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Background: Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This 
study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of 
DKD.
Methods: We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of 
proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations 
between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease 
progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key 
genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR).
Results: Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), 
slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These 
key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In 
addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may 
regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the 
DKD mice model.
Conclusion: Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may 
be useful in the diagnosis and therapy of DKD.
Keywords: Mendelian randomization analysis, diabetic kidney disease, clinical correlated genes, biomarker, immune cell infiltration

Introduction
Diabetic kidney disease (DKD) is a major chronic kidney disease (CKD) in China and worldwide, featured by an 
abnormal glomerular filtration rate (GFR), increased urinary protein, and pathological changes in renal microvascular 
system. Approximately half of DKD patients are estimated to develop end-stage renal disease (ESRD) requiring long- 
term dialysis,1,2 which may last for a relatively long time under stable conditions.3 In the majority of patients with DKD, 
however, death caused by renal failure is an unavoidable outcome. Chronic high blood sugar levels can damage the 
glomeruli and renal tubules, leading to a breakdown of the glomerular filtration barrier and leakage of large molecular 
proteins into the urine, resulting in proteinuria. In addition, high blood sugar stimulates the production of inflammatory 
mediators in glomerular cells, causing an inflammatory response that leads to damage to the glomeruli and renal tubules. 
Moreover, hyperglycemia can also increase intracellular oxidative stress, resulting in increased production of oxygen free 
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radicals, dysfunction of glomerular endothelial cells, proliferation and hypertrophy of mesangial cells, increased 
mesangial matrix, disappearance of podocyte fusion, thickening of the glomerular basement membrane, atrophy of 
renal tubular epithelial cells (TECs) and other pathophysiological changes, further damaging renal cells and structures.4,5 

At present, the main means of treating DKD include controlling blood sugar, hypertension, blood lipids, inflammation, 
and proteinuria. In clinical practice, new therapeutic drugs, such as angiotensin-converting enzyme inhibitors (ACEIs) 
and sodium-dependent glucose co-transporter 2 inhibitor (SGLT2i), have achieved good results in treating DKD. 
However, the main treatment for ESRD patients is the expensive renal replacement therapy (RRT).6 Therefore, finding 
sensitive diagnostic biomarkers and new therapeutic targets to achieve early diagnosis and delay the progression of DKD 
is highly important.

Recent studies have shown that immune regulation is closely associated with the development of glomerulosclerosis, 
tubulointerstitial fibrosis, and ESRD in a variety of kidney diseases. Moreover, DKD is increasingly recognized as an 
inflammatory disease in which immune regulation is involved in its development and progression. Immune cells, 
including macrophages, T cells, B cells and mast cells, infiltrate the kidneys. Many proinflammatory cytokines and 
chemokines also play essential roles in the pathogenesis of DKD.7 Therefore, exploring the relationship between key 
genes related to DKD and immune regulation in the occurrence and development of DKD is crucial for identifying new 
diagnostic biomarkers and therapeutic targets.

Mendelian randomization (MR) uses genetic variation to determine whether observed associations between risk 
factors and outcomes are consistent with causal effects.8 MR utilizes genetic variation as an instrumental variable to 
enhance the ability of causal inference.9 An instrumental variable should satisfy three main conditions: being associated 
with the exposure (correlation hypothesis), having no common cause with the outcome (independence hypothesis) and 
being associated with the outcome only through exposure (excluding the restrictive hypothesis). Colocalization analysis 
requires two traits and considers whether their genetic association at a single locus is explained by overlapping or 
different variants.10

The field of bioinformatics has been developing for a long time. It aims to use information science and statistical 
collection methods to understand biological phenomena and solve the proposed research challenges.11 There are now 
many different technologies available for measuring various characteristics of biological systems. For example, different 
techniques (such as RNA sequencing and RNA microarrays) can be used to measure the same physical and chemical 
properties, and different physical and chemical properties can also be measured for the same object (such as protein and 
RNA content in cells). In recent years, genome-scale technology has led to the systematic construction of very large-scale 
quantitative datasets containing multiple measurement methods.12 In addition, the emerging technology of single-cell 
RNA sequencing (scRNA-seq) in recent years allows for comprehensive analysis of individual cells, identifying and 
analyzing specific cellular components and genes that may play a key role in disease progression. It facilitates the 
classification of cell populations based on their unique characteristics, helping to understand how different cells interact 
with each other and with their surrounding environment.13 Compared to RNA-seq, scRNA-seq has advantages, in that it 
includes heterogeneity within the anatomy of cells and identification of rare disease-associated cells by using a single cell 
profile in a mixture of cells.14 Dynamic changes in gene expression can be experimentally determined for DKD samples 
through the detection of glomerular cells via scRNA-seq.15 At present, comprehensive bioinformatics analysis has 
been extensively applied to analyze vast datasets generated from microarray experiments to identify biomarkers or 
features of various diseases for early monitoring and prognosis assessment. For example, Mona et al identified biomarker 
genes from a functional network containing 407 genes differentially expressed between healthy control individuals and 
lung cancer patients in the Gene Expression Omnibus (GEO) dataset of common gene expression. Low expression of 16 
gene markers is closely associated with good lung cancer survival, cellular modulation and DNA repair.16

