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Background: Sample size calculations are rarely performed for functional magnetic resonance 

imaging studies involving clinical populations. This may be due to uncertainty as to the size of 

expected effect and the variance of the blood oxygenation level dependent response. Moreover, 

existing sample size methods ignore the costs associated with performing the proposed study. 

The current paper describes how cost efficiency, a recently proposed method, can be used in 

conjunction with existing methods to address these issues.

Methods: Cost efficiency is the ratio of a study’s value to its cost, and sample size is chosen to 

maximize cost efficiency (ie, to maximize return on investment). It is suggested that sample size 

calculations begin by calculating the sample sizes required to achieve a given power, through 

varying the input parameters to the calculation over their plausible ranges. Cost efficiency can 

then help narrow the resulting range of sample sizes and help choose one sample size. The 

approach is illustrated through a recent functional magnetic resonance imaging study of auto-

biographical memory retrieval in patients with major depressive disorder.

An example: Setting power to 80% and type 1 error rate to 5%, the method of Mumford and 

Nichols was used to calculate sample size. There were no reported effect sizes for similar stud-

ies in the literature; consequently, this parameter was varied over its plausible range (Cohen’s d 

varying from 0.2 to 0.8). This yielded sample sizes ranging from 50 to 800. Within these, cost 

efficiency gave a sample size of 88.

Conclusion: Poor reporting of the input parameters to power-based methods of sample size 

determination results in a wide range of candidate sample sizes. The cost efficiency approach 

supplies a way of narrowing this range and choosing a sample size from that.

Keywords: cost efficiency, sample size, power, fMRI studies

Introduction
Functional magnetic resonance imaging (fMRI) has been widely used to examine 

patterns of neural activation at rest and while performing motor and cognitive tasks. 

Despite the widespread use of fMRI technology, sample size calculations for fMRI 

studies have proved challenging. fMRI studies commonly focus on the effect of a 

stimulus or effects of different stimuli on the blood-oxygenation-level-dependent 

(BOLD) response of neural regions of interest, often contrasting stimulus-specific 

(eg, high versus low working memory load) and group effects (eg, patients versus 

controls). Data are collected sequentially during a scanning session, and at each time 

point the BOLD response is measured for each voxel in the brain. Given that the change 

in BOLD in response to a stimulus will vary across brain regions and time, analyzing 

fMRI data is more complicated than the simple comparisons of means that are required 
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for many clinical studies. Here, the correlation in responses 

over time and space and the multiplicity inherent in fMRI 

data make sample size determination difficult.1

Despite these challenges, there has been progress 

in sample size estimation in fMRI studies.2–5 However, 

these calculations are subject to the same limitations as 

conventional sample size calculations. The input parameters 

(eg, minimal clinically important difference, standard 

deviation) are often unknown. The common approach to 

uncertainty in input parameters is a sensitivity analysis 

in which the parameter values are varied over a plausible 

range, thus producing a range of candidate sample sizes. 

The difficulty with this approach in fMRI studies is that the 

innovative nature of the field, coupled with limited reporting, 

often leads to a high degree of uncertainty as to the values 

of the input parameters, resulting in a very large range of 

sample sizes. Thus, sensitivity analysis can be of limited 

use when planning studies in which a budget needs to be 

determined a priori.

