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Abstract. Lexicon is a central component in any language processing system,
whether human or artificial. Recent empirical evidence suggests that a multilin-
gual lexicon consists of a single component representing word meanings, and
separate component for the symbols in each language. These components can
be modeled as self-organizing maps, with associative connections between them
implementing comprehension and production. Computational experiments in this
paper show that such a model can trained to match the proficiency and age of ac-
quisition of particular bilingual individuals. In the future, it may be possible to
use such models to predict the effect of rehabilitation of bilingual aphasia, result-
ing in more effective treatments.
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1 Introduction

The mental lexicon, i.e. the storage of word forms and their associated meanings, is
a major component of language processing. It is also one that is perhaps the best un-
derstood in terms of computational modeling. Partly the reason is that abundant data
exists about how the lexicon develops, how it is organized, how it functions, and how
it breaks down in dyslexia and aphasia; partly the reason is that lexical processes are
rather modular and therefore tend to be amenable to computational theories.

Although the physiological implementation and even the location of the lexicon in
the brain is still open to some debate, there is evidence from MRI and electrophysi-
ology that the lexicon may be laid out as a map, or multiple maps [16]. As a result,
self-organizing map (SOM) models are a natural way to model the lexicon. SOM mod-
els have been developed to understand e.g. how ambiguity is processed by the lexicon,
and how it breaks down in dyslexia and aphasia [12,13], and how the lexicon is ac-
quired during development [11]. The SOM-based lexicon has also turned out useful as
a component in larger systems of natural language processing [12].

Given that the majority of the world’s population is bilingual (or multilingual) [17],
an important extension of the SOM-based lexicon models, as well as lexical research in
general, is to account for lexica with multiple languages. A theoretically based approach
is developed in this paper, with the eventual aim of using the model to help rehabilitate
bilingual patients with aphasia.

More specifically, a bilingual lexicon model is built for individuals with different
proficiencies in the two languages, and different age at which the two languages were
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acquired. Based on recent theoretical models, a single semantic map is used, with sep-
arate maps for the words in the two languages, and six separate sets of connections
between the maps. Frequency of exposure, as opposed to age, is shown to primarily
determine the proficiency, with age affecting the way the maps are organized. In the
future, the model can be used to study how the multilingual lexicon breaks down with
damage and how it can be rehabilitated. By matching the proficiency and age of acqui-
sition with those of patients suffering from aphasia, it may be possible to use the model
to derive most effective treatment regimes for them individually.

2 Bilingual Lexical Processing

Current theoretical models of the bilingual lexicon generally agree that bilingual in-
dividuals have a shared semantic (or conceptual) system and that there are separate
lexical representations of the two languages. However, the models differ on how the
lexica interact with the semantic system and with each other.

The concept-mediation model [15] (Fig. 1a), proposes that both the first (L1) and
the second-language lexica directly access concepts. In contrast, the word-association
model assumes that second-language words (L2) gain access to concepts only through
first-language mediation (Fig. 1b). Empirical evidence [8] suggests that the word as-
sociation model is appropriate for low-proficiency bilinguals and concept mediation
model for high-proficiency bilinguals. As an explanation, De Groot [5] proposed the
mixed model (Fig. 1c), where the lexica of a bilingual individual are directly connected
to each other as well as indirectly (by way of a shared semantic representation). This
model was further revised with asymmetry by Kroll & Stewart [9] (Fig. 1d). The associ-
ations from L2 to L1 are assumed to be stronger than those from L1 to L2, and the links
between the semantic system and L1 are assumed to be stronger than those between the
semantic system and L2.

Fig. 1. Theoretical models of the bilingual lexicon. All four theories posit a common semantic
system with language specific representations in L1 and L2. The most recent theory (d) includes
connections between all maps, with connections of the most dominant language (L1 in this figure)
stronger than the others (solid lines indicate strong connections and dashed lines weak connec-
tions). This theory is used as the starting point for the computational model.
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A second important issue is whether activation of the semantic system spreads to
both lexica or only within that of the language being used. The prevailing theory sug-
gests that lexical access is target-language nonspecific [2], although, this view is con-
troversial [3]. A third issue is the extent to which proficiency in the two languages
and the age at which they are acquired (AoA) affect lexical access. There is evidence
that language proficiency, and not AoA, primarily determines the nature of semantic
processing [6]. For instance, Li and Farkas [10] showed that novice bilinguals have a
fuzzier representation of semantics and phonology than proficient bilinguals.

