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Objective: Common examinations for diagnosing obstructive sleep apnea (OSA) are polysomnography (PSG) and home sleep apnea 
testing (HSAT). However, both PSG and HSAT require that sensors be attached to a subject, which may disturb their sleep and affect 
the results. Hence, in this study, we aimed to verify a wireless radar framework combined with deep learning techniques to screen for 
the risk of OSA in home-based environments.
Methods: This study prospectively collected home-based sleep parameters from 80 participants over 147 nights using both HSAT and 
a 24-GHz wireless radar framework. The proposed framework, using hybrid models (ie, deep neural decision trees), identified 
respiratory events by analyzing continuous-wave signals indicative of breathing patterns. Analyses were performed to examine 
correlations and agreement of the apnea-hypopnea index (AHI) with results obtained through HSAT and the radar-based respiratory 
disturbance index based on the time in bed from HSAT (bRDITIB). Additionally, Youden’s index was used to establish cutoff 
thresholds for the bRDITIB, followed by multiclass classification and outcome comparisons.
Results: A strong correlation (ρ = 0.87) and high agreement (93.88% within the 95% confidence interval; 138/147) between the AHI 
and bRDITIB were identified. The moderate-to-severe OSA model achieved 83.67% accuracy (with a bRDITIB cutoff of 21.19 events/ 
h), and the severe OSA model demonstrated 93.21% accuracy (with a bRDITIB cutoff of 28.14 events/h). The average accuracy of 
multiclass classification using these thresholds was 78.23%.
Conclusion: The proposed framework, with its cutoff thresholds, has the potential to be applied in home settings as a surrogate for 
HSAT, offering acceptable accuracy in screening for OSA without the interference of attached sensors. However, further optimization 
and verification of the radar-based total sleep time function are necessary for independent application.
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Introduction
Obstructive sleep apnea (OSA) is a common sleep disorder characterized by repeated episodes of partial or complete 
obstruction of the upper airway during sleep, leading to a reduction in or complete cessation of airflow.1 Globally, OSA is 
recognized as a significant public health issue, affecting an estimated 1 billion individuals aged 30–65 years, with 
approximately 425 million experiencing moderate-to-severe forms of the condition.2 This disorder has been associated 
with a variety of comorbidities, including increased risks of cognitive decline, metabolic syndrome, and even acute 
myocardial infarction.3,4 Hence, the importance of early diagnosis and prompt treatment cannot be overstated, as these 
measures are vital for the effective management of OSA.

In-laboratory polysomnography (PSG) is widely regarded as the gold standard for diagnosing OSA. This comprehensive 
test monitors various physiological parameters during sleep, such as brain activity, eye movement, muscle tone, heart rate, 
and breathing patterns.5 Clinically, PSG is used to determine the apnea-hypopnea index (AHI) by scoring respiratory events, 
including apnea and hypopnea, and dividing the total number of these events by the total sleep time to assess the severity of 
OSA.6 However, this examination requires an overnight stay in a sleep laboratory, which can be inconvenient due to 
excessive waiting times and may be costly for patients.7 The first-night effects or the complex equipment of in-laboratory 
PSG may also affect the accuracy of the diagnosis due to the unfamiliar sleep environment or limited sleep positions in the 
hospital.8,9 As a result, home sleep apnea testing (HSAT) has been proposed as a more-accessible and cost-effective 
alternative for diagnosing OSA, allowing patients to undergo testing in a home-based setting while still providing 
acceptable assessments of OSA.10 However, even with HSAT, which uses fewer channels, patients who are easily awakened 
by attached sensors or cables may still experience effects on their sleep examination outcomes.11 Developing wireless 
techniques is essential to mitigate the interference caused by hardware during sleep examinations.

