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Background: Post-traumatic cerebral infarction (PTCI) is a severe complication resulting from traumatic brain injury (TBI), which 
can lead to permanent neurological damage or death. The investigation of the factors associated with PTCI and the establishment of 
predictive models are crucial for clinical practice.
Methods: We made a retrospective analysis of clinical data from 1484 TBI patients admitted to the Neurosurgery Department of 
a provincial hospital from January 2018 to December 2023. Predictive factors were identified using the Least Absolute Shrinkage and 
Selection Operator (LASSO) and multivariable logistic regression analysis. Several machine learning (ML) classification models were 
developed and compared. The interpretations of the ML models’ predictions were provided by SHAP values.
Results: Key predictors included age, bilateral brain contusions, platelet count, uric acid, glucose, traumatic subarachnoid hemorrhage, and 
surgical treatment. The logistic regression (LR) model outperformed other ML algorithms, demonstrating superior performance in the test 
set with an AUC of 0.821, accuracy of 0.845, Matthews correlation coefficient (MCC) of 0.264, area under the receiver operating 
characteristic curve (AUROC) of 0.711, precision of 0.56, and specificity of 0.971. It had stable performance in the ten-fold cross-validation.
Conclusion: ML algorithms, integrating demographic and clinical factors, accurately predicted the risk of PTCI occurrence. 
Interpretations using the SHAP method offer guidance for personalized treatment of different patients, filling gaps between complex 
clinical data and actionable insights.
Keywords: traumatic brain injury, post-traumatic cerebral infarction, retrospective study, machine learning, prediction model

Introduction
Traumatic brain injury (TBI) includes impairments and pathological changes in brain function due to external forces, 
including concussions and traumatic herniations.1 TBI has the highest incidence rate among common neurological 
disorders, bringing a significant global public health challenge with high morbidity and mortality rates.2 Post-traumatic 
cerebral infarction (PTCI), a severe complication caused by TBI, can lead to permanent neurological damage or death.3 

Although PTCI occurs in only 1.9% to 20.3% of all TBI cases, it profoundly affects patient prognosis.4 Brain injuries may 
cause direct vascular damage, changes in hemodynamics, or vascular compression due to increased intracranial pressure, 
triggering an infarction.5 Clinically, the manifestations of PTCI depend on the affected cerebral vascular territory and may 
lead to motor and sensory impairments of different degrees. For instance, infarctions in the posterior cerebral artery (PCA) 
region are mainly associated with visual field defects and sensory disturbances.6,7 As a “secondary injury” after head 
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trauma, PTCI significantly increases patient disability and mortality rates. In TBI patients with severe consciousness 
disorders and other complications, typical symptoms and signs of infarction are often obscured, complicating early 
diagnosis.8 Therefore, timely identification of these risk factors and the development of effective predictive models are 
crucial for preventing PTCI and implementing early preventive measures.

In recent years, machine learning (ML) technologies have significantly advanced in the healthcare sector, particularly 
demonstrating substantial potential in disease prediction, diagnosis, and treatment decision support.9,10 By processing and 
analyzing large-scale clinical data, ML can identify complex patterns and predict disease progression.11 This capability is 
particularly crucial for understanding and predicting the risk of PTCI, which is closely associated with various risk 
factors and biomarkers. In clinical practice, the early diagnosis of PTCI often relies on limited imaging data and patient 
condition observations and lacks comprehensive analysis of extensive historical data.12 Consequently, ML-based models 
provide a more accurate and objective method for assessing PTCI risk. Moreover, by introducing interpretative tools such 
as Shapley Additive exPlanations (SHAP), ML models can not only deliver predictive outcomes but also identify the key 
drivers affecting predictions, thus offering clearer guidance for clinical decision-making.

This study aims to develop and validate a machine-learning-based PTCI risk prediction model that improves prediction 
accuracy by integrating patient data in multiple dimensions and using precise algorithmic analyses. We anticipate that this 
work will provide a scientific basis for clinical decision-making, so that physicians can identify high-risk PTCI patients earlier 
and manage them individually, thereby reducing the incidence rate of PTCI and improving the quality of life of patients.