A further limitation of existing methods is that cost, 

which investigators cannot ignore in practice, has no role in 

conventional sample size approaches. Two methods consider 

cost in sample size estimation, yet neither is currently used 

in fMRI studies. One is value of information and the other 

is cost efficiency. Value of information chooses the sample 

size to maximize the expected value of information gained 

through the trial minus the expected cost incurred. Value of 

information methods are most widely used with randomized 

controlled trials that are conducted to inform a decision 

on whether to adopt a new intervention (eg, a treatment or 

diagnostic tool) into routine practice. Here, study value is 

often measured in terms of the quality-adjusted life years 

gained by society as a result of the information gathered in 

the study. For example, the study might show that there are 

serious side effects associated with the new intervention, 

leading to a decision to retain the standard treatment, thus 

saving quality-adjusted life years by avoiding the introduction 

of a potentially harmful intervention. In fMRI studies, 

quantifying the expected study value (ie, quality-adjusted life 

years saved) is difficult since fMRI is often used at an early 

stage of discovery when it is unclear how the information 

will be used in improving patient care. Cost efficiency, 

recently proposed by Bacchetti et al,6 aims to maximize 

the value- per-unit cost and can be implemented without 

quantifying the projected study value. While the concept 

of cost efficiency is not widely used in health research, 

maximizing expected return on investment is a criterion most 

people consider when investing their own money.

This paper discusses the potential use of cost efficiency 

for setting sample size in fMRI studies. The mathematical 

basis for the cost efficiency method is explained, and its 

use is illustrated through an fMRI study. The potential role 

of cost efficiency in fMRI studies is discussed and some 

 conclusions are offered.

Methods
The cost efficiency approach suggested by Bacchetti et al 

focuses on the ratio of the value of information to the cost, 

thereby aiming to maximize return on investment.6 Let v
n
 

be the expected scientific, clinical, or practical value of the 

study if the sample size is n, and let c
n
 be the corresponding 

cost of the study. Cost efficiency chooses n to maximize the 

ratio of v
n
 to c

n
 (ie, to maximize v

n
/c

n
).

Cost in this context is measured from the perspective of 

the investigator and thus includes all financial expenditures: 

the fixed cost to set up and administer the study, perform data 

analysis, and disseminate the findings, as well as the cost per 

patient to cover scanning and travel costs. The study value 

v
n
 is measured in terms of the information gained from the 

study results. As discussed above, study value is most easily 

quantified in studies that will be used to inform a decision 

as to whether to adopt a new intervention. In contrast, fMRI 

studies tend to be used at an earlier stage of discovery, and 

the information gained could ultimately benefit patients in 

many possible ways. Although this information is certainly 

valuable to society, it is difficult to quantify its value. The 

advantage of the cost efficiency approach is that study value 

does not need to be quantified.

The key concept in cost efficiency is that the study value 

v
n
 can often be replaced by a simple stand-in function of 

sample size. It has been shown that if a function f (n) can 

be found such that v
n
/f (n) does not increase as n increases, 

then choosing the sample size n to minimize c
n
/f  (n) provides 

more cost efficiency (ie, a higher ratio of v
n
/c

n
) than any 

larger choice of n.

Two widely applicable choices of f (n) have been 

 proposed. The first option is f (n) = n with a resulting sample 

size n
min

, which minimizes total study cost divided by sample 

size (average cost per subject). Using f (n) = n requires that  

v
n
/n be nonincreasing in n, and this condition is denoted 

as C
min

. C
min

 has been shown to hold under a wide range 

of definitions of study value, such as value proportional to 

study power,6,7 inversely proportional to confidence interval 

width, proportional to reduction in Bayesian  credible 

interval width from its prior width,8–10 proportional to the 

reduction in squared error loss versus using the prior mean, 
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and proportional to gain in Shannon information.11 Thus, 

 Bacchetti et al conclude that it is reasonable to use n
min

 

without verifying condition C
min

 for each specific study.6 The 

second choice is to take f n n( ) =  so that n
root

 minimizes 

total study cost divided by the square root of the sample size. 

When f n n( ) = , it is required that v nn /  be nonincreasing 

in n, and this condition is denoted as C
root

. The condition C
root

 

is more stringent than C
min

 and generally holds for all n . 4 

when there is low prior information (in the sense that the 

Bayesian priors have equal prior means for the two groups, 

and at least one prior having a standard deviation at least as 

large as its mean). Bacchetti et al also suggest using n
root

, 

with no need to verify C
root

 for each specific study provided 

that there is low prior information.6

Bacchetti et al argue that the sample sizes n
min

 and n
root

 

are more cost-efficient than any larger sample size calculated 

by another sample size determination method, and therefore 

cannot be considered inadequate, regardless of the power 

they achieve.6 In contrast, the current paper suggests using 

cost efficiency alongside conventional power calculations. 