To avoid disruptions from sleep testing equipment, it may be worthwhile to utilize contactless approaches. Prior 
research employed video or images collected by infrared cameras and motion sensors to develop models to identify 
respiratory events (ie apnea or hypopnea) during sleep.12 Nonetheless, these wireless models are still in their early 
development phases and face various limitations. Specifically, factors such as the quality of the image data and impacts of 
minor movements, like eye blinking, can affect the accuracy of the results. Another study proposed a novel algorithm to 
predict the risk of having OSA via three-dimensional (3D) facial photographs; however, certain facial characteristics (eg, 
beards), may partially limit its further application.13 Other studies extensively explored using wireless radar frameworks, 
such as ultra-wideband and Doppler radar, to detect respiratory events during sleep, highlighting their potential 
applications.14,15 However, those proposed approaches predominantly rely on ultra-wideband frequency, which can be 
relatively expensive and require extensive hardware for radar signal transmission and reception. For example, an analysis 
of the features and costs of different radar-based techniques indicated that continuous-wave radar is more appropriate for 
practical use due to its cost-efficiency and sufficient accuracy in detecting human physiological movements.16 A relevant 
study demonstrated the possibility of automated detection of apnea-hypopnea events for OSA diagnoses using 
a continuous-wave radar framework (60 GHz frequency-modulated) combined with convolutional recurrent neural 
networks by comparing the estimated results with PSG observations from 44 participants.17 Their findings showed 
strong correlations (Pearson correlation ρ=0.81–0.95) and acceptable agreement (intraclass correlation ρ=0.78–0.93) 
between the estimates and ground-truth AHI values. Although previous results demonstrated the feasibility of using 
contactless radar as a surrogate for PSG in identifying OSA severity, those studies were primarily conducted in hospital- 
based settings and have not been validated in home-based environments. Therefore, further investigations with a more- 
diverse distribution of OSA severity are required to validate the wireless radar framework for sleep monitoring and 
clarify its feasibility in home-based environments.

In this prospective study, we explored the feasibility of using a wireless framework (with continuous-wave radar 
modules) combined with deep learning techniques to evaluate OSA severity in home-based settings. The hypothesis was 
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that radar-derived signals could capture respiratory patterns linked to sleep-disordered breathing, and analyzing these 
signals with trained deep-learning approaches could assist in evaluating OSA severity. We enlisted a cohort of 80 
participants in northern Taiwan, recorded 147 nights of home-based sleep parameters as determined by HSAT and the 
proposed radar framework, and compared them. Additionally, cutoff thresholds for the proposed radar framework were 
established to screen for various levels of OSA severity. Findings of the present study demonstrated the feasibility of 
using a novel wireless radar-based sleep monitoring framework to provide accurate and reliable examination outcomes in 
home-setting environments.

Materials and Methods
Research Ethics and Protocols
The device specifications and safety certifications of the utilized radar framework (home-based sleep monitoring type) 
were submitted to the ethics committee for assessment. The research protocol received ethical approval from the 
Institutional Review Board at the Office of Human Research at a medical university in northern Taiwan (no. 
N202305074) and the relevant procedures complied with the Declaration of Helsinki. All recruited individuals were 
provided comprehensive information about the study and gave written informed consent before the research commenced. 
Data collection, processing, analysis, and maintenance were carried out following the approved protocols.

Participant Enrollment
This prospective study was conducted in northern Taiwan, with participants recruited by attending physicians at a sleep center in 
New Taipei City between January and September 2022. Patients who suspected themselves of snoring or were suspected of 
having OSA were invited to participate. Specifically, those who agreed to participate in the study were referred for continuous 
recording of sleep parameters for two to three nights in a home-based setting. The enrollment criteria were as follows: (1) being 
aged 20–75 years, (2) having no contraindications for HSAT, and (3) being able to independently operate the HSAT and set up the 
wireless radar framework after receiving comprehensive education.18 As illustrated in Figure 1, the wireless radar framework 
was required to cover the upper body area within a distance ranging 75–90 cm. Next, participants were asked to wear the HSAT to 
measure sleep parameters. Since these two examinations were synchronized with internet time, the measurements obtained 
through the HSAT and wireless radar framework were automatically aligned based on the start time for further investigation.

Parameters of HSAT
In this prospective study, home-based sleep metrics were recorded using two established HSAT systems: ApneaLink 
(ResMed., San Diego, CA, USA) and Alice NightOne (Philips-Respironics, Murrysville, PA, USA). Both monitoring 
systems operate on battery power and have sensors to record signals that include nasal airflow, chest and abdominal 
movements, and pulse oximetry, with approximately 10 h of data collection possible.19,20 ApneaLink (vers. 10.20) and 
Sleepware G3 (vers. 3.9.2) software were employed to automatically analyze the signals for each system, which were 
then manually reviewed again by certified technologists. Default settings for apnea and hypopnea events, as defined by 
the American Academy of Sleep Medicine, were pre-configured in both systems.21 Specifically, an apneic episode was 
characterized by airflow reduction of 80% of the baseline for a minimum of 10s. A hypopneic episode involved an 
airflow decrease to 50–80% of the baseline for at least 10s. For the derived sleep outcomes, the total number of 
respiratory events, including the apnea index (AI), hypopnea index (HI), and their combined measure, namely the apnea- 
hypopnea index (AHI), were calculated based on the total in-bed time. The oximetry and pulse metrics, including the 
oxygen desaturation index (ODI), mean oxygen saturation (mean SpO2), and mean, maximum, and minimum pulse, were 
obtained. The severity of OSA in the present study was categorized as normal (AHI < 5 events/h), mild (AHI of 5–15 
events/h), moderate (AHI of 15–30 events/h), or severe (AHI of ≥ 30 events/h).22