Materials and Methods
Materials
This article describes an observational and retrospective cohort study involving patients with traumatic brain injuries 
treated in the Neurosurgery Department of the Affiliated Provincial Hospital of Fuzhou University from January 2018 to 
December 2023. The study was approved by the Ethics Committee of the Provincial Hospital of Fuzhou University 
(K2024-06-057). Given the retrospective and observational nature of the study, informed consent was waived.

The inclusion criteria are as follows: 1) patients admitted within 24 hours after injury; 2) patients admitted for the first 
time to our hospital without prior treatment at other hospitals; 3) initial head CT performed within 6 hours of admission 
showing intracranial hemorrhage but no stroke; 4) the main diagnosis of brain injury, with any other injuries having an 
Acute Injury Score (AIS) of less than 3 and no open wound. The exclusion criteria include: 1) patients under the age of 
18; 2) patients with a history of atrial fibrillation, stroke, venous thrombosis, liver disease, or hematologic conditions; 3) 
history of anticoagulant use; 4) patients who experienced shock during treatment; 5) patients who died before a second 
head CT could be performed; 6) patients with incomplete data.

Data Collection
In this study, clinical and laboratory data on TBI patients was collected by reviewing relevant literature. Data included 
demographic variables (such as age, gender, smoking, drinking, diabetes, and history of hypertension) and baseline 
characteristics at admission (such as systolic and diastolic pressure, unequal pupil diameter, and Glasgow Coma Scale 
score). Laboratory indicators encompassed white blood cells, neutrophils, hemoglobin, platelets, monocytes, lympho-
cytes, high-density and low-density lipoproteins, urea nitrogen, creatinine, uric acid, albumin, cholesterol, triglycerides, 
fasting blood glucose, International Normalized Ratio (INR), Activated Partial Thromboplastin Time (APTT), 
Prothrombin Time (PT), D-dimer (DD), Systemic Inflammatory Index (SII), and Systemic Inflammatory Response 
Index (SIRI). Treatment measures included medications to reduce intracranial pressure and surgical interventions. 
Through CT imaging, we recorded the type and location of anatomical injuries, including lobar contusions, epidural 
and subdural hematomas, traumatic subarachnoid hemorrhage, intraventricular hemorrhage, fractures of the skull base 
and calvaria, multiple skull fractures, brain herniation, and cerebral infarction.

https://doi.org/10.2147/JMDH.S498420                                                                                                                                                                                                                                                                                                                                                                                                                                             Journal of Multidisciplinary Healthcare 2025:18 158

Li et al                                                                                                                                                                                

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Diagnosis of PTCI
The diagnosis of PTCI was made through collaboration between neuroradiology and neurosurgery. Any well-defined area 
of low attenuation matching the distribution of arterial vasculature that appeared on any CT scan of the brain within two 
weeks of the accident was defined as a PTCI (Figure 1A-C).4,13,14 The diagnosis of cerebral infarction was modified if 
subsequent studies showed that the diagnosis of cerebral infarction was related to other causes of evolving contusions, 
artifacts, etc. Then, the diagnosis of cerebral infarction was revised.

Statistical Analysis
For continuous variables that are normally distributed, we use independent samples T-tests for group comparisons, 
whereas non-parametric tests are used for non-normally distributed variables. Chi-square tests are done for categorical 
variables. To address collinearity and eliminate potential confounders, the variable is initially selected using LASSO 
regression and multivariable logistic regression. The dataset is then randomly divided into a training set and a test set in 
a ratio of 7:3, where the training set is used for building models and the test set is used for evaluating them. Models 
including XGBoost, Logistic regression, RandomForest, AdaBoost, and Naive Bayes are developed and assessed using 
AUC, calibration curves, and decision curve analysis (DCA). The best-performing model is selected. Furthermore, to 
verify the stability and reliability of the chosen model, 10-fold cross-validation is performed, comparing metrics such as 
accuracy, prevalence, recall, F1-Score, Matthews correlation coefficient, the area under the ROC curve (AUROC), 
precision, and specificity. Lastly, SHAP values are used to elucidate the importance of each feature and their specific 
contributions to the prediction outcomes, enhancing the interpretability of the model results.