Our research applied comprehensive bioinformatics technology to determine the key genes that have a causal 
relationship with the progression of DKD. Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression 
was used for feature selection of diagnostic markers for the disease. The relationships between key genes and immune 
infiltration and regulatory signaling pathways were further analyzed. Finally, these key genes were visualized in kidney 
cells through single-cell analysis. Our findings may provide promising targets for the diagnosis and treatment of DKD.
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Methods: This study used MR analysis to identify the key genes that are causally associated with the develop-
ment of DKD. We used Lasso regression algorithm to screen these key genes. The core of this algorithm lies in its 
ability to determine insignificant variables in the model by minimizing prediction error, thereby producing the most 
accurate results on a given dataset. Then, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis 
(GSVA) were used to further determine the relationships between key genes related to DKD and immune infiltration 
and further identify prospective molecular mechanisms affecting the progression of DKD. Finally, these key genes 
were annotated into 12 cell clusters in the kidney by single-cell analysis and visualized. We show the flowchart of 
the entire study in Figure 1.

Figure 1 Flowchart of the entire study.
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Materials and Methods
Data Download
The GEO Database
We downloaded the Series Matrix File (GSE185011) from NCBI’s public GEO database (https://www.ncbi.nlm.nih.gov/ 
geo/info/datasets.html), along with its annotation file (GPL24676). This dataset includes a total of 10 expression profiles 
consisting of 5 normal samples and 5 disease samples. We downloaded the single-cell data file of GSE131882 from the 
NCBI GEO public database. This file included sample data comprising complete single-cell expression profiles from 3 
normal individuals and 3 patients, specifically for single-cell analysis.

Exposed pQTL Data
pQTL data were obtained from the deCODE (https://www.decode.com/summarydata/) database. The data utilized in our 
study were sourced from the prestigious 2021 version of the deCODE database’s pQTL data.17 This comprehensive 
dataset encompasses genome-wide association studies (GWASs) of 35,559 European individuals, employing 4907 
aptamers to meticulously measure plasma protein levels.

Outcome Data
The participants in the GWAS chosen for this study, which are relevant to the outcomes, were predominantly European in 
origin. The summary outcome data was derived from data contained within the FinnGene R9 database 
(finngen_R9_DM_NEPHROPATHY_EXMORE). The GWAS catalog encompasses a vast array of publications, high-
lighted by the most significant associations and complete summary statistics. Additionally, comprehensive summary 
statistics provide detailed and organized insights into the findings. In total, there were 4111 patients with DKD and 
308,539 control individuals.

pQTL MR Analysis
The deCODE (https://www.decode.com) database is recognized as a pacesetter in global efforts to analyze and 
comprehend the human genome, containing over 150 million sequence variants from different populations around the 
world. It plays an important role in advancing genomic research, elucidating the connections between genes and traits, 
and providing new insights into human health and disease. The outcome IDs filtered by the FinnGen biobank database 
were extracted from the risk (outcome) summary data to obtain the relevant causal relationships in pQTLs. Subsequently, 
at the selected gene loci, we selected the corresponding single nucleotide polymorphisms (SNPs) as potential instru-
mental variables (IVs) based on the significance threshold within the site range (P<1e-8). This method not only improves 
the accuracy of analysis, but also provides more refined and precise genetic information, facilitating a better under-
standing of the biological mechanisms behind complex diseases. We calculated linkage disequilibrium (LD) between 
SNPs with R2 < 0.001 (clumping window size=10,000 kb) and only SNPs with a p-value less than 5e-5 were retained for 
further analysis. The inverse variance weighted (IVW), MR Egger and the weighted median method were used for pQTL 
MR analysis. The reliability of causality was evaluated by using a statistical method (Wald ratio only when there is only 
one SNP statistical method in causality) to obtain an overall estimation of the impact of DKD on all cis and certain cross- 
region genes in whole blood.