Studies with low power may not detect the effect of interest. 

Since studies without statistically significant results are less 

likely to be published than studies with significant find-

ings, investigators may feel driven to produce significant 

results. When power on the primary comparison is low, 

this encourages data dredging with a danger of spuriously 

significant findings.12–15 Thus, it is suggested that in fMRI 

studies, cost efficiency considerations be used in conjunction 

with power-based methods.

Specifically, it is proposed that investigators begin with 

sample size calculations based on achieving a given statistical 

power. Due to the uncertainty of input parameters, a range of 

candidate sample sizes are calculated through a sensitivity 

analysis. Cost efficiency can then be used to choose a sample 

size from this range. This approach is now illustrated through 

an example.

An example
The example is a 2-year neuroimaging study of autobio-

graphical memory retrieval in patients with major depressive 

disorder. This study examined patterns of neural activation 

during autobiographical memory retrieval of negative events 

compared to positive and neutral events in patients with recur-

rent major depressive disorder and matched healthy controls. 

It was hypothesized that the difference in activation of the 

hippocampus for negative events compared to positive and 

neutral events would be greater for patients than controls. In a 

prescan interview, participants identified six events from the 

past 2 years: two highly positive events (eg, a birthday party), 

two highly negative events (eg, receiving bad news), and two 

comparatively neutral events (eg, swimming).  During the 

scanning session, over a 20-second period, participants were 

presented with event period titles describing one of the events 

identified in the interview and asked to recall the event, or 

an incomplete sentence to be completed. This was followed 

by 10 seconds during which patients rated their degree of 

autobiographical reexperiencing and a 5-second fixation. 

The stimuli was presented in a six-block format in a random 

order, with two runs per event type and each run containing 

five stimuli corresponding to one of two memories generated 

in the prescan interview. The total scan time, including set 

up and localization, was about 1 hour.

How sample size can be determined will now be 

illustrated. To begin with, the sample size method of 

 Mumford and Nichols was used,5 ie, using sensitivity analysis 

to deal with input parameters whose values are uncertain. 

Cost efficiency was then applied to help narrow the range 

of sample sizes.

Mumford and Nichols’ sample size calculation requires 

estimates of within- and between- subject variances, and the 

size of the effect to be detected.5 No information about these 

estimates was reported in prior studies in this population, and 

so for the purposes of illustration the values presented by 

Mumford and Nichols were used: a first-order autoregressive 

correlation of 0.73, a first-order autoregressive total variance 

of 0.98, white noise variance of 1.313, and between-subject 

variance of 0.421.

There was substantial uncertainty about the likely size of 

the difference between patients and controls in the relative 

activation of the hippocampus for positive versus neutral 

events. Values of Cohen’s d effect size ranging from 0.2 

(small) to 0.8 (large) were plausible, and this parameter was 

varied in sensitivity analyses. Using values of 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, and 0.8 yielded sample sizes of 786, 350, 198, 

126, 88, 66, and 51, respectively, to achieve 80% power at 

a significance level of 0.05. The type 1 error rate was not 

adjusted for multiple comparisons because the primary region 

of interest was restricted a priori to the hippocampus. The 

relationships between power and sample size for different 

effect sizes are displayed in Figure 1.

Since these calculations yielded sample sizes ranging 

from 50 to 800, additional criteria were needed to select an 

appropriate sample size. Cost efficiency can help with this. 

In this study, the cost components included fixed costs such 

as part-time research assistant’s salary, which covered the 

responsibilities of scheduling, subject recruitment, data entry, 
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data analyses, conference travel fees, and test administration 

(in total, $39,671). The cost per patient included participant 

reimbursement fees to accommodate study participants’ 

parking, traveling and testing time ($50 per person), and 

scanner time ($400 per person). Therefore the total cost 

was $39,671 plus $450 per patient. Since this was the first 

neuroimaging study of autobiographical memory retrieval in 

patients with major depressive disorder, n
root

 was a reasonable 

choice. It is easy to show (Appendix 1) that n
root

 is equal to 

fixed costs divided by variable costs (ie, $39,671 is divided 

by $450), which in the current study came to 88 patients 

(Figure 2).