Results
During the study, 2178 patients diagnosed with TBI were initially included. After excluding 694 patients for various 
reasons (Figure 2), data from 1484 patients were analyzed. Overall, the mean age of traumatic brain injury was 55.36 ± 
17.33. Of these, 66.44% were male. The dataset was randomly divided into two parts: 70% (n=1038) for model training 
and 30% (n=446) for model validation. Between the training and validation sets, there was no statistically significant 
difference (P > 0.05). The incidence rate of PTCI was 15.90% in the training set and 16.14% in the validation set, with an 
overall incidence rate of 15.97% in the entire dataset. Detailed characteristics of the participants are shown in Table 1.

Screening of Factors Characterizing the Risk of Post-Traumatic Cerebral Infarction
LASSO regression analysis was made on all independent variables. PTCI was set as the dependent variable, in order to 
determine the risk factors connected to PTCI (Figure 3A and B). LASSO reduces overfitting by compressing variable 
coefficients and effectively addresses multicollinearity issues. The results showed Lambda = −4.756 at the minimum 

Figure 1 Different locations of cerebral infarction in CT after traumatic brain injury. The area indicated by the white arrow relative to the surrounding black area represents 
the area of cerebral infarction. (A). Low-density infarct lesions in the region innervated by the anterior cerebral artery; (B). Low-density infarct lesions in the region 
innervated by the middle cerebral artery; (C). Low-density infarct lesions in the region innervated by the posterior cerebral artery.
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mean square error, at which point the 48 independent variables were filtered down to 16, and these included age, history 
of hypertension, history of diabetes, intraventricular hemorrhage, traumatic subarachnoid hemorrhage, epidural hema-
toma, bilateral cerebral contusion, calvarial fracture, multiple skull fractures, surgery, neutrophils, platelets, creatinine, 
uric acid, albumin, and glucose. To further eliminate the impact of confounding factors, multivariable logistic regression 
was made on the selected variables. Ultimately, age, uric acid, glucose, surgery, bilateral cerebral contusion, platelets, and 
traumatic subarachnoid hemorrhage were identified as independent risk factors (p < 0.05), as shown in Figure 4.

Categorical Multi-Model Synthesis Analysis
In the training set, we trained the XGBoost, LR, RandomForest, AdaBoost, and Naive Bayes (NB) models. Each 
of them was repeated 10 times to establish the models. To evaluate the predictive performance, we used the AUC 
as the assessment metric. The results indicated that all models performed well in the training set (AUC > 0.7). 
However, in the test set, except for the Logistic Regression model which maintained its stability (training set 
AUC:0.833; test set AUC:0.821), the accuracy of other models declined, showing signs of overfitting (Figure 5A 
and B). Moreover, to assess the calibration and clinical applicability of the models, calibration curves and DCA 
were drawn. Compared to others, the Logistic Regression model’s calibration curve was closer to the perfect 45- 
degree line and achieved a lower Brier score, indicating better consistency (Figure 5C). Additionally, this model 

Figure 2 Participant Selection Flowchart.
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Table 1 Baseline Features in the Training and Test Sets

Variable Names Train (N=1038) Test (N=446) Total 
P-value

Non-PTCI 
(N=873)

PTCI 
(N=165)

P-value Non-PTCI 
(N=374)

PTCI  
(N=72)

P-value

GCS 13.205±3.334 13.812±2.441 0.026 13.187±3.376 13.569±3.039 0.372 0.775
Age (year) 52.464±16.765 71.03±10.957 <0.001 52.532±16.836 69.264±11.886 <0.001 0.853