Wireless Radar Framework and the Derived Index
This study utilized wireless radar sleep monitoring devices that had obtained safety certification in the motion-detection 
wireless category from the Taiwan National Communications Commission (CCAF19LP2510T5) and had received 
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medical device approval for the non-contact monitoring system category from the Taiwan Ministry of Health and Welfare 
(license no. 007955). The device employs radio frequency modules to capture signals (24-GHz continuous-wave, with 
a wavelength of about 12.5 mm, to monitor chest wall movements). The primary reason for utilizing this specific 
frequency is that chest displacement caused by respiration and cardiac activity typically ranges 1–12 and 0.1–0.5 mm, 
respectively. When a subject is positioned 1–1.5 m from the device, the 24-GHz radar represents the optimal frequency 
band for clinically measuring physiological signals. Subsequently, the detected signals are analyzed through deep neural 
decision trees, hybrid models that integrate machine learning and deep learning features to predict respiratory events, and 
then the radar-based respiratory disturbance index (bRDI) was calculated. More technically, the deep neural decision tree 
consists of a neural network with a depth of 11 (with 4–10 neural nodes per layer), concatenated with a single decision 
tree to generate the final model output. Hyperparameters for these binary classification models were set as follows: 
a learning rate of 0.05, a batch size of 400, 200 training epochs, and a feature usage rate of 0.5.23,24 After model 
generalization, the models were trained and validated to optimize model weights for event classification (ie, as 
a respiratory event or normal breathing) on a dataset of 29,496 instances (each lasting 30s). This dataset included both 
apneic and hypopneic events (N = 15,264) and normal respiratory data with no events (N = 14,232), collected from 
approximately 100 participants (male-to-female ratio: 3:2) across various sleep positions. Figure 2 presents the sensed 
signal waveforms of normal breathing and various respiratory events captured via HSAT and the wireless radar frame-
work. Notably, the utilized wireless framework was validated by comparing the predicted bRDI and AHI from in- 
laboratory PSG.25 In more technical details regarding the application in practical scenarios, the radar devices emitted 
radio frequency signals toward a participant lying in bed and detected the reflected signals. These signals underwent 
entropy calculations to detect patterns like peak-to-peak intervals, valley-to-valley intervals, and wave peak magnitudes, 
providing approximate respiratory patterns, which were then processed through a hybrid model to estimate the total 
abnormal breathing events to calculate the bRDI. Additionally, this device framework facilitated determination of the 
total sleep time by identifying distinct sleep stages, including wakefulness, rapid-eye-movement (REM), and non-REM 
(NREM) sleep, based on a similar structure of the aforementioned model (ie, with a neural network depth of 13). The 
development of this function underwent training and validation using a dataset comprising wake (N = 9833), NREM (N = 

Figure 1 Size of the wireless radar framework and the installation illustration in a home-setting environment during home sleep apnea testing. Physiological signals were 
collected through home sleep testing equipment to calculate sleep parameters, and a wireless radar framework was simultaneously used to capture continuous-wave signals 
for monitoring breathing patterns. Notably, the utilized framework required the monitoring distance to range between 75 and 90 cm.
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11,503), and REM (N = 8160) stages, collected from the same subjects as the respiratory data. Figure S1 illustrates 
a comparison of sleep stages classified by the radar system with those determined by in-laboratory PSG.

Notably, the current research primarily focused on investigating application of a wireless radar framework. Therefore, 
in this study, the bRDI calculated based on the time in bed derived by HSAT (bRDITIB) was mainly used for comparison 
with the AHI from HSAT to align with the same time intervals. Regarding comprehensive information on specifications, 
installation procedures, and usage precautions for the device (such as warnings about signal errors), refer to prior 
research, which validated this wireless framework against in-laboratory PSG, demonstrating the accuracy of its derived 
parameters compared to hospital-based AHI.25

Statistical Analysis
Statistical analyses in this study were conducted using Scikit-learn (vers. 0.21.2), an open-source statistics library 
implemented in Python.26 Baseline characteristics of enrolled individuals and indices from HSAT and the wireless 
radar framework were expressed as the mean with the standard deviation (SD). To investigate the relationship between 
the AHI (HSAT-based) and bRDI (radar-based), a Pearson correlation analysis was conducted with a significance 
threshold of p < 0.05. A Bland-Altman plot, a graphical method for comparing two quantitative measurements, was 
used to evaluate agreement between HSAT and the wireless radar framework.27 The plot displays the difference between 
data points against the average of each pair on the x- and y-axes. The mean difference is represented by a horizontal line, 
while the upper and lower limits of agreement are calculated as the mean difference ± 1.96 times the SD of the 
differences. These limits were used to identify systematic bias between the two examinations and evaluate the degree of 
agreement.28 Additionally, this study investigated the correlation and agreement among severe OSA data, which are 
presented in Figure S1.

