.85 In addition, Grauer et al coated two layers of superparamagnetic iron oxide 
nanoparticles on the wall of the tumor cavity after resection of the tumor in recurrent glioblastoma patients. 
Supplemented with heat and radiation therapy, there was persistent necrosis near the tumor tissue in the nanoparticle 
aggregation area. Immunohistochemistry showed that the number of macrophages was increased, the expression of 
caspase-3 and heat shock protein 70 was up-regulated. Intratumoral hyperthermia combined with radiotherapy could 
cause obvious inflammatory responses around the tumor, which further stimulated the anti-tumor immune response.86 

Overall, magnetic iron oxide nanoparticles play a significant role in enhancing immunoinflammation in the treatment of 
recurrent glioblastoma.

Photothermal Therapy
Photothermal therapy is a treatment method that utilizes materials with high optical energy conversion efficiency, 
combined with targeted recognition technology, to accumulate drugs near tumor tissues. Optical energy is converted 
into heat energy to kill cancer cells under certain conditions. Metal nanomaterials have emerged as excellent carriers for 
photothermal therapy, thanks to their distinctive optical properties, superior biological inertness, and local surface 
plasmon resonance (LSPR). Numerous metal materials, including gold and silver nanoparticles, generate a certain 
amount of heat upon light exposure, effectively killing tumor cells. Therefore, photothermal therapy is often combined 
with radiotherapy, chemotherapy, and surgery to improve anti-tumor effects.87 Ordinary gold nanoparticles possess 
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a weak absorption capacity within the tissue penetrating NIR window, leading to the low efficiency of photothermal 
therapy. Wang et al discovered that fiber nanostructures assembled from positively charged spherical gold nanoparticles 
and negatively charged silk fibroin can improve the photothermal effect within the NIR window.88 They synthesized 
spiropyrans and imidazole polymer-functionalized nanoparticles by surface polymerization technology. Photo-responsive 
polymer gold nanoparticles were obtained by reducing gold ions to the surface of the nanoparticles. The surface of the 
gold nanoparticles can also be modified with biotin to specifically target brain tumor cells. The nanoparticles showed 
potential benefits for enhancing photothermal and photodynamic therapies. In addition, they can be combined with 
certain specific antibodies to create functional nanoprobes.89

Another metal nanomaterial, iron oxide, can also be used as thermos-sensitive nanoparticles for the treatment of 
tumors.47 Lu et al used Fe3O4@Au magnetic nanoparticles as the core shell, loaded with cetuximab to target glioma cells 
for photothermal therapy (Figure 4). These multifunctional nanomaterials can induce local plasma heating under the 
irradiation of NIR, which are less affected by the biological metabolism of tissues and cells. Moreover, metal oxide 
nanoparticles can also be utilized as photosensitizers in tumor photodynamic therapy. For example, the functionalized 
TiO2 nanoparticles can be used in photodynamic therapy, and it is non-toxic and harmless in the absence of light 
irradiation and has a long blood circulation time in the body. However, using ultraviolet or visible light to directly 
irradiate tissues to trigger TiO2 nanoparticles have some limitations. The tissue penetration depth of the light source at 
this wavelength is limited, and most tumor cells cannot be accurately targeted.90 NIR, with the wavelength of 700 nm to 
1000 nm, possesses the ability to infiltrate tumor tissues, thereby enhancing the efficacy of photodynamic therapy. 
Shigeru et al synthesized TiO2-PEG nanoparticles by adsorbing PEG onto the surface of TiO2. The TiO2-PEG showed 
significantly inhibition effects on the growth of glioma cells.86 Photodynamic therapy using metal nanomaterials has 
increasingly emerged as a novel approach for the treatment of gliomas.