Systolic blood pressure 

(mmHg)

135.545±21.323 144.697 

±20.712

<0.001 136.409±19.656 139.028 

±19.734

0.301 0.887

Diastolic blood pressure 

(mmHg)

78.691±11.81 80.297±12.028 0.11 79.594±13.192 76.472±9.054 0.055 0.834

SII 1969.706 
±1827.458

1717.689 
±1913.635

0.107 2004.845 
±1655.785

1505.533 
±1424.992

0.017 0.957

SIRI 6.765±8.282 5.113±4.826 0.013 7.749±11.183 4.376±4.054 0.012 0.155

Neutrophil (10^9/L) 9.856±4.526 8.256±3.58 <0.001 10.25±5.083 7.403±3.084 <0.001 0.467
Blood platelet (10^9/L) 196.027±61.615 190.827 

±63.978

0.323 195.602±60.267 196.528 

±59.802

0.905 0.874

Hemoglobin (g/L) 127.418±20.39 121.937 
±19.217

0.001 127.228±20.451 120.722 
±17.856

0.012 0.748

Monocyte (10^9/L) 0.631±0.302 0.57±0.236 0.014 0.667±0.364 0.559±0.221 0.016 0.109

Lymphocyte (10^9/L) 1.326±0.655 1.273±0.658 0.336 1.28±0.621 1.256±0.654 0.768 0.254
Leucocyte (10^9/L) 11.886±4.563 10.182±3.6 <0.001 12.294±5.218 9.279±3.065 <0.001 0.465

HDL-C 1.253±0.337 1.27±0.334 0.553 1.272±0.354 1.264±0.316 0.87 0.43

LDL-C 2.558±0.744 2.625±0.914 0.31 2.629±0.77 2.55±0.776 0.427 0.276
Urea nitrogen (mmol/l) 5.075±1.96 5.859±2.979 <0.001 4.948±2.163 5.372±2.003 0.124 0.135

Creatinine (umol/l) 71.966±29.17 80.765±89.886 0.021 70.185±28.288 72.146±24.323 0.582 0.211

Uric acid (umol/l) 310.284±110.13 294.773 
±95.988

0.091 312.012±110.595 302.567 
±106.143

0.505 0.664

Albumin (mg/L) 40.251±4.954 38.671±4.816 <0.001 39.912±5.344 38.546±3.577 0.038 0.278

Glucose (mmol/l) 7.005±2.745 7.064±2.624 0.8 7.252±2.86 6.559±1.96 0.05 0.417
Triglyceride (mmol/l) 4.16±0.841 4.206±1.014 0.53 4.254±0.888 4.14±0.902 0.322 0.167

Triglyceride (mmol/l) 1.321±1.557 1.287±1.467 0.792 1.37±1.814 1.057±0.543 0.148 0.965
INR 1.036±0.157 1.058±0.174 0.098 1.052±0.235 1.022±0.121 0.291 0.436

APTT 29.128±5.398 29.775±5.614 0.161 29.69±7.885 28.689±3.879 0.293 0.388

PT 12.136±1.768 12.361±1.929 0.14 12.292±2.443 11.936±1.42 0.232 0.572
D-dimer 7.659±10.033 7.155±9.26 0.549 7.577±9.285 5.487±8.176 0.076 0.537

Gender (%) 0.197

No 280 (32.07) 62 (37.58) 125 (33.42) 31 (43.06) 0.151 0.484
Yes 593 (67.93) 103 (62.42) 249 (66.58) 41 (56.94)

Smoking history (%) 0.415 0.483 0.434

No 783 (89.69) 152 (92.12) 329 (87.97) 66 (91.67)
Yes 90 (10.31) 13 (7.88) 45 (12.03) 6 (8.33)

Drinking history (%) 0.452 1 0.517

No 802 (91.87) 155 (93.94) 340 (90.91) 66 (91.67)
Yes 71 (8.13) 10 (6.06) 34 (9.09) 6 (8.33)

History of hypertension (%) <0.001 <0.001 0.589

No 684 (78.35) 88 (53.33) 286 (76.47) 39 (54.17)
Yes 189 (21.65) 77 (46.67) 88 (23.53) 33 (45.83)

History of diabetes (%) <0.001 0.024 0.669

No 763 (87.40) 125 (75.76) 323 (86.36) 54 (75.00)
Yes 110 (12.60) 40 (24.24) 51 (13.64) 18 (25.00)

(Continued)
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Table 1 (Continued). 