Next, based on clinical guidelines and practical experience, active treatment was advised for patients with moderate- 
to-severe OSA (AHI ≥ 15 events/h),29 while a curative intervention was strongly recommended for patients with severe 

Figure 2 Signal waveforms of normal breathing patterns and those during hypopneic and apneic events captured using a wireless radar framework (Andar) and home sleep 
apnea testing (HSAT). The waveform signals from HSAT and the wireless radar framework illustrate different breathing patterns. Subpart (A) shows normal breathing, where 
both frameworks display regular and consistent waveforms corresponding to typical respiration. In subpart (B), a hypopnea event is depicted, characterized by a reduction in 
the waveform amplitude, indicating partial airway obstruction. Finally, subpart (C) represents an apneic event, with flattened waveforms demonstrating the absence of airflow 
due to complete airway obstruction.
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OSA (AHI ≥ 30 events/h).30 Consequently, this study investigated the classification ability of the wireless radar device to 
differentiate these aforementioned three severity risks, specifically general OSA risk (AHI ≥ 5 events/h vs AHI < 5 
events/h), moderate-to-severe OSA (AHI ≥ 15 events/h vs AHI < 15 events/h), and severe OSA (AHI ≥ 30 events/h vs 
AHI < 30 events/h).31 Initially, the performances of both devices were compared utilizing the three cutoff thresholds of 
HSAT-based AHI (ie, ≥ 5, ≥ 15, and ≥ 30 events/h). Following this, a receiver operating characteristic (ROC) curve 
analysis was used to identify optimal bRDI cutoff thresholds based on Youden’s index.32 These derived cutoff thresholds 
were employed to separately classify general OSA, moderate-to-severe OSA, and severe OSA, and the area under the 
ROC (AUROC) was used to evaluate the performance of the established models. Additionally, the study evaluated and 
compared multiclassification performances (normal, mild, moderate, and severe OSA) using both cutoff thresholds of the 
AHI (HSAT-based) and bRDI (radar-based).

Results
Demographic Characteristics and Sleep Metrics
Table 1 presents demographic characteristics, sleep metrics (HSAT-based), and radar-based indices of the 80 enrolled 
participants. There were 66 males, forming the majority of participants, and 14 females, with an overall mean age of 
48.05 (SD = 11.43) years. Regarding the home-based sleep metric summary across 147 days of recording, the mean time 
in bed was 370.29 (SD = 113.23) min. For the sleep disorder indices, which were calculated based on the time in bed, the 
mean AHI was 28.42 (SD = 29.52) events/h, and the ODI was 18.71 (SD = 16.78) events/h. For the radar-based index, 
the mean bRDITIB was 26.89 (SD = 17.82) events/h, while the mean bRDIpred was 25.95 (SD = 17.33) events/h. For the 
determined OSA severity, 17.01% of the recordings were classified as normal (25 days), 30.61% as mild (45 days), 
18.37% as moderate (27 days), and 34.01% as severe (50 days).

Correlations and Agreement Between HSAT and the Wireless Radar Framework
Figure 3 illustrates the correlation and agreement of the AHI derived from HSAT with the bRDITIB obtained from the 
wireless radar framework. As depicted in Figure 3a, the two measures were significantly and highly correlated (ρ = 0.87, 
p < 0.01). The average difference between the HSAT-based AHI and radar-based bRDITIB results was −5.3 (SD = 18.35) 

Table 1 Demographic Characteristics and Home-Based Sleep Parameters of 80 Enrolled Individuals 
Across 147 days

Variable Mean ± SD Variable Mean ± SD

Baseline characteristics Sleep disorder index* (events/h)

Age (years) 48.05 ± 11.36 AHI 28.42 ± 29.52
Sex (Male / Female) 66 / 14 AI 14.43 ± 14.3

BMI (kg/m2) 25.69 ± 4.43 HI 13.99 ± 16.5

Waist girth (cm) 90.84 ± 10.96 ODI 18.71 ± 16.78
Neck girth (cm) 39.21 ± 4.0 Snoring index 69.18 ± 111.89

Home-based sleep summary OSA severity (n, %)

TIB (min) 370.29 ± 113.23 Normal 25 (17.01%)
Mean SpO2 (%) 93.92 ± 1.71 Mild 45 (30.61%)

Mean pulse (bpm) 64.71 ± 9.13 Moderate 27 (18.37%)