Sensitivity Analysis
MR leave-one-out sensitivity analysis was utilized to assess how specific genetic variants influence the risk of DKD. This 
approach pinpoints and removes variants that affect the overall estimate by excluding each SNP one by one and 
recalculating the total impact of the remainder. Removing each SNP generates a new point estimate and 95% confidence 
interval to evaluate the unique impact of that SNP and the robustness of the overall results. We summarize the estimates 
after removing each SNP individually, as well as the overall estimate when all SNPs are considered. Through comparison 
of these estimates, we can assess the impact of excluding any single SNP on the results, thereby evaluating the robustness 
of our analysis.
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Colocalization Analysis
In order to further clarify whether the identified disease-related proteins share similar DKD pathogenic variants within 
genomic regions and to exclude interference from linkage disequilibrium, colocalization analysis was performed with 
pQTL and GWAS data from DKD samples. We used the 100-kilobase region surrounding the index SNP to calculate the 
posterior probability. Our results indicate: H3 shows the probability that two traits (gene expression and DKD) are linked 
but have distinct causal variants. H4 indicates the probability that the two traits are related and share a single causal 
variant. We set a colocalization threshold of SNP.PP.H4 > 0.95.

The Feature Selection Process of LASSO Regression
A significant feature of Lasso regression is its tendency towards variable selection. When the predictive factors are fully 
understood and an indispensable part of the research, Ridge regression is more suitable.18 Lasso regression selectively 
highlights important predictive factors and effectively removes less critical predictive factors by reducing their coeffi-
cients to zero.19 We conducted feature selection of diagnostic biomarkers for DKD using Lasso logistic regression. The 
“glmnet” software package was utilized to apply the Lasso algorithm for feature selection and modeling. During the 
feature selection process, Lasso regression adjusts the weight of each feature to achieve sparsity (ie, the coefficients of 
some features become zero) by minimizing the sum of the loss function and the L1 regularization term. This 
characteristic makes Lasso regression highly effective for high-dimensional datasets, and it can filter out features that 
have a significant impact on the target variable. By adjusting the regularization parameter (lambda value) in the Lasso 
model, we can control the sparsity of the features, thereby selecting an appropriate number of features for modeling and 
avoiding overfitting.

Immune Cell Infiltration Analysis
The CIBERSORT approach has been widely applied to evaluate the types of immune cell in microenvironment. It 
comprises 547 biomarkers that can distinguish 22 types of immune cell. We used the CIBERSORT algorithm to analyze 
the sample data, estimate the relative abundance of 22 types of infiltrating immunocytes, and examine the connection 
between immune cell content and gene expression.

GSEA
GSEA is designed to analyze the expression patterns of genes within different gene sets. By employing pre-established 
set of genes, this algorithm systematically ranks each gene based on its differential abundance across two distinct sample 
types. The process is to check the preset gene set is significantly enriched at the top or bottom of the ranking. GSEA was 
employed to compare signal differences between the high-expression and low-expression groups, and to identify the 
molecular mechanisms of the five genes in two groups. We set the substitution number to 1000 and determined 
phenotype as the substitution type.

GSVA
GSVA is a groundbreaking and innovative approach to the study of transcriptional gene set enrichment. By comprehen-
sively scoring a particular gene set and then determining its biological function, the GSVA transforms gene-level changes 
to pathway-level changes. In this study, gene sets were downloaded from the Molecular Signatures Database (v7.0 
version) and the GSVA algorithm was used, which comprehensively evaluated each individual gene set from an 
exhaustive perspective to assess underlying biological functional changes in different samples.

Single-Cell Analysis
First, the expression profile was read through the Seurat package, and low-expression genes were filtered out. 
Standardization, homogenization, principal component analysis (PCA), and analysis of the sequence data were per-
formed. The optimal number of pcs was determined through ElbowPlot, and the positional relationship between each 
cluster was determined through uniform manifold approximation and projection (UMAP) analysis. The cluster was 
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annotated through known cell markers, and each was annotated to some cells that are important for the occurrence of the 
disease.

Animal Experiments
In our current research, we used a mouse model of streptozotocin (STZ)-induced DKD. Long-term hyperglycemia was 
constructed by intraperitoneal injection of 50 mg/kg STZ (pH: 4.2–4.5) into 8-week-old C57BL/6J mice for five 
consecutive days. An equal volume of sterile sodium citrate was injected into mice of the same age to serve as the 
control group.20 One week later, mice with blood glucose concentrations exceeding 16.7 mmol/L were included in the 
experimental group.21,22 During the entire modeling period, a Roche blood glucose meter was used to measure blood 
sugar every two weeks. Blood and tissue samples were obtained from DKD mice after 12 weeks of persistent 
hyperglycemia. After 12 weeks of continuous induction of hyperglycemia, we collected 24-hour urine from mice 
using metabolic cages, euthanized the mice, and collected blood and kidney samples. We fixed mice kidney tissue 
with 4% paraformaldehyde and performed routine paraffin embedding and sectioning (5 µm), followed by Periodic Acid- 
Schiff (PAS) staining and Masson staining. Mouse microalbuminuria ELISA Kit (Elabscience, Wuhan, China, E-EL- 
M0792) was used to monitor the protein content in mice urine and creatinine colorimetric assay kit (Elabscience, Wuhan, 
China, E-BC-K188-M) was used to monitor the serum creatinine of DKD mice. We also used RT‒PCR to quantitatively 
detect the expression of five key genes in mice kidney tissue. Following the manufacturer’s instructions, total RNA was 
extracted from the samples using an RNA-easy reagent. After total RNA was quantified by a NanoDrop2000 (Thermo 
Fisher, CA, USA), a cDNA synthesis kit (Vazyme, Nanjing, China, R333) and Taq Pro Universal SYBR for qPCR 
Master Mix (Vazyme, Nanjing, China, Q712) were used for reverse transcription and real-time fluorescence quantifica-
tion, respectively (RT‒qPCR).