Metal Nanoparticles for Enhancing Biocompatibility and Reducing Toxicity
The toxicity of metal nanoparticles in glioma cells has gained significant attention due to their potential in targeted cancer 
therapies, where they can selectively deliver drugs or therapeutic agents directly to tumor sites. However, concerns about 

Figure 4 Magnetic oxide nanoparticles accumulate in the tumor region under the action of a magnetic field, generating hyperthermia and toxic ROS when exposed to NIR 
laser, and thereby killing tumor cells. 
Note: Reprinted from Xue P, Yang R, Sun L, et al. Indocyanine Green-Conjugated Magnetic Prussian Blue Nanoparticles for Synchronous Photothermal/Photodynamic 
Tumor Therapy. Nanomicro Lett. 2018;10(4):74.47
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their biocompatibility, long-term stability, and potential bioaccumulation in healthy tissues persist, raising important 
questions about the balance between therapeutic efficacy and safety.91 A deeper understanding of the mechanisms behind 
nanoparticle toxicity in glioma is essential for developing safer, more effective treatments that minimize adverse effects 
on normal cells and organs.

To reduce the toxicity of metal nanoparticles in glioma therapy, several solutions have been proposed. First, surface 
modification techniques are key to minimizing toxicity. By coating the nanoparticles with biocompatible materials such as 
PEG or chitosan, their stability can be improved, and interactions with normal cells can be reduced, thereby minimizing 
damage to healthy tissues.92,93 Second, controlling the size and morphology of the nanoparticles is an effective approach. 
Smaller nanoparticles can more easily penetrate the BBB, but excessively small particles may cause higher cytotoxicity.94 

Therefore, optimizing the size and shape of the nanoparticles is crucial to balance therapeutic efficacy and safety.95 In addition, 
the development of targeted delivery systems allows metal nanoparticles to specifically target glioma cells, reducing the 
impact on surrounding normal tissues.96 Finally, adjusting the dosage and delivery timing can further minimize toxicity while 
enhancing therapeutic effects. The combination of these strategies provides a safer outlook for the clinical application of metal 
nanoparticles in glioma therapy.

Conclusions and Future Research
New treatment paradigm are urgently needed as the 5-year survival rate of GBM patients is still low. Recent advance-
ments in nanomaterials have bought huge progress in the field of biology and medicine. In this paper, we summarized the 
properties of different types of metal nanomaterials, highlighting their advantages in the treatment and detection of 
gliomas. More importantly, we reviewed the potential applications of metal nanoparticles in glioma imaging, radio-
therapy, chemotherapy, and photothermal therapy. Thanks to the excellent properties of metal nanoparticles, such as good 
electrical properties, optical properties, and magnetism, noble metal nanoparticles, metal oxide nanoparticles and metal 
quantum dots have been used to load chemotherapy drugs (eg, DOX, EGFR antibody), sensitize radiotherapy, and 
improve the photothermal effects in the treatment of gliomas. As shown in Table 1, a number of clinical trials are 
currently assessing the effectiveness and safety of nanodrugs in cancer treatment, detection, and precise targeted therapy. 
However, metal nanoparticles have not yet been utilized in clinical settings for the detection or treatment of gliomas. 
Nano-drugs face multiple challenges in entering clinical treatment for tumors, including complex preparation, high cost, 
poor stability, and significant toxic side effects. Ongoing research continues to push the boundaries of what’s possible, 
but translating these innovations into practical, safe, and effective therapies is a complex process.

To address current knowledge gaps in metal nanoparticle research, future studies should employ a range of 
methodologies. Longitudinal studies are crucial for assessing long-term effects, such as stability, toxicity, and tissue 
accumulation, while also helping to define safe dosage limits. In vivo models that closely replicate human physiology can 
provide valuable data on therapeutic efficacy and biocompatibility, highlighting interactions with biological systems and 
patterns of biodistribution. High-throughput screening can rapidly optimize nanoparticle formulations, refining key 
parameters like size, surface charge, and functionalization to maximize efficacy and minimize toxicity. Additionally, 
analyzing molecular pathways influenced by metal nanoparticles—such as those involved in inflammation and apoptosis 
—can help improve both design specificity and therapeutic outcomes. Advanced imaging techniques, such as real-time 
fluorescence imaging and MRI, can complement these efforts by enabling detailed tracking of biodistribution and cellular 
uptake. Together, these approaches offer a comprehensive framework for enhancing our understanding of metal 
nanoparticle behavior and guiding the safe, effective development of nanoparticle-based therapies in gliomas.
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