Max pulse (bpm) 100.8 ± 26.06 Severe 50 (34.01%)
Min pulse (bpm) 52.55 ± 8.01

Radar-based index* (events/h)

bRDITIB 26.89 ± 17.82
bRDIpred 25.95 ± 17.33

Notes: Data are expressed as mean ± standard deviation. *Indices were calculated based on the in-bed time. 
Abbreviations: BMI, body mass index; TIB, time in bed; bpm, beats per minute; SpO2, saturation of peripheral oxygen; bRDITIB, 
radar-based respiratory disturbance index (based on time in bed derived from home sleep apnea testing); bRDIpred, radar-based 
respiratory disturbance index (based on the predicted total sleep time derived from radar); AHI, apnea-hypopnea index; AI, apnea 
index; HI, hypopnea index; ODI, oxygen desaturation index for ≥ 3%; OSA, obstructive sleep apnea.
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events/h (Figure 3b). The 95% confidence interval (CI) for the differences ranged −23.65 to 13.06 events/h, with 93.88% 
(138/147) of recorded days falling within this range. This study further analyzed the correlation and agreement among 
severe OSA data, which are presented in Figure S2. The correlation between the AHI and bRDITIB remained significant 
(ρ = 0.29, p < 0.05). Regarding agreement, 92.0% (46/50) of the recorded days still fell within this range.

Binary Classification Outcomes of the Wireless Radar Framework Across Different 
Cutoff Thresholds
Table 2 illustrates the binary classification performance of the three severity models based on HSAT-derived AHI cutoff 
thresholds. For the general OSA model (AHI ≥ 5 events/h), the wireless radar framework with this cutoff threshold 
demonstrated an accuracy of 83.67% (SD = 5.98%) and an AUROC of 55.18% (SD = 8.04%). For the moderate-to- 
severe OSA model (AHI ≥ 15 events/h), the wireless radar framework with this cutoff threshold demonstrated an 
accuracy of 79.59% (SD = 6.52%) and an AUROC of 78.64% (SD = 6.63%). For the severe OSA model (AHI ≥ 30 
events/h), the wireless radar framework with this cutoff threshold attained an accuracy of 92.52% (SD = 4.25%) and an 
AUROC of 91.42% (SD = 4.53%).

Using the corresponding cutoff thresholds derived from Youden’s index for the wireless radar framework, Table 3 
presents the classification performance of the three severity models. For the general OSA model, the cutoff threshold for 
the bRDITIB was set to 12.91 events/h, which identified 112 days with values above this threshold. This model achieved 
an accuracy of 90.48% (SD = 4.75%) and an AUROC of 91.08% (SD = 4.61%). For the moderate-to-severe OSA model, 
the cutoff threshold for the bRDITIB was set to 21.19 events/h, which identified 76 days with values that exceeded this 
threshold. This model achieved an accuracy of 83.67% (SD = 5.98%) and an AUROC of 83.71% (SD = 5.97%). Next, 
the severe OSA model utilized a cutoff threshold of 28.14 events/h for the bRDITIB, which identified 54 days with values 
above this level. The accuracy of this model was 93.21% (SD = 4.07%) with an AUROC of 92.95% (SD = 4.14%).

Figure 3 Correlation and Bland-Altman plots comparing the apnea-hypopnea index obtained from home sleep apnea testing (HSAT) with the radar-based respiratory 
disturbance index (bRDI) collected via a wireless radar framework (Andar). (a) Correlation between the apnea-hypopnea index (AHI) derived from HSAT and the 
respiratory disturbance index (bRDI) retrieved from the wireless radar framework. (b) Degree of agreement between results from HSAT (ie, AHI) and the wireless radar 
framework (ie, bRDI).
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Multiclass Classification Outcomes of the Wireless Radar Framework Across 
Different Cutoff Thresholds
Regarding the multiclass classification for specifically identifying risks of having normal, mild, moderate, and severe 
OSA, the present study employed three different thresholds. First, Table 4 illustrates multiclass classification perfor-
mances based on HSAT-derived AHI cutoff thresholds (ie, of 5, 15, and 30 events/h). An overall accuracy of 56.46%, an 
average recall of 52.78%, and a precision of 56.96% were obtained from the established model. Subsequently, using 
corresponding cutoff thresholds derived from Youden’s index for the wireless radar framework (bRDITIB of 12.91, 21.19, 

Table 2 Classification Results for Identifying the Risk of Demonstrating Moderate-to- 
Severe and Severe Obstructive Sleep Apnea (OSA) Using a Wireless Radar System With 
Home Sleep Apnea Testing (HSAT) Severity Criteria (N = 80 With Data From 147 Days)

