
Use of longitudinal EEG measures in estimating language 
development in infants with and without familial risk for autism 
spectrum disorder.

Carol L. Wilkinson, MD, PhD,
Division of Developmental Medicine, Boston Children’s Hospital, 1 Autumn Street, 6th Floor, 
Boston, MA 02115

Laurel J. Gabard-Durnam, PhD,
Division of Developmental Medicine, Boston Children’s Hospital

Kush Kapur, PhD,
Department of Neurology, Boston Children’s Hospital

Helen Tager-Flusberg, PhD,
Department of Psychological and Brain Sciences, Boston University

April R. Levin, MD,
Department of Neurology, Boston Children’s Hospital

Charles A. Nelson, PhD
Division of Developmental Medicine, Boston Children’s Hospital

Abstract

Language development in children with autism spectrum disorder (ASD) varies greatly among 

affected individuals and is a strong predictor of later outcomes. Younger siblings of children with 

ASD have increased risk of ASD, but also language delay. Identifying neural markers of language 

outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study 

aimed to determine whether EEG measures from the first 2-years of life can explain heterogeneity 

in language development in children at low- and high-risk for ASD, and to determine whether 

associations between EEG measures and language development are different depending on ASD 

risk status or later ASD diagnosis. In this prospective longitudinal study EEG measures collected 

between 3-24 months were used in a multivariate linear regression model to estimate participants’ 

24-month language development. Individual baseline longitudinal EEG measures included (1) the 

slope of EEG power across 3-12 months or 3-24 months of life for 6 canonical frequency bands, 

(2) estimated EEG power at age 6-months for the same frequency bands, and (3) terms 

representing the interaction between ASD risk status and EEG power measures. Modeled 24-

month language scores using EEG data from either the first 2-years (Pearson R = 0.70, 95% CI 

0.595-0.783, P=1x10−18) or the first year of life (Pearson R=0.66, 95% CI 0.540-0.761, 

P=2.5x10−14) were highly correlated with observed scores. All models included significant 
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interaction effects of risk on EEG measures, suggesting that EEG-language associations are 

different depending on risk status, and that different brain mechanisms effect language 

development in low-versus high-risk infants.

INTRODUCTION

Children with autism spectrum disorder (ASD) have striking heterogeneity in their early 

language development.(Anderson et al., 2007; Kjelgaard & Tager-Flusberg, 2001; Pickles, 

Anderson, & Lord, 2014) While many children initially present with language delays, 

roughly one-quarter will develop age-appropriate skills by school age, and 30% will remain 

minimally verbal throughout life.(Anderson et al., 2007; Tager-Flusberg & Kasari, 2013) 

Furthermore, language acquisition is one of the best predictors of later outcomes in children 

with ASD.(Billstedt, Gillberg, & Gillberg, 2005; Gotham, Pickles, & Lord, 2012; Miller et 

al., 2017; Szatmari et al., 2009, 2000) Although children with ASD are clearly at risk for 

language delay, so are their younger siblings; for example, longitudinal studies following 

infant-siblings of children with ASD (high-risk infants) have reported delays in language 

skills as early as 12 months of age in infant-siblings both with and without later diagnoses of 

ASD.(Estes et al., 2015; Landa & Garrett-Mayer, 2006; Marrus et al., 2018; Swanson et al., 

2017) As such, earlier identification of future language delays in toddlers at risk for ASD 

would facilitate earlier intervention and increase the likelihood of improving outcomes.

Longitudinal large population-based studies have identified various risk factors on the 

individual (gender, prematurity), familial (maternal education), and environmental (income) 

level that influence language development.(Reilly et al., 2007; Schjølberg, Eadie, 

Zachrisson, Oyen, & Prior, 2011) However, across studies these factors consistently account 

for 4-7% of variance in language outcomes in 2-year-olds, suggesting additional factors play 

an important role in a child’s early language trajectory. Indeed, high-risk infants who do not 
have ASD still have a 4-fold increased risk of language delay compared to infants without 

family history of ASD, suggesting that early language delay is an endophenotype of ASD 

with shared genetic liability and possibly shared underlying biology.(Marrus et al., 2018) 

Therefore studying the neural mechanisms underlying language development in high-risk 

children may shed light on early language delay as a whole, and allow for earlier detection 

before delays in language can be measured behaviorally.

To meet this goal, researchers have applied neuroimaging techniques to measure brain-based 

changes that support language development in low- and high-risk infants over the first 3 

years after birth. A number of studies suggest that the relationship between brain measures 

and language outcomes are different depending on ASD diagnosis or ASD risk status.