Adopting the asymmetric mixed model of Fig. 1d, this paper will systematically ex-
amine the extent to which language proficiency and AoA influence activation of targets
in the lexicon. The work will form a foundation for studying damage and rehabilitation
of aphasia in bilingual patients in the future.

3 Computational Models of the Lexical System

Artificial neural networks have been used to model various aspects of the lexical system
for over two decades. Most of the models aim to explain lexical processing with low-
level mechanisms, focusing on the timing of the process as well as on certain types of
performance errors and deficits. They are primarily process models, detached from the
physical structures, and designed as controlled demonstrations of how disambiguation
and production could be carried out in the lexical system [4,7,14].

One exception is the DISLEX model by Miikkulainen [12,13], which was further
developed as DEVLEX by Li and colleagues [11]. Its organization is modeled after the
cortical maps that underlie many perceptual processes and may also be the substrate for
the lexical system in the brain [16]. DISLEX consists of two self-organizing maps, one
for lexical symbols and the other for word meanings, as well as associative connections
between them (Fig. 2). The lexical map is a layout of the orthographic or phonetic
symbols in the language (orthography is used in the examples in this paper). It is a two-
dimensional array of computational units, or neurons, trained to represent the symbols
using the self-organizing map method. The symbols are vectors of gray-scale values
[0..1], representing the orthographic features of the word. Each word is represented by
a “blurry bitmap”, i.e. a coarse visual image of the word as a series of letters.

During training, such vectors are presented to the map one at a time, and each unit
computes the Euclidean distance d between its weight vector w and the symbol repre-
sentation v:

d =
√∑

k

(wk − vk)2. (1)

The unit with the smallest distance (unit (r, s)) is then found, and the weights of that
unit and those in its neighborhood (units (i, j)) are adapted towards the input vector:

w′
k,ij = wk,ij + α(vk − wk,ij)hrs,ij , (2)

where hrs,ij is a Gaussian function defining and α is the learning rate. This process has
two effects: the weight vectors become representations of the symbol vectors, and the
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Fig. 2. A single-language DISLEX model and representations. The orthographic input symbol
DOG is translated into the semantic concept dog in this example. The representations are vectors
of gray-scale values between 0 and 1, stored in the weights of the map units. The size of the unit
on the map indicates how strongly it responds. Only a few strongest associative connections of
the orthographic input unit DOG (and only that unit) are shown.

neighboring weight vectors become similar. Over several presentations of each lexical
symbol, the array of units then learns to represent the space of symbols in the language.

The semantic map is organized in a similar manner. The input vectors to this map
represent semantic meanings of words. Each component of the vector represents a se-
mantic microfeature (learned automatically based on word cooccurrence [12], and the
vectors as a whole represent similarities between word meanings. The self-organizing
map therefore learns the layout of the semantic space, i.e. the possible meanings of the
words in the language.

Associations between the two maps are learned at the same time as the two maps are
organized. A lexical symbol and its meaning are presented at the same time, resulting in
activations on both maps. Associative connections between the maps are then adapted
based on Hebbian learning, i.e. by strengthening those connections that link active units,
and normalizing all connections of each unit:

a′
ij,mn =

aij,mn + αηijηmn∑
uv(aij,uv + αηijηmn)

, (3)

where aij,mn is the weight on the associative connection from unit (i, j) in one map
to unit (m, n) in the other map and ηij is the activation of the unit. As a result of this
learning process, when a word is presented to the lexical map, its associated meaning
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is activated in the semantic map, and vice versa. DISLEX therefore models both com-
prehension and production in the lexicon.