Variable General 
OSA model

Moderate-to-severe 
OSA model

Severe 
OSA model

Cutoff* (events/h) AHI: 5 AHI: 15 AHI: 30
N (≥ cutoff / < cutoff) 122 nights / 25 nights 77 nights / 70 nights 50 nights / 97 nights

Precision (%) 84.51 ± 5.85 72.38 ± 7.23 89.81 ± 4.89

Recall (%) 98.36 ± 2.05 98.71 ± 1.83 88.01 ± 5.25
Accuracy (%) 83.67 ± 5.98 79.59 ± 6.52 92.52 ± 4.25

F1-score (%) 90.91 ± 4.65 83.52 ± 6.0 88.89 ± 5.08
AUC (%) 55.18 ± 8.04 78.64 ± 6.63 91.42 ± 4.53

Notes: *According to clinical guidelines, the cutoff values are defined as follows: general OSA (AHI ≥ 5 events/h), 
moderate-to-severe OSA (AHI ≥ 15 events/h), and severe OSA (AHI ≥ 30 events/h). Data are expressed as the mean ± 
standard deviation. 
Abbreviations: AHI, apnea-hypopnea index; AUC, area under the curve.

Table 3 Classification Results for Identifying the Risk of Demonstrating Moderate-to-Severe and Severe 
Obstructive Sleep Apnea (OSA) Using a Wireless Radar System With Retrieved Cutoff Thresholds (N = 80 
With Data From 147 Days)

Variable General OSA Model Moderate-to-severe OSA Model Severe OSA Model

Cutoff* (events/h) bRDI: 12.91 bRDI: 21.19 bRDI: 28.14

N (≥ cutoff / < cutoff) 112 nights / 35 nights 76 nights / 71 nights 54 nights / 93 nights

Precision (%) 98.21 ± 2.14 85.33 ± 5.72 88.68 ± 5.12
Recall (%) 90.16 ± 4.81 83.12 ± 6.06 92.16 ± 4.35

Accuracy (%) 90.48 ± 4.75 83.67 ± 5.98 93.21 ± 4.07

F1-score (%) 94.02 ± 3.83 84.21 ± 5.89 90.38 ± 4.77
AUC (%) 91.08 ± 4.61 83.71 ± 5.97 92.95 ± 4.14

Notes: *According to the Youden index. Data are expressed as the mean ± standard deviation. 
Abbreviations: bRDI, radar-based respiratory disturbance index; AUC, area under the curve.

Table 4 Classification Results for Identifying the Risk of Demonstrating Normal, 
Mild, Moderate or Severe Obstructive Sleep Apnea Using a Wireless Radar System 
With Home Sleep Apnea Testing (HSAT) Severity Criteria (N = 80 With Data 
From 147 Days)

HSAT Wireless Radar Sleep Monitoring Device (Andar) Recall (%)

Normal Mild Moderate Severe

Normal 3 21 1 0 12.0%
Mild 2 15 28 0 33.33%

Moderate 0 1 21 5 77.78%

Severe 0 0 6 44 88.0%
Precision (%) 60.0% 40.54% 37.51% 89.80% 56.46%

Abbreviation: HSAT, home sleep apnea testing.
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and 28.14 events/h), Table 5 presents the classification performances. This model attained an overall accuracy of 69.39%, 
an average recall of 68.04%, and a precision of 65.03%.

Discussion
To assess the feasibility of employing a wireless radar framework in home-setting environments, in this prospective 
study, we collected sleep metrics from HSAT and the wireless radar framework and conducted comparisons. Based on the 
collected sleep dataset from 80 participants across 147 nights, this study validated the accuracy of the proposed wireless 
radar framework combined with deep learning techniques for screening OSA severity. Results showed a high measure-
ment agreement compared to HSAT results. Additionally, derived cutoff thresholds for normal, moderate-to-severe, and 
severe OSA were separately established. These outcomes suggested that the proposed framework can be effectively 
applied in home-based sleep environments, offering the advantage of noncontact measurement to avoid the risk of 
interference with sleep results due to attached sensors or examination equipment.

Prior studies compared outcomes of various novel sleep monitoring devices to PSG or HSAT to evaluate their 
prediction performance. For example, researchers utilized a wearable device (patch-type) that integrated a single-lead 
electrocardiogram and a three-axis accelerometer to screen for OSA risk, achieving outcomes with AUROCs of 0.82 for 
the moderate-to-severe OSA model and 0.91 for the severe OSA model.33 However, such a type of device is not 
recommended for individuals with atrial fibrillation, an implanted pacemaker, ventricular tachycardia, or pregnancy due 
to the difficulty of analyzing cardiac signals amidst excessive arrhythmias.34 Since the approach of the present proposed 
framework wirelessly detects breathing patterns to identify respiratory events, it may be less susceptible to the effects on 
sleep caused by attached sensing devices.35 In addition, as aforementioned, the proposed framework was validated 
against in-laboratory PSG, demonstrating high accuracies of 90.3% for the moderate-to-severe OSA model and 92.4% 
for the severe OSA mode.25 Taken together, the present results elucidate application of the proposed wireless framework 
for identifying respiratory events, suggesting its suitability for OSA risk screening in home-based environments.