Variable Names Train (N=1038) Test (N=446) Total 
P-value

Non-PTCI 
(N=873)

PTCI 
(N=165)

P-value Non-PTCI 
(N=374)

PTCI  
(N=72)

P-value

Unequal pupil diameters (%) 0.412 1 0.841
No 410 (47.07) 84 (50.91) 174 (46.90) 34 (47.22)

Yes 461 (52.93) 81 (49.09) 197 (53.10) 38 (52.78)

Frontal lobe injury (%) (%) 1 0.037 0.659
No 516 (59.11) 98 (59.39) 218 (58.29) 52 (72.22)

Yes 357 (40.89) 67 (40.61) 156 (41.71) 20 (27.78)

Temporal lobe injury (%) 0.127 0.243 0.266
No 601 (68.84) 124 (75.15) 268 (71.66) 57 (79.17)

Yes 272 (31.16) 41 (24.85) 106 (28.34) 15 (20.83)

Parietal lobe injury (%) 0.683 0.492 0.378
No 815 (93.36) 152 (92.12) 341 (91.18) 68 (94.44)

Yes 58 (6.64) 13 (7.88) 33 (8.82) 4 (5.56)

Occipital lobe injury (%) 0.519 0.819 1
No 852 (97.59) 159 (96.36) 364 (97.33) 71 (98.61)

Yes 21 (2.41) 6 (3.64) 10 (2.67) 1 (1.39)

Remaining injuries (%) 1 0.921 0.114
No 838 (95.99) 158 (95.76) 365 (97.59) 71 (98.61)

Yes 35 (4.01) 7 (4.24) 9 (2.41) 1 (1.39)

Ventricular hemorrhage (%) 0.33 0.09 0.275
No 851 (97.48) 158 (95.76) 362 (96.79) 66 (91.67)

Yes 22 (2.52) 7 (4.24) 12 (3.21) 6 (8.33)

Subarachnoid hemorrhage 
(%)

0.253 0.001 0.82

No 199 (22.79) 45 (27.27) 79 (21.12) 29 (40.28)

Yes 674 (77.21) 120 (72.73) 295 (78.88) 43 (59.72)
Epidural hematoma (%) 0.002 0.019 0.817

No 684 (78.35) 147 (89.09) 289 (77.27) 65 (90.28)

Yes 189 (21.65) 18 (10.91) 85 (22.73) 7 (9.72)
Skull base fracture (%) 0.025 0.378 0.164

No 807 (92.44) 161 (97.58) 338 (90.37) 68 (94.44)

Yes 66 (7.56) 4 (2.42) 36 (9.63) 4 (5.56)
Skull cap fracture (%) 0.001 0.002 0.177

No 555 (63.57) 127 (76.97) 219 (58.56) 57 (79.17)

Yes 318 (36.43) 38 (23.03) 155 (41.44) 15 (20.83)
Subdural hemorrhage (%) 0.183 0.575 0.946

No 444 (50.86) 74 (44.85) 188 (50.27) 33 (45.83)

Yes 429 (49.14) 91 (55.15) 186 (49.73) 39 (54.17)
Bilateral cerebral 

contusions (%)

0.036 0.53 0.985

No 414 (47.42) 63 (38.18) 174 (46.52) 30 (41.67)
Yes 459 (52.58) 102 (61.82) 200 (53.48) 42 (58.33)

Cerebral hernia (%) 0.157 0.39 0.67

No 826 (94.62) 161 (97.58) 351 (93.85) 70 (97.22)
Yes 47 (5.38) 4 (2.42) 23 (6.15) 2 (2.78)

Multiple skull fractures (%) 0.004 0.037 0.73

No 797 (91.29) 162 (98.18) 338 (90.37) 71 (98.61)
Yes 76 (8.71) 3 (1.82) 36 (9.63) 1 (1.39)

(Continued)
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had a higher net benefit in the decision curve analysis, covering the broadest threshold probability range from 0% 
to 73% (Figure 5D). Based on these findings, the LR model can be considered as the optimal model.