(Lombardo et al., 2015; Seery, Tager-Flusberg, & Nelson, 2014; Swanson et al., 2017; 

Wilkinson, Levin, Gabard-Durnam, Tager-Flusberg, & Nelson, 2018) For example, in 

infants who show a language delay at a later age, the relationship between language ability 

and reactivity to speech (as measured on fMRI) are reversed depending on ASD diagnosis.

(Lombardo et al., 2015) Similarly, using electroencephalography (EEG) in low- and high-

risk infants, significant relationships between frontal brain activity and language ability have 

been observed in high-risk, but not low-risk infants at both 9- and 24-months.(Seery et al., 
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2014; Wilkinson, Levin, Gabard-Durnam, Tager-Flusberg, & Nelson, 2019) These 

differential brain-behavior associations suggest that the neural mechanisms affecting 

language development in high-risk children may be different than in low-risk children. One 

reason for this could relate to global brain differences such as reduced power across 

frequency bands observed as early as 3-6 months in high-risk infants regardless of ASD 

outcome(Levin, Varcin, O’Leary, Tager-Flusberg, & Nelson, 2017; Riva et al., 2018; 

Tierney, Gabard-Durnam, Vogel-Farley, Tager-Flusberg, & Nelson, 2012), or accelerated 

surface area brain growth observed between 6-12 months of age in high-risk infants with 

later ASD diagnosis. These early brain differences could alter typical development of 

language circuitry. Given this, predictive models of language must account for these possible 

differences between low- and high-risk populations.

EEG, which measures network level brain activity at the scalp surface, has particular 

promise in its use as a clinical biomarker of language development in infants and toddlers as 

it is non-invasive, relatively low cost, and already regularly used in the outpatient setting for 

seizure monitoring.(Jeste, Frohlich, & Loo, 2015; Levin & Nelson, 2015; Varcin & Nelson, 

2016) Various measures collected during task-related or resting state EEG have been 

associated with language processing and language development in young children. Evoked 

brain responses to auditory stimuli presented as early as 6-months of age reflect both current 

language processing and future language ability.(Jansson-Verkasalo et al., 2010; Kuhl, 2010; 

Kuhl, Conboy, Padden, Nelson, & Pruitt, 2005) Further, phase-locking, or entrainment to 

both the temporal syllabic structure of speech (in the delta/theta range 1-8Hz), and the 

phonetic structure of speech (in the beta/gamma range 20-50Hz) have been observed in 

animals and humans during speech processing, and is correlated with measures of 

phonological processing.(A. Giraud & Poeppel, 2012) While it is still unknown whether 

aberrant entrainment in these frequency bands affects language acquisition in children, 

studies in children and adults with ASD have reported differences in resting and task-evoked 

theta and gamma power(Jochaut et al., 2015; Rojas & Wilson, 2014; Wang et al., 2013) and 

it is hypothesized that such differences impair speech processing and delay language 

acquisition.(Jochaut et al., 2015) Clinically, resting EEG (non-task related) is the simplest to 

collect, especially in young children or in populations where longer task-related paradigms 

are not well tolerated. Associations between resting frontal gamma power and language have 

also been observed. Specifically, resting (i.e. not-task related) frontal gamma power has been 

positively associated with receptive and expressive language ability in typically developing 3 

to 4 year-olds(Benasich, Gou, Choudhury, & Harris, 2008; Gou, Choudhury, & Benasich, 

2011; Tarullo et al., 2017), but negatively associated with expressive language in high-risk 2-

year-olds.(Wilkinson et al., 2019) Reduced spectral power in delta/theta and gamma bands 

during visual processing has also been observed in minimally verbal children with ASD 

compared to a typically developing control group.(Ortiz-Mantilla, Cantiani, Shafer, & 

Benasich, 2019) Spectral power of resting EEG has also been evaluated in children with 

dyslexia, with reduced frontal delta power observed in 3-year-olds who are later diagnosed 

with dyslexia compared with controls(Schiavone et al., 2014), but increased delta and theta 

power in school-aged children with dyslexia(Colon, Notermans, de Weerd, & Kap, 1979; 

Harmony et al., 1995; Penolazzi, Spironelli, & Angrilli, 2008; Spironelli, Penolazzi, Vio, & 
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Angrilli, 2006), suggesting developmental changes in EEG spectral power are also likely 

relevant predictors of language related outcomes.

While the investigations above have found associations between specific frequency bands 

and language development in both typically developing and neurodevelopmental disorder 

populations, they have not accounted for the majority of variance in language scores 

between individuals. This is likely because by focusing on single frequency band during a 

limited developmental age range, we fail to capture the impact of developmental changes 

across the spectrum of frequency bands as it relates to language development.

