

Anyloid Neuropathy Alexander Lauder Boston University School of Medicine, Third Year July 29, 2010

Pop Quiz: Question

- What type of amyloid is the most common cause of amyloid neuropathy?
 - ATTR
 - AA
 - AL
 - Aβ
 - Aβ2-microglobulin

Pop Quiz: Answer

AL

Outline

- Properties of Amyloid
- Pathogenesis of Amyloidosis
- Classification & Organ System Involvement
- Amyloid Neuropathy
 - Epidemiology
 - Etiology
 - Pathogenesis
 - Clinical Findings
 - Diagnostic Evaluation
 - Treatment
 - Prognosis
- Summary

Amyloid, what is it?

A pathologic protinaceous substance, deposited in the extracellular space of various tissues and organs.

Properties of Amyloid

Physical Nature

- Continuous, nonbranching fibrils
- 7.5-10 nm diameter
- Cross-beta-pleated sheet conformation
 - ~95% fibrils
 - ~5% P component and other glycoproteins
- Identical structure in all types of amyloidosis

Types of Amyloid

- AL (amyloid light chain)
 - Ig light chains
 - Produced by plasma cells: $\lambda > \kappa$
- AA (amyloid associated)
 - Non-Ig protein derived from SAA
 - Acute phase reactant (IL-1, IL-6)
 - Synthesized in liver, choroid plexus, retinal epithelium
- Aβ amyloid
 - βamyloid precursor protein (APP)
 - Chromosome 21, Alzheimer disease

Types of Amyloid, cont.

- Transthyretin (TTR)
 - Serum protein
 - Transports thyroxine and retinol
 - Mutant forms cause familial amyloid polyneuropathy or cardiomyopathy
 - Wild type form can lead to SSA, senile systemic (agerelated) amyloidosis
- β2-microglobulin
 - Component of MHC class I
 - Long term hemodialysis
- Prion Proteins
 - "local amyloidosis"
 - Misfolded proteins aggregate in extracellular space

Pathogenesis

Pathogenesis

- Abnormal folding of proteins
 - Normal proteins fold improperly
 - Mutant proteins prone to misfolding
- Deposited as fibrils in extracellular tissues
 - Misfolded proteins are normally degraded
 - Intracellular: proteolysis
 - Extracellular: macrophage degradation
 - Amyloid proteins not degraded, accumulate
- Disrupt normal function

Classification

Systemic

Localized

Hereditary

Systemic

- AL: 1° Amyloidosis, associated with clonal B lymphoplasmacytic diseases. All of these are AL, due to immunoglobulin light chains.
 - AL: plasma cell dyscrasia up to 30% with diagnostic features of MM
 - MM: high grade plasma cell dyscrasia with lytic bone lesions, hypercalcemia, anemia
 - WM: Waldenstrom's macroglobulinemia (lymphoplasmacytic lymphoma) with IgM AL
 - Other B lymphomas
- AA: 2° Amyloidosis, associated with chronic inflammation, infection.
 - Rheumatoid Arthritis
 - Ankylosing Spondylitis
 - Inflammatory Bowel Disease
 - Hereditary Periodic Fever Syndromes like FMF

Localized

- Confined to a single organ
- Alzheimer's Disease
- Prion Disease

Hereditary

TTR

- Familial Amyloid Polyneuropathy
- ApoAl
- Gelsolin
- Lysozyme
- Fibrinogen

Affected Organ Systems

- Kidney: proteinuria, renal failure
- Spleen: splenomegaly
- Liver: hepatomegaly, elevated alkaline phosphatase
- Heart: concentric ventricular hypertrophy, diastolic dysfunction, conduction system damage
- Endocrine: adrenal, thyroid, pituitary, pancreas
- GI: dysmotility, malabsorption, diarrhea or constipation
- Nerve: carpal tunnel syndrome, peripheral and/or autonomic neuropathy

Kidney

Amyloidosis of the kidney. The glomerular architecture is almost totally obliterated by the massive accumulation of amyloid.