Evaluation of the Best Models
To improve the reliability of model evaluation, in this study, 10-fold cross-validation was made on the LR model 
(Figure 6A and B). The results indicated that the average AUCs for the training and test sets were 0.816 (0.786–0.847) 
and 0.804 (0.750–0.859) respectively, demonstrating that the model had a stable and accurate predictive performance on 
both datasets (Figure 6C and D). Additionally, in the study, various performance metrics were calculated and compared, 
including Accuracy, Recall, F1-Score, Matthews correlation coefficient (MCC), AUROC, Precision, and Specificity. In 
the test set, the LR model surpassed other models in terms of Accuracy, Prevalence, MCC, AUROC, Precision, and 
Specificity, showing outstanding performance (Figure 7) (Supplementary Table 1).

Table 1 (Continued). 

Variable Names Train (N=1038) Test (N=446) Total 
P-value

Non-PTCI 
(N=873)

PTCI 
(N=165)

P-value Non-PTCI 
(N=374)

PTCI  
(N=72)

P-value

Surgeries (%) 0.005 0.004 0.554
No 712 (81.56) 150 (90.91) 296 (79.14) 68 (94.44)

Yes 161 (18.44) 15 (9.09) 78 (20.86) 4 (5.56)

Dehydration drug use (%) 0.345 0.614 0.269
No 502 (57.50) 102 (61.82) 203 (54.28) 42 (58.33)

Yes 371 (42.50) 63 (38.18) 171 (45.72) 30 (41.67)

Note: Continuous variables are described using means and standard deviations, while categorical variables are represented using frequencies and percentages. 
Abbreviations: PTCI, Post-traumatic cerebral infarction; GCS, Glasgow Coma Scale; SII, Systemic Immune Inflammation Index; SIRI, Systemic Immune Inflammation Index; 
HDL-C, High density lipoprotein cholesterol; HDL-C, Low-Density Lipoprotein Cholesterol; INR, international normalized ratio; APTT, Activated partial thromboplastin 
time; PT, prothrombin time;

Figure 3 Selection of characteristic factors using LASSO regression analysis. (A) A relationship curve showing the link between log (lambda) and partial likelihood deviation 
(binomial deviation). (B) The 48 features’ LASSO coefficient profiles. Using the minimal criteria and the one standard error (SE) of the minimum criteria (the 1-SE criteria), 
dot vertical lines were created at the optimal levels.
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Model Interpretation
To intuitively explain the impact of selected variables on the model, in this study, SHAP (Shapley Additive exPlanations) 
values were utilized to elucidate their contributions to the PTCI prediction model. As illustrated in Figure 8A, the 
horizontal position indicates whether the SHAP value increases or decreases the probability of prediction. Red indicates 
high values and blue indicates low values. Results indicated that increased age, bilateral brain contusions, and elevated 
platelet counts positively contribute to PTCI prediction, whereas uric acid, glucose, traumatic subarachnoid hemorrhage, 
and surgical treatment have a negative impact. Variables are ranked on the vertical axis by importance. Additionally, the 
study presents individual force plots for a non-PTCI (Figure 8B) and a PTCI patient (Figure 8C) to demonstrate the 
model’s interpretability. SHAP values reveal the key features affecting individual predictions and their specific contribu-
tions to PTCI prediction, where red features increase the PTCI risk and blue features decrease the PTCI risk. The length 
of the arrows helps to visualize the magnitude of impact on the prediction; the longer the arrow is, the greater the 
effect is.