Here it is demonstrated step-by-step how n
root

 helps to 

choose a cost-efficient sample size. As studies with low 

Figure 1 Power estimates for a block study for different sample sizes. 
Notes: Each curve is for different group effect sizes (Cohen’s d). The horizontal grey dotted line indicates 80% power and the vertical grey dotted line represents most 
cost-efficient sample size (nroot = 88).
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Figure 2 The relationship between the cost divided by the square root of the sample size and sample size for all assumed group effect sizes.
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power will have small sample sizes, yielding results with 

a wide confidence interval (ie, low precision), using the 

reduction from the width of confidence interval is a measure 

of study value. Therefore, the study value was defined as 

inversely proportional to confidence interval width in this 

demonstration. The parameter of interest was the difference 

between patients and controls in the mean activation of 

the hippocampus for negative events compared to  positive 

and neutral events (ie, the emotional valence by group 

interaction). It can be observed in Figure 3 that study value 

divided by the square root of the sample size was monotone, 

decreasing as sample size increased. Figure 4 illustrates 

that cost divided by the square root of the sample size was 

minimized at the sample size of 88, and as can be seen from 

Figure 5, cost efficiency at the sample size of 88 was bigger 

than any larger choice among the range of sample sizes.

Study value was chosen to be inversely proportional 

to confidence interval width to illustrate how the cost 

efficiency method works in practice. Bacchetti et al have 

shown that similar results hold when using other definitions 

of study value.6

Discussion
Conventional methods of sample size calculation in fMRI 

studies involving clinical populations are limited by 

substantial uncertainty in the values of input parameters. 

Varying these parameters over their plausible ranges can 

result in a very large range of candidate sample sizes (in the 

current example, the range was 50 to 800). It is argued that 

cost efficiency can help choose a sample size from this range. 

In the current example, a sample size of 88 was more cost-

efficient than any larger choice. Thus, cost efficiency provides 

an upper bound to the sample size that the investigator should 

consider.

The current approach to using cost efficiency differs 

from Bacchetti et al’s approach. Arguing that the standard 

choice of 80% for statistical power is arbitrary, Bacchetti 

et al proposes cost efficiency as a stand-alone method for 

choosing sample size.6 The current authors agree that cost 

efficiency is a reasonable criterion: although an unfamiliar 

concept in health research, most individuals aim to maximize 

their cost efficiency (return on investment) when investing 

their own money. This difference of opinion with Bacchetti 

et al comes from the belief that the need for significant 

results to achieve publication is likely stronger in the fMRI 

literature than in other areas of medicine. This, coupled with 

the enormous scope for multiple testing in fMRI studies, 

makes the danger of false positive findings in underpowered 

fMRI studies particularly acute. It can thus be argued that 

studies with very low power may in fact have negative value. 

0 200 400 600 800

1.
00

1.
02

1.
04

1.
06

Sample size (n)

V
al

u
e/

sq
rt

 (
n

)

(88,1.0087)

Figure 3 The relationship of the study value (which is inversely proportional to confidence interval width) divided by the square root of the sample size versus sample size.
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Thus, it is suggested that cost efficiency considerations be 

used in conjunction with power-based methods.

The suggested approach of using cost efficiency as a 

supplement to traditional power-based methods can overcome 

the potential conflict between a sample size calculated from 

the traditional method and the cost efficiency sample size. 

While larger sample sizes will always have greater power, 

they cost more as well. Consequently, there is a trade-off 

between the study power and cost. Cost efficiency provides 

a way of compromising between statistical power and cost. 
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Figure 4 The relationship of cost divided by the square root of the sample size versus sample size.
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Figure 5 The relationship between cost efficiency and sample size.
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Since the authors propose choosing the initial range of sample 

sizes by using traditional power calculation, and applying 

the cost efficiency criterion in order to choose a sample size 

among this range, the current approach will have at least 80% 

power to detect at least one of the proposed effect sizes.