Regarding differences in wireless techniques and their respective advantages and disadvantages, high-frequency 
wireless methods provide greater resolution for detecting small movements but are limited by shorter ranges and 
sensitivities to obstructions like clothing. Conversely, low-frequency techniques, though less sensitive, penetrate materi-
als more effectively and are suitable for detecting chest movements over short distances, such as in bed setups. Therefore, 
the trade-off between frequency and sensitivity must be carefully considered. The present study employed high- 
frequency wireless methods, specifically utilizing a 24-GHz continuous-wave radar framework with a wavelength of 
approximately 12.5 mm. Specifications of this type of radar are suitable for detecting typical respiratory- and heart rate- 
induced chest movements, which respectively normally range 1–12 and 0.1–0.5 mm.36,37 Previously, researchers utilized 
this specific frequency range to detect signals, especially in the thoracic space. For example, one study employed a 24- 
GHz radar embedded as a medical device to detect cardiograms, and their results revealed a high accuracy of 98% in 
cardiac timing detection.38 Similarly, another study employed 24–24.5-GHz frequency-modulated continuous-wave radar 

Table 5 Classification Results for Identifying the Risk of Demonstrating Normal, 
Mild, Moderate or Severe Obstructive Sleep Apnea Using a Wireless Radar System 
With Retrieved Cutoff Thresholds (N = 80 With Data From 147 Days)

HSAT Wireless Radar Sleep Monitoring Device (Andar) Recall (%)

Normal Mild Moderate Severe

Normal 23 2 0 0 92.0%

Mild 11 23 10 1 51.11%

Moderate 1 10 10 6 37.04%
Severe 0 2 2 46 92.0%

Precision (%) 65.71% 62.16% 45.45% 86.79% 69.39%

Abbreviation: HSAT, home sleep apnea testing.
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to establish a vital sign monitoring system that demonstrated highly accurate measurements of respiratory and heart rates, 
validated based on both simulation and experimental datasets.39 Altogether, when considering the costs and benefits of 
using an ultra-wideband method, the 24-GHz continuous-wave radar utilized in this study appears to be the optimal 
choice for measuring breathing patterns and chest wall movements, particularly when individuals are positioned 
approximately 1–1.5 m from the measurement device. However, in multiclass classification, the current outcomes 
demonstrated relatively low recall in distinguishing between normal and mild cases but showed adequate performance 
in moderate and severe classifications. This may be attributed to detection limitations of subtle chest wall movements 
caused by partial obstructions, which require further improvement. Additionally, obstructions like clothing or duvets may 
further impact respiratory event identification. Therefore, a more-comprehensive dataset, including patients with normal 
and mild OSA, is needed to enhance the performance of this wireless approach.

There are several strengths to the present study. First, building on our previous outcomes that focused on 
validating the accuracy of using the proposed radar framework as an alternative to in-laboratory PSG, this study 
further investigated the feasibility of employing such a system in a home setting and compared measurements with 
those from another routine home sleep examination (ie, HSAT).25 The statistical findings demonstrated strong 
correlations between the AHI from HSAT and bRDITIB from the wireless radar framework, along with a high 
concordance between these two approaches. This indicates that the proposed wireless approach could feasibly serve 
as a surrogate for HSAT and be further applied in home-based sleep environments. Next, this study demonstrated 
that using cutoff thresholds for moderate-to-severe OSA and severe OSA yielded classification results with 
satisfactory prediction accuracies and adequate AUROC values per the derived radar-based index. Additionally, 
the proposed system, which consisted solely of an ensemble radar device combined with deep learning models, 
enabled the automated estimation of reasonably accurate bRDITIB results. Most importantly, due to their wireless 
nature, radar devices are suitable for individuals whose sleep behaviors may be easily disrupted by attached sensors 
or laboratory sleep environments, providing more accurate and representative sleep metrics. Additionally, the 
proposed framework does not require technician attendance and can be applied in a home-setting environment, 
allowing for continuous monitoring and result scoring. Hence, using this framework, outcomes of multi-day 
examinations can be obtained, enabling comprehensive data analysis to accurately and sensitively screen for OSA 
severity.