Discussion
In this study, the incidence rate of PTCI in patients with TBI was 15.97%, which was consistent with the previously 
reported rates of 1.9% to 20.3%. The variance in the incidence rate of PTCI may be attributed to factors such as medical 
resources, population health baselines, and trauma management and care approaches. This study is the first to apply 
machine learning techniques to predict the risk of PTCI. Feature selection was refined through LASSO regression and 
multivariable logistic regression analysis, effectively eliminating collinearity and potential confounders among variables. 
Age, uric acid levels, blood glucose, surgical treatment, bilateral brain contusions, platelet count, and traumatic 
subarachnoid hemorrhage were identified as independent risk factors for PTCI. Based on these findings, five machine- 
learning models were developed and validated to predict PTCI risk. Among them, the logistic regression model had the 
highest AUC, good calibration, and net benefit. Additionally, this model had superior performance in various evaluations, 
including ten-fold cross-validation. The results indicate that the logistic regression model performs well and generalizes 

Figure 4 Multifactor regression results for variables.
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effectively in the prediction of PTCI. Therefore, machine learning offers a promising new tool for handling complex 
clinical data, helping to fill existing knowledge and technology gaps.

In previous studies, the risk factors associated with PTCI have been explored using various statistical methods and 
target populations. In a retrospective study involving 353 patients with traumatic brain injuries, logistic regression 
analysis identified GCS, systolic pressure, brain herniation, and surgery as independent risk factors for PTCI after 
adjusting for confounders. Additionally, baseline data analysis indicated that most TBI patients could experience cerebral 
infarction within two weeks after injury.15 Another study restricted its population to patients undergoing surgery for 
traumatic brain herniation, using classification and regression tree models to analyze predictive variables. The results 
suggested that the shock index, aspiration pneumonia, surgery, SAH, and intracranial pressure monitoring could be used 
to predict outcomes, with decreasing importance. Hu et al suggested that decompressive craniectomy could reverse brain 
herniation by alleviating malignant intracranial pressure, thereby preventing the progression of pulmonary inflammation 
and reducing the mortality rate of PTCI patients, aligning with our findings.16 Wu et al included decompressive 
craniectomy, traumatic subarachnoid hemorrhage, hypotensive shock, and risk factors such as admission GCS, skull 
base fractures, and brain herniation in their study. However, they only made ROC analysis on individual variables. The 
overall predictive efficacy of the model was unclear. Nevertheless, no significant correlation between age and PTCI risk 
was observed.17 Our study suggests that these differences may be related to regional treatment levels and sample sizes.

In this study, we used SHAP values to elucidate the outcomes of our machine learning model. By using this approach, 
we could specify the distinct contributions of individual predictors to model decisions, thereby enhancing the model’s 
transparency and interpretability. We identified independent risk factors for PTCI, including age, uric acid levels, blood 
glucose, surgical interventions, bilateral brain contusions, platelet count, and traumatic subarachnoid hemorrhage. The 

Figure 5 Comprehensive performance of several machine learning. (A) ROC curves for 5 models in the train set. (B) ROC curves in the test set. (C) Calibration of the 5 
models in the test set. (D) DCA curves for 5 models in the test set.
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Figure 6 Ten-fold cross-validation results of the optimal model in the training and test sets. (A) ROC curves in the train set (B) ROC curves in the test set. (C) Average 
ROC of LR models in the train set. (D) Average ROC of LR models in the test set.