Statistical Analysis
All statistical analyses were conducted in the R-language (version 4.2), with a p-value of less than 0.05 considered 
statistically significant.

Results
Identification of Candidate Genes Using MR Analysis
We downloaded relevant data on DKD from the deCODE database. The outcome id derived from the summary statistics 
of 312,650 cases (controls: 308,539; cases: 4111) related to DKD was as finngen_R9_DM_NEPHROPATHY_EXMORE. 
Instruments and extract_outcome_data were sequentially extracted to determine the causal relationships related to the 
pQTL outcome. We screened the causal relationships of 20 pairs of genes linked to pQTL-positive outcomes using MR 
analysis (Figure 2, IVW pval < 0.01). Then, we assessed their reliability by conducting a leave-one-out sensitivity 
analysis. The results showed that it was no significant influence on the overall error range to exclude any single SNP, 
confirming the robustness of the 20 selected pairs of causal relationships (Figure 3).

Identifying the Reliability of Candidate Genes Using Colocalization Analysis
In addition, we performed colocalization analysis on 20 candidate genes at the pQTL-GWAS level, among which the 
colocalized SNP.PP.H4 values of the genes AKT2, DNER, EIF3G, IL2RB, NRXN3, RACGAP1, SLIT3, TBPL1, 
TNNI2, and UNC5D were greater than 0.95 (Figure 4). In order to further elevate the exactitude of the identified key 
genes of DKD, we used the Lasso regression algorithm to screen again the 10 genes identified by colocalization analysis 
(Figure 5A and B). The results showed that the Lasso regression algorithm narrowed down the range of selected feature 
genes to five, which will be key genes for subsequent analysis, namely AKT2, IL2RB, NRXN3, SLIT3, and TBPL1.

Analysis of the Regulatory Mechanisms of Key Genes Involved in DKD
The microenvironment, a complex network of cells and tissues that surrounds and interacts with the body in a dynamic 
fashion, is largely constituted by immune cells, the extracellular matrix, various growth factors, inflammatory factors and 
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has special physical and chemical characteristics. It is essential for maintaining a balance between immune activation and 
the body’s natural defense mechanisms. Moreover, this microenvironmental realm is characterized by unique physical 
and chemical properties that can profoundly impact disease diagnosis and patient response to clinical treatment. This 
study further explored the potential molecular mechanisms by which key genes influence the progression of DKD by 
analyzing the relationships between key genes and immune infiltration in a DKD dataset. Our study explored the 
proportions of immune cells in each sample and the correlations between different immune cell types (Figure 6A and B). 

Figure 2 MR analysis on screening the causality of 20 pairs of genes corresponding to pQTL-positive outcomes.
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Figure 3 Sensitivity analysis of the causality of the 20 genes using the leave-one-out method. MR leave−one−out sensitivity analysis for (A)AKT2,(B)CHGB,(C)CHST11,(D) 
DNER,(E)EGFL6,(F)EIF3G,(G)ERBB3,(H)FSTL1,(I)GP1BA,(J)IGHG4,(K)IL2RB,(L)NRXN3,(M)RACGAP1,(N)RTP4,(O)SLIT3,(P)TBPL1,(Q)TFRC,(R)TNNI2,(S)UGDH,(T) 
UNC5D.
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Figure 4 Colocalization analysis of 20 candidate genes at the pQTL-GWAS level (A)AKT2,(B)DNER,(C)EIF3G,(D)IL2RB,(E)NRXN3,(F)RACGAP1,(G)SLIT3,(H)TBPL1,(I) 
TNNI2,(J)UNC5D.
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Figure 5 (A and B) Screening key candidate hub genes through LASSO regression analysis.
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Figure 6 (A and B) The proportions of immune cells in each sample and the correlation among different types of immune cell. (C) Differences in immune cell content 
between control and disease samples. (D) The relationships between five key genes and immune cells.
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In addition, the results showed significant differences in naïve B cells and resting Mast cells between the control samples 
and disease group samples (Figure 6C).