Liver

Heart

Cardiac Amyloidosis. A, Hematoxylin and eosin stain, showing amyloid appearing as amorphous pink material around myocytes. B, Congo red stain viewed under polarized light, in which amyloid shows characteristic apple-green birefringence (compared with collagen, which appears white).

CNS: Cerebral amyloid angiopathy

A, Massive hypertensive hemorrhage rupturing into a lateral ventricle. B, Amyloid deposition in a cortical arteriole in cerebral amyloid angiopathy; inset, Immunohistochemical staining for Aβ shows the deposited material in the vessel wall. C, Electron micrograph shows granular osmophilic material in a case of CADASIL.

Amyloid Neuropathy

History

- First described in families in Oporto, Portugal in 1952
 - Andrade C. "A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves." Brain 75 (3): 408–27

Amyloidoses and Neuropathy

- Associated with:
 - AL Amyloidosis (30%)
 - ATTR Amyloidosis: FAP familial amyloidotic polyneuropathy
 - AF Amyloidosis: Other hereditary forms
 - ApoAl
 - Gelsolin: benign cranial and sensory polyneuropathy
 - Aβ2-microglobulin: carpal tunnel syndrome
- Not associated with:
 - AA Amyloidosis

TTR-FAP: Overview

- Autosomal dominant
 - Only 1 mutant TTR allele required for disease
- Transthyretin
 - Tetrameric plasma transport protein (T₄, Retinol-BP/vitA)
 - Chromosome 18
 - Synthesis in liver, choroid plexus, retinal pigment epithelium
- Mutation changes 1° protein structure
 - Variant TTR present at birth
 - Mutation destabilizes tetramer
 - Does not form amyloid until adulthood

PRODUCTION OF NORMAL AMOUNTS OF MUTANT PROTEIN (e.g., transthyretin)