The DISLEX model was evaluated in prior work in three ways: First, it was shown
to function well as a practical lexicon component in a large language processing system
called DISCERN [12], for processing script-based stories. Second, it was tested as a
cognitive model of human lexical processing. The spatial organization of the lexicon is
motivated by the maps in the brain, such as those suggested to underlie the lexical sys-
tem [16]. Because of this structure, local lesions to the system result in category-specific
impairments, similar to those documented in aphasic patients [18]. Noisy propagation
between maps gives a possible computational explanation to many dyslexic phenom-
ena [1], such as lexical errors (“ball” → “doll”), semantic errors (“lion” → “tiger”) and
combined errors (“sympathy” → “orchestra”). Third, the model was extended to model
lexical development [11,10,19]. The extended model, called DEVLEX, is trained with
gradually more words. It accounts for a range of phenomena in lexical acquisition,
including effects of lexical categories such as representation of nouns/verbs, word fre-
quency, word length and word density. AoA is considered to be an important factor in
the developing bilingual lexicon as well. For instance, the timing of L2 acquisition im-
pacts the structural representation of L1 and L2 maps. When L2 is acquired later than
L1, it becomes dependent upon the L1 semantic map in a “parasitic” way and induces
higher rates of errors [19].

DISLEX therefore forms a solid foundation for modeling bilingual lexical processing
and its breakdown and recovery as well. The first step is to extend it to two languages
with different proficiency and AoA, as described below.

4 The Bilingual DISLEX Model

The original DISLEX model was extended to include lexica for two languages, L1 and
L2. By varying the amount and timing of training in the two languages, the model can
represent an individual with a given proficiency and AoA of L1 and L2.

The bilingual lexicon model was constructed to match typical subjects in the empir-
ical studies: L1 is Spanish, L2 is English, and the AoA of English varies. Furthermore,
because the patients are typically more proficient in English than Spanish, English is
the dominant language (L2d) and Spanish is the weaker language (L1w). The L1 and
L2 lexical symbols are each laid out in a different map in the model (Fig. 3). To con-
struct such a model, 30 corresponding words, represented orthographically, were used
in each language, together with 18 distinct semantic meanings; the mapping from words
to meanings was thus many-to-many. As an example, the model was organized to simu-
late both early (Fig. 3a) and late acquisition of L2 (Fig. 3b) where L2 was the dominant
language.

In the early L2 acquisition model, each Spanish symbol - English symbol - meaning
triple was presented 45 times, and during the same time period, each English symbol -
meaning pair was presented an additional 15 times, modifying the input and associative
weights each time as described above. Such different amount of training in English and
Spanish corresponds to the different exposure to the two languages during acquisition.
In the late L2 acquisition model, the Spanish symbol - meaning pairs were first pre-
sented 25 times; then, the English - Spanish - meaning triples were shown 20 times,



196 R. Miikkulainen and S. Kiran

(a) (b)

Fig. 3. Bilingual DISLEX models of two typical (hypothetical) individuals. Following the
general architecture of Kroll & Stewart [9] (Fig. 1d), the bilingual DISLEX model consists of
a map of lexical symbols for each of the two languages, a common map of word meanings,
and associative connections between them. The solid arrows indicate strong and dashed weak
associative connections; the numbers stand for percentage proficiency of each component. The
model was trained in two different ways to match two different hypothetical patients, each with
a different L2 AoA but high L2 proficiency. In this manner, the level of AOA, proficiency and
impairment can each be altered to understand the individual contribution of each variable.

interleaved with 40 presentations of the English symbol - meaning pairs. In both cases,
the lexicon self-organized to represent the two languages and the mapping between
them (Fig. 4). Each lexical map is organized according to the similarity of the word
shapes (mostly word length and matching letters, which are the most prominent char-
acteristics of the “blurry bitmap” representation used). The semantic map is organized
according to the word meaning (i.e. animate words are clustered together, as are verbs
and objects).

When a meaning representation is given an input to the semantic map, the corre-
sponding units in the English or Spanish map are activated through associative connec-
tions. The main difference between early and late L2 maps is that while the early L2
map is organized relatively smoothly, the late L2 map is irregular and uneven. To quan-
tify the behavior of these models, the 18 meaning representations were each presented
to the semantic map in turn and propagated to the English map and to the Spanish map,
modeling naming in the two languages; similarly, the 30 English words and 30 Spanish
words were each presented as input to the appropriate map and propagated to the se-
mantic map, modeling word comprehension. In each case, the unit with the maximally
responding unit was found in the input map and in the associated map. If its weight
vector was closest to the correct representation, the output for the word in the lexicon
was correct.