Immune Infiltration Analysis of Key Genes
This study further explored the relationships between key genes and immune cells and revealed that key genes are highly 
correlated with immune cells (Figure 6D). Among them, AKT2 was positively correlated with immune cells such as 
resting mast cells and negatively correlated with immune cells such as neutrophils. IL2RB was positively correlated with 
immune cells such as CD8 T cells and negatively correlated with immune cells such as neutrophils. NRXN3 was 
positively correlated with immune cells such as activated dendritic cells. TBPL1 was positively related to immune cells 
such as memory B cells. The correlations between these five key genes and different immune factors, including immune 

Figure 7 Correlations between these five key genes and different immunity factors. (A-E) Correlations between key genes and chemokines, immunoinhibitors, 
immunostimulators, MHC and receptors.
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regulatory factors, chemokines, and cell receptors, were obtained from the TISIDB database (Figure 7). These analyses 
suggest that key genes are closely related to the level of immune cell infiltration and play an important role in the 
immune microenvironment.

Analysis of Signaling Regulatory Pathways Involving Key Genes
Next, we investigated the specific signaling pathways associated with the five key genes and delved into how these genes 
might influence disease progression. Specifically, our GSEA analysis showed that AKT2 is involved in two significant 
pathways: the interleukin 1-mediated signaling pathway and lipopolysaccharide-mediated signaling pathway (Figure 8A). The 
pathways enriched by IL2RB included the collagen activated pathway and T cell receptor signaling pathway (Figure 8B). The 
NRXN3-enriched pathways included the negative regulation of the BMP, the retinoic acid receptor and other signaling 
pathways (Figure 8C). SLIT3-enriched pathways included the negative regulation of the TORC1 signaling and the neuro-
trophin TRK receptor signaling pathways (Figure 8D). The pathways enriched by TBPL1 included the hexose catabolic 
process, monosaccharide catabolic process and other pathways (Figure 8E).

GSVA analysis showed that high expression of AKT2 promotes key signaling pathways, including the IL2 STAT5 
and MTORC1 pathways (Figure 9A). Similarly, elevated levels of IL2RB promote the MTORC1 and P53 pathways 
(Figure 9B). High expression of NRXN3 can promote bile acid metabolism and interferon alpha response (Figure 9C). 
The elevated levels of SLIT3 can promote signaling pathways known as the apoptosis and allograft rejection pathways 
(Figure 9D). High expression of TBPL1 can promote the MTORC1, interferon alpha response and other signaling 
pathways (Figure 9E).

Correlation Analysis of the Key Genes and Key Regulatory Genes of DKD
We have meticulously gathered and reviewed a diverse array of immunity-related regulatory genes from GeneCards 
(https://www.genecards.org/), an expansive database that provides comprehensive information on genetic markers and 
their functional significance. We analyzed the expression levels of genes with the highest correlation scores and found 
that MYD88 and SOCS1 were the most expressed in DKD. There were differences in control group and disease group 
(Figure 10A). In addition, correlation analysis on key genes and immune regulatory genes was performed. There was 
a significant correlation between the expression of key genes and the level of disease regulation genes. Among these 
genes, IL2RB was significantly positively connected with ATM (r= 0.858), and AKT2 was significantly negatively 
associated with PLCG2 (r=−0.893) (Figure 10B).

Single-Cell Analysis of Key Genes and Renal Cell Clusters
The GSE131882 single cell data set was downloaded from the NCBI GEO public database. First, using the Seurat 
package to read the expression profile and the low-expression genes were filtered out. We screened data samples using 
nFeature RNA, nCount RNA and mitochondrial content (nFeature RNA>50 and percentage. mt 10) (Figure S3A), and 
then found that the batch effect between samples was not significant through PCA downscaling analysis (Figure S3B). 
Meanwhile, the optimum PC number: 11 (Figure S3C) was obtained by standardization, normalization, PCA, and 
homogenization analysis, and the position relation of each cluster was acquired by UMAP analysis (Figure 11A). 
These 12 clusters annotated through known cell markers (Figure S4) were identified as 12 cell types, including 
LEUK, MES, ENDO, PODO, CD-ICAI, CD-ICB, CD-PC, DCT/CT, DCT, LOH, CFH, PCT (Figure 11B). We analyzed 
the expression levels of key genes in these 12 cell clusters (Figure 11C and D). Next, we obtained genes related to DKD 
progression (ACE and PVT1) from the GeneCards database (https://www.genecards.org/) and visualized the coexpres-
sion of these genes with five key genes in 12 types of cells (Figures S1 and S2). In addition, we supplemented the 
expression of key genes between the control group and DKD group (Figure S5), as well as the ROC curves of the 
diagnostic efficacy of these five key genes for DKD (Figure S6). Finally, we used AUCell function to perform 
quantitative analysis of the levels of genes related to immunity, metabolism, signaling pathways and proliferation 
(Figure 11E). AKT2 is highly expressed in signaling pathways such as oxidative phosphorylation, apoptosis, mtorc1 
signaling, and unfolding protein response. IL2RB is significantly upregulated in the allograft-injection related immune 
pathway. NRXN3 is significantly downregulated in oxidative phosphorylation, unfolded protein response, while 
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Figure 8 The potential molecular mechanisms related to the five key genes. Panels (A-E) show AKT2, IL2RB, NRXN3, SLIT3 and TBPL1, respectively.
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Figure 9 Multiple signaling regulatory pathways involving five key genes related to DKD.(A–E) Key genes were analyzed by GSVA. Blue represents the signaling pathway 
associated with high-level gene expression, and green represents the signaling pathway associated with low-level gene expression. Figures (A-E) show AKT2, IL2RB, 
NRXN3, SLIT3 and TBPL1 in sequence.
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significantly upregulated in estrogen-response early, PI3K/AKT/mTOR signaling, and mitotic spike pathways. SLIT3 is 
significantly downregulated in oxidative phosphorylation signaling and significantly upregulated in complement and 
epithelial mesenchymal transition signaling. TBPL1 is highly expressed in regulatory processes such as protein secretion 
and mitotic spindle.