TTR-FAP: >100 mutations

	Table 1. Transthyretin amyloidosis.								
Mutation	Codon change	Clinical features*	Geographic kindreds	Mutation	Codon change	Clinical features*	Geographic kindreds		
Cys10Arg	TGT-CGT	Heart, eye, PN	USA (PA)	Leu55Pro	CTG-CCG	Heart, AN, eye	USA, Taiwan		
Leu12Pro	CTG-CCG	LM	UK	Leu55Arg	-CGG	LM	Germany		
Asp18Glu	GAT-GAA	PN	South America, USA	Leu55Gln	-CAG	Eye, PN	USA		
Asp18Gly	-GGT	LM	Hungary	Leu55Glu	CTG-CAG	Heart, PN, AN	Sweden		
Asp18Asn	-AAT	Heart	USA	His56Arg	CAT-CGT	Heart	USA		
Val20lle	GTC-ATC	Heart, CTS	Germany, USA	Gly57Arg	GGG-AGG	Heart	Sweden		
Ser23Asn	AGT-AAT	Heart, PN, eye	USA	Leu58His	CTC-CAC	CTS, heart	USA (MD) (FAP II)		
Pro24Ser	CCT-TCT	Heart, CTS, PN	USA	Leu58Arg	-CGC	CTS, AN, eye	Japan		
Ala25Ser	GCC-TCC	Heart, CTS, PN	USA	Thr59Lys	ACA-AAA	Heart, PN, AN	Italy, USA (Chinese)		
Ala25Thr	-ACC	LM, PN	Japan	Thr60Ala	ACT-GCT	Heart, CTS	USA (Appalachian)		
Val28Met	GTG-ATG	PN, AN	Portugal	Glu61Lys	GAG-AAG	PN	Japan		
Val30Met	GTG-ATG	PN, AN, eye, LM	Portugal, Japan, Sweden, USA (FAP I)	Glu61Gly	-GGG	Heart, PN	USA		
Val30Ala	-GCG	Heart, AN	USA	Phe64Leu	TTT-CTT/TTG	PN, CTS, heart	USA, Italy		
Val30Leu	-CTG	PN, heart	Japan	Phe64Ser	-TCT	LM, PN, eye	Canada, UK		
Val30Gly	-GGG	LM, eye	USA	lle68Leu	ATA-TTA	Heart	Germany		
Val32Ala	GTG-GCG	PN	Israel	Tyr69His	TAC-CAC	Eye, LM	Canada, USA		
Phe33lle	TTC-ATC	PN, eye	Israel	Tyr69lle	-ATC [†]	Heart, CTS, AN	Japan		
Phe33Leu	-CTC	PN, heart	USA	Lys70Asn	AAA-AAC	Eye, CTS, PN	USA		
Phe33Val	-GTC	PN	UK, Japan, China	Val71Ala	GTG-GCG	PN, Eye, CTS	France, Spain		
Phe33Cys	-TGC	CTS, heart, eye, kidney	USA	lle73Val	ATA-GTA	PN, AN	Bangladesh		
Arg34Thr	AGA-ACA	PN, heart	Italy	Ser77Tyr	TCT-TAT	Kidney	USA (IL, TX), France		
Arg34Gly	AGA-GGA	Eye	UK	Ser77Phe	-TTT	PN, AN, heart	France		
Lys35Asn	AAG-AAC	PN, AN, heart	France	Tyr78Phe	TAC-TTC	PN, CTS, skin	France		
Lys35Thr	-ACG	Eye	USA	Ala81Thr	GCA-ACA	Heart	USA		
Ala36Pro	GCT-CCT	Eye, CTS	USA	Ala81Val	GCA-GTA	Heart	UK		
Asp38Ala	GAT-GCT	PN, heart	Japan	lle84Ser	ATC-AGC	Heart, CTS, eye	USA (IN), Hungary (FAP II)		
Trp41Leu	TGG-TTG	Eye, PN	USA	lle84Asn	-AAC	Heart, eye	USA		
Glu42Gly	GAG-GGG	PN, AN, heart	Japan, USA, Russia	lle84Thr	-ACC	Heart, PN	Germany, UK		
Glu42Asp	-GAT	Heart	France	His88Arg	CAT-CGT	Heart	Sweden		
Phe44Ser	TTT-TCT	PN, AN, heart	USA	Glu89Gln	GAG-CAG	PN, heart	Italy		
Ala45Thr	GCC-ACC	Heart	USA	Glu89Lys	-AAG	PN, heart	USA		
Ala45Asp	-GAC	Heart, PN	USA	His90Asp	CAT-GAT	Heart	UK		
Ala45Ser	-TCC	Heart	Sweden	Ala91Ser	GCA-TCA	PN, CTS, heart	France		
Gly47Arg	GGG-CGG/AGG	PN, AN	Japan	Glu92Lys	GAG-AAG	Heart	Japan		
Gly47Ala	-GCG	Heart, AN	Italy, France	Val94Ala	GTA-GCA	Heart, PN, AN, kidney	Germany, USA		
Gly47Val	-GTG	CTS, PN, AN, heart	Sri Lanka	Ala97Gly	GCC-GGC	Heart, PN	Japan		
Gly47Glu	-GAG	Heart, PN, AN	Turkey, USA, Germany	Ala97Ser	-TCC	PN, heart	Taiwan, USA		
Thr49Ala	ACC-GCC	Heart, CTS	France, Italy	lle107Val	ATT-GTT	Heart, CTS, PN	USA		
Thr49lle	-ATC	PN, heart	Japan, Spain	lle107Met	-ATG	PN, heart	Germany		
Thr49Pro	-CCC	Heart, PN	USA	lle107Phe	ATT-TTT	PN, AN	UK		
Ser50Arg	AGT-AGG	AN, PN	Japan, France/Italy, USA	Ala109Ser	GCC-TCC	PN, AN	Japan		
Ser50lle	-ATT	Heart, PN, AN	Japan	Leu111Met	CTG-ATG	Heart	Denmark		
Glu51Gly	GAG-GGG	Heart	USA	Ser112lle	AGC-ATC	PN, heart	Italy		
Ser52Pro	TCT-CCT	PN, AN, Heart, kidnev	UK	Tyr114Cys	TAC-TGC	PN, AN, eye, LM	Japan, USA		