This study had three main objectives. First, we aimed to evaluate whether a combination of 

early and longitudinal EEG measures (spectral power at 6 months of age and the 

developmental trajectory of spectral power) can explain the variance in language ability at 2-

years of age in both low- and high-risk children. In other words, in a non-clinical 

longitudinal data sample, can resting EEG measures sufficiently estimate language ability in 

toddlers, to support its future use as a clinical biomarker of language development? Second, 

in order to begin to develop a theoretical framework of how neural oscillations (such as theta 

and gamma) may influence language development, we used a data-driven approach to model 

building, and then investigated whether associations between frequency band power and 

language ability were different between low- and high-risk infants. Specifically, in this 

second aim we explored whether different EEG measures predict language ability in these 

risk groups, and whether the direction of these relationships were similar or different 

between groups. As differences in EEG power have been observed as early as 3-6 months of 

age in high-risk infants, we hypothesized that spectral power at 6-months of age would 

differentially contribute to model language estimates in low- vs high-risk groups. In 

addition, we hypothesized that frequency bands important for speech processing (delta/theta 

and beta/gamma) would most robustly contribute to language estimates across low- and 

high-risk groups. Finally, we asked whether these brain-language associations were also 

different between high-risk infants with and without ASD.

METHODS

Study Design and Population: Participants were part of a prospective longitudinal 

study of early neurocognitive development of infant siblings of children with ASD, 

conducted at Boston University and Boston Children’s Hospital. The study was approved by 

the IRB review board (#X06-08-0374) and written informed consent was obtained from a 

parent or guardian prior to each child’s participation in the study.

High-risk (HR) infants were defined as having at least one full sibling with a community 

diagnosis of ASD, which was confirmed using the Social Communication Questionnaire 

(SCQ)(Rutter Bailey, A., & Lord, C., 2003) and/or the Autism Diagnostic Observation 

Schedule (ADOS)(Lord & Rutter, 2012). Low-risk infants (LR) were defined by having a 

typically developing older sibling and no first- or second-degree family members with ASD. 

All infants had a minimum gestational age of 36 weeks, no history of pre- or postnatal 

medical or neurological problems, and no known genetic disorders. For this analysis all 

Wilkinson et al. Page 4

Neurobiol Lang (Camb). Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infants were also from households speaking primarily English (English spoken more than 

75% of the time).

A total of 220 participants were enrolled who met the above inclusion and exclusion criteria 

(97LR, 123 HR). Only a portion of enrolled participants had sufficient quality EEG recorded 

(see below for EEG quality criteria), developmental testing completed at the 24-month visit, 

and ADOS completed at 24 and/or 36 months. In addition, three low-risk males went on to 

meet DSM-5 criteria for ASD and were not included in this analysis. This study includes 

data from a total of 58 LR and 72 HR infants. Of the 72 HR infants, 21 (29%) met criteria 

for ASD based on assessments described below (Table 1).

Measures

Language and behavioral assessments: At multiple time points participants were 

assessed using the Mullen Scales of Early Learning (MSEL). For this analysis, the MSEL 

Verbal Developmental Quotient (VDQ) at 24 months was calculated from the receptive and 

expressive language subscales. This time point, instead of the later 36-month time point, was 

used as it included the most participants enrolled in the study. Final ASD outcomes were 

determined for all infants using the ADOS administered at 24 and 36 months of age. For 

those children meeting criteria on the ADOS, or coming within 3 points of cutoffs, a 

Licensed Clinical Psychologist reviewed scores and video recordings of concurrent and 

previous behavioral assessments, and using DSM-5 criteria provided a best estimate clinical 

judgment.

EEG data collection: Baseline, non-task related EEG data was collected at 6 visits (3, 6, 

9, 12, 18, and 24 months of age). The infant was held by their seated caregiver in a dimly lit, 

sound-attenuated, electrically shielded room while a research assistant ensured the infant 

remained calm and still by blowing bubbles and/or showing toys. Continuous EEG was 

recorded for 2-5 minutes. EEG data were collected using either a 64-channel Geodesic 

Sensor Net System or 128-channel Hydrocel Geodesic Sensor Nets (Electrical Geodesics, 

Inc., Eugene, OR, USA) connected to a DC-coupled amplifier (Net Amps 200 or Net Amps 

300, Electrical Geodesics Inc.). There was no difference in distribution of net type at each 

time point between outcome groups. Data were sampled at 250 Hz or 500 Hz, and collected 

using a 0.1 Hz high-pass analog (i.e. hardware) filter and referenced online to a single vertex 

electrode (Cz), with impedances kept below 100kΩ. Electrooculographic electrodes were 

removed to improve the child’s comfort.

EEG pre-processing: Raw EEG data collected in NetStation (EGI, Inc, Eugene, OR) 

were exported to MATLAB (versionR2017a) for pre-processing and subsequent power 

analysis.