Validation in Animal Models
In order to confirm the validity of these five markers in early DKD diagnosis, we constructed a model of DKD induced 
by STZ. Compared with the control group, the proliferation of renal mesangial cells was increased, the mesangial matrix 
expanded more significantly, and the abnormal glomerular basement membrane thickening was observed in DKD group 

Figure 10 (A) Differential expression of immune related regulatory genes between control group and disease group. (B) Correlation analysis of five key genes and the 
expression levels of immune regulation-related genes in DKD.
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Figure 11 Single-nucleus RNA sequencing. (A) The tSNE algorithm was used to classify the cells into 16 clusters according to the key components of the PCA. (B) The 16 
clusters were annotated with 12 cell types: LEUK, MES, ENDO, PODO, CD-ICB, CD-ICA, CD-PC, DCT/CT, DCT, LOH, CFH, PCT. (C) and (D) Expression profiles of key 
genes in these cells were analyzed. (E) Analysis of the levels of genes related to immunity, metabolism, signaling pathways and proliferation. 
Abbreviations: LEUK, leukocytes; MES, mesangial cells; ENDO, endothelial cells; PODO, podocyte; CD-ICA, connecting tubule-type A intercalated cell; CD-ICB, 
connecting tubule-type B intercalated cell; CD-PC, connecting tubule-principle cell; DCT/CT, DCT, distal convoluted tubule; LOH, loop of Henle; CFH, complement factor 
H; PCT, proximal convoluted tubule.
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Figure 12 Verification of five markers in animal experiments. (A) PAS and Masson staining of mouse kidney. (B) Quantitative analyses of mesangial matrix expansion (n = 6 
mice per group). Scale bar, 20μm; original magnification×400. (C) 24-hour albuminuria levels in DKD mice at week 12 of modeling. (D) Blood creatinine levels in DKD mice 
at week 12 of modeling. (E) mRNA expression levels of five genes in kidney tissue of mice.
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of PAS staining. Masson staining demonstrated that the DKD mice had significantly increased the deposition of renal 
tissue fibers (Figure 12A), which showed the successful establishment of DKD model. Subsequently, we evaluated all 
glomeruli under the microscope of each mouse. We evaluated the proportion of diseased glomeruli to the entire glomeruli 
to obtain the mesangial matrix proliferation index. The results showed that the degree of kidney disease in DKD mice 
was more severe, which was statistically significant compared to the control group of normal mice (Figure 12B). In 
addition, at the end of modeling, the urinary albumin (Figure 12C) and serum creatinine levels (Figure 12D) of DKD 
group mice were significantly increased compared to the control group mice. The above experimental results indicate the 
successful construction of the DKD mouse model. Finally, we detected the mRNA expression levels of AKT2, IL2RB, 
NRXN3, SLIT3, and TBPL1 molecules in the renal tissue of the DKD mice. The results indicated that in the DKD 
model, AKT2, IL2RB, and NRXN3 were significantly increased, while TBPL1 expression was significantly reduced. 
However, in the DKD group, SLIT3 showed a decreasing trend and there was no difference between the two groups 
(Figure 12E).