TTR-FAP: System involvement

- PNS: most common, peripheral neuropathy
- ANS: orthostatic hypotension, alteration in GI motility
- Heart: restrictive cardiomyopathy
- Blood vessels:
 - CNS leptomeningeal amyloidosis
 - Cerebral infarcts & hemorrhage
- Renal involvement not common

TTR-FAP: Pathogenesis

C Compressioninduced demyelination and nerve fiber loss with intraneural amyloid

Arteriolar deposit

Nerve fiber displacement

Demyelination with deposits

Cross Section of Sciatic N. bundles

TTR-FAP: Location of Deposition

- Peripheral nerves
- Dorsal root ganglia
- Leptomeninges around SC and brain
- NO CNS parenchymal involvement

Clinical Progression

Sensorimotor Polyneuropathy Slow Progression over Years

Sensory

- •Small fibers
- •Lower extremities
- Feet → ankles → knees
 Loss of Pain & Temp > Light
- Touch
- •Symmetric Paresthesias
- Numbness
- •Burning pain

Autonomic

- •Impotence
- •GI motility alterations:
- Diarrhea
- Constipation
- Bladder retention
- Orthostatic hypotension
- Dry mouth, dry eyes
- Vocal hoarseness (rare)

Motor

- Vocal hoarseness
- •Carpal Tunnel
- Distal limb weakness
- •Great toe extension
- Foot drop

Clinical Progression

TTR-FAP: Other exam findings

- Neuroarthropathies (Charcot joints)
- Cranial neuropathies:
 - Progressive involvement of CN
 - V: facial sensation
 - VIII: impaired hearing
 - XII: tongue movement
 - Sparing of oculomotor nerve
- Carpal tunnel syndrome
- Blindness from vitreous opacities

ApoAl: Overview

- 12 mutations of ApoAl gene
 - I mutation causes peripheral neuropathy
 - Autosomal Dominant
 - Chromosome 11
 - Gly26Arg: neuropathic variant protein
- ApoA1: Lipid metabolism
 - Apolipoprotein
 - HDL
 - Activates LCAT
 - Peripheral tissues
 - Cholesterol \rightarrow Cholesterol Ester

ApoAl: System involvement

- Renal amyloid deposition, main feature
- Liver
- Spleen
- Heart

ApoAI: Pathogenesis

ApoAl: Pathogenesis

A

Compressioninduced demyelination and nerve fiber loss with intraneural amyloid

ApoAl: Location of Deposition

- Peripheral nerves
- Dorsal root ganglia
- Leptomeninges around SC and brain
- NO CNS parenchymal involvement
- Similar to TTR-FAP

Clinical Progression

Sensorimotor Polyneuropathy Slow Progression over Years

Sensory

•Small fibers

- Lower extremities
 Feet → ankles → knees
- •Loss of Pain & Temp > Light
- Touch •Symmetric Paresthesias
- •Numbness
- •Burning pain

Autonomic

- •Impotence
- •GI motility alterations:
- •Diarrhea
- Constipation
- Bladder retention

Motor

- Vocal hoarseness
- •Carpal Tunnel
- Distal limb weakness
- •Great toe extension
- •Foot drop
- Ataxia
- Tetraparesis