There are some practical limitations to cost efficiency. 

First, only financial cost is considered. Societal costs such 

as inconvenience and risks to study participants are not 

included. Moreover, in the face of limited resources, fund-

ing one study means that another study is not funded; the 

costs used in cost efficiency calculations do not include this 

opportunity cost. Second, financial costs must be estimated 

accurately. This is a particular concern when writing grant 

applications for agencies that routinely cut budgets, since 

it is common for investigators to pad their budget against 

the cut. This will distort cost efficiency calculations. Third, 

it is possible that the study’s projected value is less than the 

cost incurred. When this happens, the study does not add 

additional value16 and should not be undertaken. The cost 

efficiency approach does not consider this. Fourth, whilst n 

and n  are chosen as two widely applicable choices of f (n), 

the authors do not claim that they are optimal, but rather that 

they are useful because their properties have been evaluated 

extensively through theory and simulations. It is therefore 

possible that some other forms of f (n) may exist and do a 

better job in terms of identifying the sample size with the 

optimal cost efficiency. Future research may be helpful. 

Finally, cost efficiency may produce a sample size that is 

beyond the investigator’s budget. This is a problem shared 

by other methods of sample size determination, in particular 

methods based on achieving a given power. In the current 

approach, budgetary constraints could be incorporated by 

narrowing the range of sample sizes produced by sensitivity 

analysis down to those that are feasible.

In the current example, sample size calculations were 

based on hypothetical values for the variance components of 

the BOLD response. Thus, the results are for the purposes 

of illustration only. An alternative approach to this might 

be a Bayesian approach in which a prior is placed on these 

unknown parameters. Then the probability of rejecting the 

null hypothesis is calculated as the classical power averaged 

over the prior distribution.17 In the current example, it was 

decided not to adopt the Bayesian approach; the results 

of such a power calculation are sensitive to the choice 

of prior, and the lack of reported values of the variance 

components in the literature makes it extremely difficult 

to place a realistic prior on them. However, if these vari-

ance components were to be more widely reported in the 

future, Bayesian sample size determination methods would 

become more viable.

This lack of reported variance components in the 

literature is a serious concern. If studies do not include 

these estimates in their results sections, there will remain 

substantial uncertainty as to their value, leaving investigators 

unable to power their studies accurately. Moreover, the 

uncertainty in variance parameters and effect sizes is not 

because the data to quantify them does not exist, but rather 

because it is simply not reported. There is a pressing need 

for a reporting guideline for fMRI studies outlining which 

values investigators should report to facilitate adequately 

powered studies in the future.

Conclusion
There is often substantial uncertainty in the effect sizes and 

variance components that form the input parameters to con-

ventional sample size calculations. For any given study, this 

can lead to a wide range of sample size estimates. Authors 

should be encouraged to report effect sizes and estimates of 

within- and between-subject variances in their manuscripts 

to facilitate sample size calculations for future studies. 

Until this practice is widespread, the authors have argued 

that cost efficiency can supplement conventional sample 

size methods by narrowing the range of sample sizes under 

consideration on the basis of maximizing the expected return 

on investment.
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Appendix 1
If the study is composed of a linear structure of a fixed cost 

plus a per-patient cost, that is, C
n
 = C

f
 + C

s
 × n, where C

f 
– the 

fixed cost independent of n – is greater than zero and C
s 
– the 

cost per subject – is greater than zero, then n
root

 is the ratio 

of C
f
 to C

s
, that is, n C Croot f s= / .

Proof: If 
∂ 





∂
=

× − × +
× × =

C

n

n

C n C n C

n
n

n

s s f( )
,

1

2
0

1

2  

then n C Cf s= / ; and 

∂ 





∂
=

× − ×

×
>

2

2 5

2

3

4

0

C

n

n

C C n

n

n

f s  at

n C Cf s= / . Therefore, C nn /  reaches the local minimum 

at n C Cf s= / . Thus, n C Croot f s= / .
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