Discussion
The occurrence and development of DKD involves multiple factors.23 However, its specific mechanisms remain to be 
explored. At present, the therapeutic effect of DKD treatment is limited due to individual heterogeneity, so it is necessary 
to explore and develop novel molecules that can contribute to DKD diagnosis and therapy. Based on the genetic data for 
312,650 individuals with DKD (control individuals: 308,539; patients: 4111), our study provides robust evidence that 20 
proteins (IVW pval < 0.01) are causally associated with DKD, and five of them showed evidence of genetic colocaliza-
tion with DKD outcomes. Our research findings highlight potential targets for future treatment of DKD and demonstrate 
the relevance of genomics and proteomics in identifying drug targets. In addition, we employed comprehensive 
methodologies to investigate the genetic correlations of these key genes with immune infiltration in DKD patients. We 
further investigated the related signaling pathways and regulatory mechanisms modulated by these key genes to 
investigate the possible molecular mechanisms that are involved in DKD progression. Finally, we annotated clusters 
of known cell markers through single-cell analysis and identified five genes that are important for disease occurrence.

Previous studies have shown that the PI3K/AKT pathway participates in various biological processes involved in the 
development of DKD, such as inflammation, oxidative stress, and apoptosis.24–26 The AKT kinase family, consisting of 
AKT1, AKT2, and AKT3, is highly homologous with distinct functional specificity and tissue distribution.27,28 AKT1, 
which is widely expressed in all kinds of tissues, plays a biological role in regulating cell growth and survival.29 

AKT2 has been found to regulate glucose metabolism and is mainly expressed in insulin-responsive tissues, such as 
skeletal muscle and adipose tissue.30 AKT3, which exhibits high expression levels specifically in nervous tissues, 
predominantly modulates neuronal development.31 Notably, a study has reported a missense mutation of AKT2 with 
serious diabetes mellitus.32 Therefore, specifically targeting AKT2 subtypes may be a feasible therapeutic method for the 
treatment of glucose metabolism disorders.33

Interleukin-2 receptor beta (IL2RB) is an interleukin-2 receptor. At present, some studies have suggested that IL2RB 
may be involved in T-cell-mediated immune response regulation and plays an important role in maintaining immune 
homeostasis.34,35 IL2RB has been reported to be a pivotal gene related to the function of T cells in DKD.36 Our research 
provides new evidence of IL2RB in the immune regulation of DKD.

The human neurexin family is composed of NRXN1, NRXN2, and NRXN3.37 Neurexin plays important roles in 
synaptic neurotransmitter release and cell adhesion and has been found to be highly expressed in presynaptic nerve 
terminals.38 Previous studies have shown that NRXN3 is involved in metabolism and obesity regulation and is related to 
diabetes.39–41 However, whether NRXN3 is involved in the progression of DKD is still unclear. Our research indicated 
that there is a causal relationship between NRXN3 and DKD and revealed the pathway by which NRXN3 exerts its 
regulatory function and its relationship with immune regulation.

Slit guidance ligand proteins, referred to as SLITs, include several subtypes, such as SLIT1, SLIT2, and SLIT3, that 
were discovered to be highly conserved in several species.42 Moreover, these proteins have been shown to significantly 
modulate multiple cellular biological processes in a variety of tissue types, including kidney tissue.43,44 Notably, SLIT3 is 
associated with various cellular functions and processes, including axonal guidance, angiogenesis,45–47 inflammatory cell 
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chemotaxis,48–51 and tumor cell metastasis.52,53 Previous studies have shown that SLIT3-deficient mice exhibit reduced 
expression of type I and III collagen at the transcriptional level, and an overall decrease in collagen content was found in 
various nonneuronal tissues studied, including the aortic outer membrane, lungs, spleen, kidneys, bones, skin, and 
heart.54 These findings indicate its significant influence on fibroblast function. SLIT3 deficiency can weaken the 
production of collagen in the heart and other nonneuronal tissues. It plays an important role in regulating fibroblast 
activity and fibrous collagen synthesis through autocrine regulation, making it a potential therapeutic target for fibrotic 
diseases.54 Sonia Zambrano et al used SMARTseq2 technology to perform single-cell RNA sequencing (scRNA-seq) 
analysis of glomeruli in mice with early IgA nephropathy. Several paracrine pathways within the glomerulus, such as 
mesangial cell-derived Slit3, which may activate Robo receptors in podocytes/endothelial cells, were detected, and the 
functions of key cell‒cell crosstalk pathways, such as the role of the Slit-Robo signaling axis, were further validated 
through cell experiments.55 Our research revealed that the Slit3 gene actively participates in the immune regulatory 
pathway and inflammatory response in DKD and is involved in extensive communication with various immune cells.