ApoA1: Onset/Prognosis

Adult onset: 30-40s

Slowly progressive

Gelsolin: Overview

- Plasma gelsolin
 - Actin modulating protein
 - Mutations result in abnormal proteolysis
 - Asp187Asn
 - Asp187Tyr
- Systems Involved:
 - Nerve
 - Vascular
 - Renal
- Onset: ~40 years of age
- Involvement of CN VII leads to characteristic drooping of facial muscles, wrinkling, ptosis
 - Ptosis can be corrected surgically

Gelsolin: Pathogenesis

Compressioninduced demyelination and nerve fiber loss with intraneural amyloid

AL: Overview

- AL (amyloid light chain)
 - Ig light chains
 - Produced by plasma cells: $\lambda > \kappa$
- Sporadic
- Neuropathy:
 - 30% have associated peripheral neuropathy
 - >25% have associated carpal tunnel syndrome
- Renal involvement common (~80%)
- Cardiac involvement (~45%)

AL: Pathogenesis

Clinical Progression

Sensorimotor Polyneuropathy Slow Progression over Years

Sensory

•Small fibers

- Lower extremities
 Feet → ankles → knees
- •Loss of Pain & Temp > Light
- Touch •Symmetric Paresthesias
- •Numbness
- •Burning pain

Autonomic

- Impotence
- •GI motility alterations:
- •Diarrhea
- •Constipation
- Bladder retention

Motor

- Vocal hoarseness
- •Carpal Tunnel
- Distal limb weakness
- •Great toe extension
- Foot drop

Diagnostic Evaluation

Diagnostic Evaluation

- Tissue biopsy to diagnose amyloid deposits
 - Fat aspirate
 - Involved organ
 - Gingival tissue or minor salivary gland
 - Sural nerve
- Amyloid Typing
 - AL
 - Bone marrow biopsy with immunohistochemistry for clonal plasma cells
 - Serum free light chain assay
 - Serum and urine immunofixation electropheresis
 - ATTR
 - DNA sequencing
 - AA
 - Immunohistochemistry
 - Identification of underlying infection, inflammatory disease

Tissue biopsy

- Light microscopy (H&E): amorphous, eosinophilic, hyaline, extracellular substance
- Deposits induce pressure atrophy
- Peripheral nerve Wallerian Degeneration
 - Distal degeneration of axon & myelin sheath
 - Proximal axonal degeneration to next node
 - Cell body swells, nucleus is peripheralized
- Congo red stain: apple-green birefringence

Tissue Biopsy

- Nerve involvement
- Intraneural amyloid
- AL amyloidosis cannot be differentiated from TTR amyloidosis on basis of biopsy
- Immunohistochemistry with specific Abs
 - Helpful for differentiation
 - Not completely reliable

Sural Nerve Biopsy

- Vascular deposits
- No intraneural deposits seen
- Spotty nature of deposits does not exclude nerve involvement

Congo red staining

- Cross links within fibrils
- Polarized light
- Apple green birefringence

Commercial DNA Testing

- Available for TTR
 - Full TTR DNA testing if mutation unknown
 - Specific TTR sequence testing if mutation known
- Not available for:
 - ApoAl
 - Gelsolin

Treatment

Treatment Goals

Treatment

Liver transplantation(TTR-NAF) [
Chemotherapy	(AL neuropathy)	[15;45]				
Ribozymes	(TTR-FAP)	[44]*				

Plasma Exchanges

NSAI drugs (TTR-FAP) [30] *

Treatment

Nonspecific

Specific

Nonspecific Treatment

- Treat painful neuropathic symptoms
- Agents:
 - Gabapentin
 - Amitryptyline
 - Pregabalin
 - Duloxetine
 - Tricyclic antidepressants, may exacerbate orthostasis
 - Opioid analgesics
- Response to drug may change as disease progresses

Specific Treatment: TTR-FAP

- Orthotopic liver transplantation
 - Remove mutant TTR, synthesized in liver
 - Val30Met mutation best prognosis: 80% 5 year survival
 - Other mutations: 55-60% 5 year survival
 - Some evidence of efficacy for ApoAl
- Vitrectomy for corneal amyloid deposits
- Small molecules to stabilize the normal TTR tetramer
 - Diflunisal (NSAID)
 - Tafamidis