Figure 7 Comparison of several machine learning in terms of performance metrics.
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presumed mechanisms are as follows: With the global increase in the elderly population, advanced age becomes a major 
risk factor for atherosclerotic cardiovascular diseases. Vascular pathologies such as arteriosclerosis, thinning of vessel 
walls, and decreased elasticity, are direct consequences of aging.18 These changes may enhance vascular reactivity to 
trauma, increasing susceptibility to vascular damage and subsequent thrombosis, thereby increasing the risk of cerebral 
infarction.4,19,20 A randomized controlled trial on uric acid highlighted its neuroprotective role in acute ischemic stroke 
patients through its potent antioxidant activity. During acute ischemic strokes (AIS), ischemia in brain tissues leads to the 
production of a substantial number of free radicals, such as hydroxyl radicals (·OH), hydrogen peroxide (H2O2), and 
peroxynitrite (ONOO⁻), which further damage brain cells.21 Uric acid can scavenge these free radicals, reducing 
oxidative stress and thus preventing further damage to brain cells.22 Additionally, in patients with efficient collateral 
circulation, uric acid can reach the damaged brain areas through these routes, reducing cell death and thus playing 

Figure 8 Interpretation of the model using SHAP values. (A) SHAP values for several variables. (B) Individual force plot for non-PTCI patients. (C) Individual force plot for 
PTCI patients.
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a preventative role.23 Moreover, traumatic brain injury activates the hypothalamic-pituitary-adrenal (HPA) axis and the 
sympathetic nervous system, leading to the production of large amounts of stress hormones such as catecholamines, 
cortisol, and glucagon. These hormones enhance glycogenolysis and gluconeogenesis, leading to hyperglycemia.24 In 
a hyperglycemic state, pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 are released in large quantities, 
exacerbating the inflammatory response.25 This inflammation not only intensifies cerebral edema and blood-brain barrier 
disruption but also causes local cerebral ischemia through microvascular damage and thrombosis, increasing the risk of 
cerebral infarction.26 Su et al suggested that bilateral brain contusions, often accompanied by extensive cerebral edema, 
significantly increased intracranial pressure and potential midline shifts, compressing cerebral vessels—particularly the 
middle cerebral and posterior cerebral arteries—reducing local blood flow and causing secondary cerebral infarctions.27 

Following head trauma, endothelial cells in vessels are damaged, and platelets gather around the injured vessels, 
activating a cascade of coagulation factors and increasing the risk of thrombosis.28 Additionally, the gathering of 
platelets increases blood viscosity, raising the risk of microvascular and small-to-medium artery blood flow stasis, 
which can induce local ischemia in patients with traumatic brain injuries and poor cerebral perfusion more easily.29 

Cerebral vasospasm is one of the most common complications of traumatic subarachnoid hemorrhage (SAH), leading to 
severe ischemic damage.30,31 In some guidelines, the use of vasodilators, such as nimodipine, after traumatic subar-
achnoid hemorrhage is recommended to reduce the incidence rate of vasospasm.32,33 Therefore, in aggressive treatment 
protocols, SAH can serve as a trigger for active and preventive interventions, playing a protective role in preventing 
cerebral infarction.

This study has the following advantages. First, this is the first time that machine learning techniques are used to 
predict PTCI and explain the ML model through SHAP values. Second, the robustness and accuracy of the ML 
model are ensured by using a sufficiently large sample size and training the model multiple times by partitioning the 
training set and test set and using cross-validation methods. Despite the results of this study, there are limitations. 
First, the study included patients with mild traumatic brain injury to construct a predictive model applicable to 
a broader population. However, by introducing patients with mild traumatic craniocerebral injuries, bias may be 
introduced and the results need to be interpreted with caution. Second, because this study is a single-center 
retrospective study, the generalizability of its results is limited. The potential use of prospective design and 
multicenter data in future studies is expected to improve model performance and further validate the robustness 
and generalizability of the model.

Conclusions
In summary, we successfully developed an interpretable ML model to predict the risk of developing traumatic cerebral 
infarction based on clinical data easily extracted from a case system. The final LR model has excellent predictive 
power in both internal and external validation. In addition, with the SHAP values, we provide a personalized risk 
assessment, which provides important decision support to physicians. This effective computer-assisted approach can 
help frontline clinicians identify risks and intervene early, promoting individualized management and thus reducing 
PTCI events.
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