Transcription initiation (TI) is a crucial and highly regulated event in the biological cycle of organisms, and tata box 
binding protein (TBP) plays an important role in TI. TBP interacts specifically with the DNA sequence of promoters of 
most Class II genes and some Class III genes (such as the TATA box).56 TBPL1 (TRF2) is a metazoan TBP analog with 
40% homology to TBP. It plays an important transcriptional role in the embryogenesis of zebrafish, Xenopus, and 
Drosophila.57 It is crucial for mouse spermatogenesis but has no effect on mouse embryogenesis.58–61 TBPL1 binds to 
GTF IIA subunit 1 like (GTF2A1L) and is present in the cytoplasm with several heat shock protein complexes in mice. 
When TBPL1 is recruited as an activating gene promoter in haploid cells, it drives the expression of TAF7L-related 
genes, thereby establishing specific complexes to activate certain genes. The present study revealed that the C-MYC 
inhibitor 10,058-F4 upregulated TBPL1 expression in lung tissue-derived cells of mice with idiopathic pulmonary 
fibrosis (IPF) and inhibited IPF.62 In addition, sequencing of human pulmonary carcinoid tumors revealed significant 
mutations in TBPL1.63 Two miRNAs, miR-18a and miR-133b, directly target TBPL1 expression and play a protective 
role in colorectal cancer cells (CRCs).64,65 Our study revealed that TBPL1 may also play an important regulatory role in 
the occurrence and development of DKD.

Oxidative stress and the inflammatory response have been recognized as important processes in the pathogenesis of 
DKD;66,67 therefore, manipulating the immune system could present potential therapeutic benefits. SGLT2i is currently 
a commonly used drug in clinical practice, and the typical changes in ferroptosis include significant lipid peroxidation, 
impaired antioxidant capacity, and iron overload. SGLT2i treatment reduces overactivation of the HIF1α/HO1 axis, 
significantly alleviating inflammation and oxidative stress associated with ferroptosis.68 It is also now believed that the 
beneficial effect of SGLT2i in the treatment of diabetic complications currently depends on its anti-inflammatory and 
anti-immune effects.69–71 Additionally, ACEIs and angiotensin II receptor blockers (ARBs) have been proved to reduce 
the infiltration of renal macrophages in animal models of diabetes.72,73 Experimental and clinical evidence shows that the 
complement cascade can lead to damage in diseases not traditionally considered immune-mediated diseases, including 
DKD and focal segmental glomerulosclerosis. Many complement inhibition drugs have been approved, and other drugs 
targeting different components of complement cascade reactions are currently being studied in clinical trials.74 A typical 
example is the in vivo delivery of oral active C5aR1 inhibitors (PMX53), which reverse the phenotypic changes in DKD 
and normalize the renal mitochondrial fatty acid profile, cardiac phospholipid remodeling, and citrate cycle intermediates. 
In addition, the exposure of human renal proximal TECs to C5a in vitro leads to alterations in mitochondrial respiratory 
function and the production of reactive oxygen species.75 Tissue-resident memory T (RM) cells are a newly discovered 
group of noncirculating memory T cells that play a crucial role in mediating local immune responses and preventing local 
reinfection by pathogens. Mechanistically, Sparsentan can reduce the T (RM) cell response by interfering with IL-15 
signaling. Therefore, targeting T (RM) cells may be a novel therapeutic method for patients with glomerular disease.76 

Recently, it has been widely recognized that inflammatory immunity is essential in the progression of DKD. This 
regulation process involves infiltration of immune cells into the kidney, elevated chemokine and pro-inflammatory 
cytokine production. This study may be helpful for identifying new prognostic and therapeutic targets of DKD, and 
numerous therapeutic approaches for DKD are currently being studied in clinical trials for different aspects of kidney 
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inflammation and immunity. The hope is that these new targets, when combined with existing treatments, will be 
beneficial in treating diseases.7

Based on genetic data for 312,650 individuals with DKD (control individuals: 308,539; patients: 4111), our study 
provides robust evidence that 20 proteins (Figure 1A; IVW pval < 0.01) are causally associated with DKD, and five of 
them showed evidence of genetic colocalization with DKD outcomes. Our research findings highlight potential targets for 
future treatment of DKD and demonstrate the relevance of proteomics in identifying drug targets. However, further 
research is needed to evaluate the feasibility of using five identified proteins as drug targets for DKD treatment. With the 
emergence of more comprehensive proteomics platforms and increasing research on more diverse non-European 
populations, it is possible to discover more DKD drug targets.

Conclusions
Through our innovative MR analysis combined with transcriptomic and single-cell sequencing analyses, we revealed the 
relationships between five genes and DKD, as well as their relationships with immune infiltration, and further identified 
the transcription regulatory factors and intercellular pathways involved. Based on our newly identified DKD mechanism, 
five new targets have been recognized for future DKD conversion and treatment research. However, the specific 
mechanisms by which these genes influence DKD remain elusive. The targeting of these key genes in drug development 
has potential for successful clinical trials, providing novel avenues for DKD treatment.
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