Specific Treatment: Gelsolin

- Lattice corneal dystrophy
 - Method: Corneal transplantation
- Cutis laxis & blepharochalasis (resultant from facial palsy)
 - Method: Plastic surgery
- Note: Gelsolin is essential protein of actin function
 - Rx aimed to eliminate production will likely not be tolerated

Specific Treatment: AL

- Anti-plasma cell chemotherapy
 - Oral melphalan chemotherapy (relatively ineffective)
 - High dose IV melphalan and autologous stem cell transplantation
 - New agents
 - Bortezomib, proteasome inhibitor
 - Lenalidomide, immunomodulator
 - Others

Summary

Summary: Overview

	TTR-FAP	ApoA1	AL
Age at Onset	30s-70s	30s-40s	Usually older pts
Gender	M>F	M=F	M>F
Associated Systems	Sensorimotor Weight loss Heart failure Increased ICP Corneal Dystrophy	Sensorimotor Weight loss Renal Failure	Sensorimotor Weight loss Heart Failure Renal Failure
Family History	Yes	Yes	No
Cause of Death	Heart failure, wasting syndrome	Renal failure	Heart failure, arrhythmia, bleeding

Summary: Clinical Findings

Clinical manifestations

- 1. Progressive distal symmetrical sensory polyneuropathy
 - Predominantly pain and thermal sensory loss (+++)
- 2. Progressive distal symmetrical sensorymotor polyneuropathy
- 3. Autonomic dysfunction
- 4. Other manifestations: Neuritis multiplex Carpal tunnel syndrome, Cranial neuropathy, ...

Context

- A. Absence of diabetes
- B. Positive family story of FAP
- C. Monoclonal gammopathy (benign or malignant)

Electrophysiological study D. Axonal pattern

Situations suggestive of amyloid neuropathy

4

- (1+3) & A
- (1 or 2 or 3) & B
- (1 or 2) & D & unknown origin

(1+3) & (C+D)
(2+3) & (C+D)

Summary: Diagnosis & Treatment

Take Home Points

- Amyloidosis should not be considered a single disease
- All amyloid has a similar structure of β-sheet fibrils
- Amyloid is either misfolded normal protein or mutant protein. Both deposit extracellularly and disrupt adjacent normal tissue function
- Neuropathy occurs with AL and AF, particularly ATTR
- Biopsy is required for diagnosis of systemic amyloidosis, following by genetic, hematologic, immunochemical, and proteomics for typing
- Treatment methods are both nonspecific and specific

Thank you

References & Images

- Benson M, Kincaid J. The molecular biology and clinical features of amyloid neuropathy. Muscle & Nerve (2007) 36: 411-423.
- Adams, D. Hereditary and acquired amyloid neuropathies. J Neurol (2001) 248: 647-657.
- Kumar V, Abbas A, Fausto N. Robbins and Cotran Pathologic Basis of Disease. Eighth Edition. Saunders Elselvier, 2010.
- Yazaki M et al. Rapidly progressive amyloid polyneuropathy associated with a novel variant of transthyretin Ser 25. Muscle Nerve (2002) 25: 244-250.
- Gillmore J et al. Organ transplantation in hereditary apolipoprotein Al amyloidosis. Am J Transplant (2006) 6: 2342-2347.
- Benson M. The hereditary amyloidoses. Best Pract Res Clin Rheumatol (2003) 17: 909-927.
- Images used with permission of Elsevier Publishing.
 - Goljan E. Rapid Review Pathology. Second Edition. Mosby Elsevier, 2007.
 - Kumar, V. Robins & Cotran Pathologic Basis of Disease. Eighth Edition. Saunders Elselvier, 2010.