A typical bilingual performance was observed in this process in both early and late
L2 models (Fig. 3). With early English AoA, English (L2d) dominated Spanish (L1w)
in production (53 vs. 47% accuracy) as well as in comprehension (90 vs. 80%). Impor-
tantly, the same was true of late English AoA both in production (58 vs. 35%) and in
comprehension (67 vs. 63%). (Note that only the relative proficiency is important; the
absolute proficiency can be adjusted by changing the amount and rate of learning in the
model). Most interestingly, an important asymmetry emerged between the L1 and L2
maps: An L1 word activates the corresponding L2 word more strongly than the other
way around (37 vs. 13% early, 43 vs. 30% late), showing more proficiency in English
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Fig. 4. A DISLEX model of normal bilingual behavior. The L1 and L2 maps are organized
according to the perceptual similarities (mostly word length), and the semantic map according
to semantic meaning (e.g. animals, objects, verbs). A word presented to one of the maps (in this
case semantic meaning doll) activates that map, and the activity propagates through associative
connections to the other maps (in this case L1 and L2, activating the units representing DOLL and
MUNECA, as well as a few neighboring units). The colors white → yellow → red → black indicate
increasing response. The connections to L1 are less specific (activating a wider area) and therefore
result in more errors than those to L2. Also, although both the early AoA L2 (bottom right) and
late AoA L2 (top right) result in roughly equal performance, the early map is better organized than
the late map (which consists of several small discontinuous clusters). In this manner, DISLEX
models bilingual naming and comprehension with different proficiencies and different age of
acquisition in the two languages.

(L2d) than in Spanish (L1w), and demonstrated dominance of English over Spanish
in transfer between the languages. This asymmetry is consistent with behavioral data
(Section 2) showing that lexical activation in the non-dominant language results in ac-
tivation of corresponding representations of the dominant language.

In a subsequent experiment, the role of the languages was reversed, resulting in a
model with Spanish as the dominant (L1d) and English as the weaker (L2w) language.
In a third experiment, the model was exposed equally frequently to the two languages
(L1 = L2), and neither language dominated the other in the resulting model. These re-
sults were obtained both with early and with late L2 training, with consistent differences
in the L2 map organization (Fig. 4). Together these experiments suggest that by train-
ing the model with different starting times and frequencies, the relative proficiency and
organization in the two languages can be tuned, making it possible to fit the model to a
particular individual’s performance and learning history.
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5 Discussion and Future Work

The model is consistent with behavioral data in two important ways. First, relative lan-
guage proficiency is modulated by the amount of exposure to each specific language.
Second, various levels of L2 language performance can be achieved with both early and
late L2 AoA. Further, the late L2 AoA results in less well organized L2 map even when
L2 achieves eventual high proficiency.

In the future, it may be possible to use the model to fit the pre-stroke performance and
learning history of an individual patient, and then used to derive an optimal treatment
for that patient. Damage to the lexical system can be modeled in DISLEX in two ways:
(a) Units or connections can be deleted from the model, and (b) noise can be added to
the connections. By controlling the type and extent of damage, it will be possible to
fit the model to the profile of an individual patient. In rehabilitation training, then, the
model will be presented with selected word-meaning pairs in the two languages and
it will continue self-organizing using the same mechanisms as during initial training.
By varying the types of words (such as concrete vs. abstract words, rare vs. frequent
words, short vs. long words, and word categories) and numbers of training pairs in the
two languages systematically, it should be possible to determine a training recipe that
leads to fastest and most complete recovery. Such an ability could greatly improve our
ability to treat bilingual aphasia in the future.

6 Conclusion

A bilingual lexicon model consisting of a common map of word meanings and a sepa-
rate maps for the words in the two languages is consistent with current theory of bilin-
gual processing in the mental lexicon. By varying the frequencies with which the maps
are trained, and the timing of the training in the two languages, models of individual
proficiency and order in the two languages can be developed. The approach can be
used to develop models of individuals, and in the future, may form a foundation for
discovering individually optimized recipes for treatment of aphasia.
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