There are some limitations to the current study. First, most of the participants were male, which is a frequent 
constraint in sleep disorder research and may have introduced a gender bias. The present study only enrolled 
patients who had no contraindications for HSAT, which may have avoided effects due to underlying diseases or 
medications. However, other factors, such as individual upper airway anatomy and craniofacial factors, oral hygiene, 
and personal habits (eg, cigarette or caffeine usage), can still affect breathing patterns (eg, buccal respiration).40,41 In 
addition, previous researchers proposed using 3D facial photographs to analyze craniofacial anatomy for predicting 
the risk of OSA and demonstrated approximately 90% accuracy.13 These factors should be considered when utilizing 
the proposed wireless framework. Regarding comparisons of the sleep disorder index between HSAT and the 
wireless framework, outcomes of this study were mainly based on the time in bed derived from HSAT. Although 
the proposed framework enabled an estimate of the total sleep time utilizing the radar signal, the reliability of these 
functions requires further refinement and validation in future studies. Some studies proposed various machine 
learning approaches to classify sleep stages, which could be considered for further integration into the proposed 
wireless radar framework.42,43 Additionally, compared to outcomes from HSAT, the proposed framework primarily 
focused on detecting respiratory events and was unable to present oximetry-related details due to its contactless 
nature. However, the absence of oximetry data may hinder the precise identification of oxygen desaturation 
conditions, which can assist in accurately determining respiratory events or even further classify other OSA 
phenotypes.44,45 Hence, integrating oximetry data should be considered to more comprehensively evaluate OSA 
severity. Next, the current models were primarily designed to detect respiratory events (ie, apnea or hypopnea). 
However, they did not effectively distinguish between central and obstructive types of these events. Future work 
should consider improving the models to differentiate between central and obstructive event types by integrating 
additional physiological signals or advanced machine-learning techniques. Collectively, future studies should focus 
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on integrating pulse oximetry, verifying the sleep time estimation function, and distinguishing between different 
types of sleep apnea, such as central and obstructive sleep apnea. By conducting more independent trials for 
additional function validation, the proposed wireless framework may achieve enhanced robustness, generalizability, 
and accuracy compared to HSAT.

Conclusions
To explore the feasibility of using a wireless radar framework in a home setting, in this prospective study, we 
collected data from HSAT and a wireless radar framework, combined with deep learning methods to compare 
results. Across 147 days of sleep data from 80 participants, significant, high correlation (ρ = 0.87) and agreement 
(93.88%) between the AHI of HSAT and the bRDITIB of the wireless radar framework were determined. 
Additionally, OSA severity classification models using AHI criteria (HSAT-based) or derived cutoff thresholds for 
the bRDITIB (radar-based) were established, allowing for a comparison between binary and multiclassification 
performances in determining OSA severity. The mild-to-severe OSA models exhibited adequate accuracy with the 
AHI (79.59%) and bRDITIB (83.67%). For the severe OSA models, high accuracy was achieved with both the AHI 
(92.52%) and bRDITIB (93.21%). In the multiclassification models, the AHI-based model achieved 72.11% accuracy, 
while the model based on bRDITIB achieved 78.23% accuracy. Altogether, the wireless radar framework combined 
with deep learning models (ie, a deep neural decision tree model) introduced in this study could be considered for 
application in home-setting environments as an alternative to HSAT for rapid OSA risk screening, offering the 
advantage of contactless monitoring. However, further research and optimization are necessary to refine and 
empirically validate the accuracy of this framework.

Highlights
● We proposed a wireless radar framework combined with deep learning techniques for screening OSA severity in 

home-based environments.
● The feasibility of employing a wireless radar framework for sleep monitoring in home-based environments was 

assessed.
● Specific cutoff thresholds for OSA (AHI ≥ 5 events/h), moderate-to-severe level (AHI ≥ 15 events/h), and severe level 

(AHI ≥ 30 events/h) using the radar framework were derived.
● Reliable accuracy and high measurement agreement between the proposed wireless system and HSAT were demonstrated.

Abbreviations
AHI, apnea-hypopnea index; AI, apnea index; AUROC, area under the receiver operating characteristic curve; AUC, area 
under the curve; ArI, arousal index; BMI, body-mass index; HI, hypopnea index; NREM, non-rapid eye movement; ODI, 
oxygen desaturation index for ≥ 3%; OSA, obstructive sleep apnea; PSG, polysomnography; RDIPSG_TST, respiratory 
disturbance index obtained through radar device measurement and divided by the total sleep time determined by 
polysomnography; RDIRadar-Based_TST, respiratory disturbance index obtained through radar device measurement and 
divided by the total sleep time determined by the radar system; REM, rapid eye movement; SD, standard deviation; 
SpO2, peripheral capillary oxygen saturation; TST, total sleep time; WASO, wake time after sleep onset.
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