All files were batch processed using the Batch EEG Automated Processing Platform 

(BEAPP)(Levin, Mendez Leal, Gabard-Durnam, & O’Leary, 2018), to ensure uniform 

analysis regardless of when the EEG was acquired or which risk group they were in.

A 1-Hz high-pass filter and 100Hz low-pass filter were applied and then data sampled at 500 

Hz were resampled using interpolation to 250 Hz. Both experimental and participant-
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induced artifacts were then identified and removed using the Harvard Automated 

Preprocessing Pipeline for EEG (HAPPE).(Gabard-Durnam, Mendez Leal, Wilkinson, & 

Levin, 2018) HAPPE is a MATLAB based pre-processing pipeline optimized for 

developmental data with short recordings and/or high levels of artifact, to automate pre-

processing and artifact removal, and to evaluate data quality in the processed EEGs(Gabard-

Durnam et al., 2018). HAPPE artifact identification and removal includes removing 60Hz 

line noise, bad channel rejection, and participant produced artifact (eye blinks, movement, 

muscle activity) through wavelet-enhanced independent component analysis (ICA) and 

MARA (Multiple Artifact Rejection Algorithm)(Winkler, Debener, Muller, & Tangermann, 

2015; Winkler, Haufe, & Tangermann, 2011). MARA has excellent detection and removal of 

muscle artifact components which can affect higher frequency band signal(Gabard-Durnam 

et al., 2018; Winkler et al., 2011). The following channels, in addition to the 10-20 

electrodes, were used for MARA: 64-channel net – 2, 3, 8, 9, 12, 16, 21, 25, 50, 53, 57, 58; 

128-channel net – 3, 4, 13, 19, 20, 23, 27, 28, 40, 41, 46, 47, 75, 98, 102, 103, 109, 112, 117, 

118, 123. After artifact removal using HAPPE, data were re-referenced to an average 

reference (calculated using the same channels used for MARA), detrended using the signal 

mean, and then regions of high-amplitude signal (>40 uV was used to account for the reduce 

signal amplitude which occurs during the wavelet-enhanced ICA step of HAPPE pre-

processing) were removed prior to segmenting the remaining data into 2-second windows to 

allow for power calculations using multitaper spectral analysis(Babadi & Brown, 2014). 

Non-continuous data were not concatenated.

EEG rejection criteria: HAPPE data output quality measures were used to systematically 

reject poor quality data unfit for further analyses. EEGs were rejected if they had fewer than 

20 segments (40 seconds of total EEG), or were more than 3 standard deviations from the 

mean on the following HAPPE data quality output parameters: percent good channels (3 SD: 

< 82%), mean retained artifact probability (3 SD: >0.3), median retained artifact probability 

(3 SD: >0.35), percent of independent components rejected as artifact (3 SD: >84%), and 

percent of EEG signal variance retained after artifact removal (3 SD: <32%). Based on the 

above criteria 69 of 674 (10.2%) EEGs collected between 3 and 24 months were rejected. 

Additionally, any EEG with a frequency band power greater than two SD above or below the 

mean of their associated outcome group (LR, HR-NoASD, or HR-ASD) mean were 

reviewed, leading to an additional 23 (3.4%) EEGs to be rejected. HAPPE quality metrics 

and visual inspection rejection rates did not significantly differ between groups (all p>0.1). 

A full description of HAPPE quality metrics and visualization based on this longitudinal 

dataset were previously published by Gabard-Durnam et al. 2018(Gabard-Durnam et al., 

2018). Gabard-Durnam et al 2018 also provides examples of EEGs from this dataset pre- 

and post-HAPPE processing, power spectra after each step of processing, and comparison of 

HAPPE versus other approaches to artifact rejection using this data set.

EEG power analysis: A multitaper fast Fourier transform, using three orthogonal 

tapers(Thomson, 1982) was used to decompose EEG signal into power for each 2-second 

segment of data for selected frontal electrodes: 64-channel net – 2, 3, 8, 9, 12, 13, 58, 62; 

128-channel net – 3, 4, 11, 19, 20, 23, 24, 27, 118, 123, 124 (Supplemental Figure 1). 

Frontal electrodes were chosen a priori based on previous findings from our previous 
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work(Levin et al., 2017; Tierney et al., 2012; Wilkinson et al., 2019) and others(Benasich et 

al., 2008; Gou et al., 2011; Schiavone et al., 2014) that frontal power in both low and high 

frequency bands is associated with language development in typically and ASD populations. 

The summed power was calculated across all frequencies within commonly used frequency 

bands in infant EEG studies: delta (2-3.99Hz), theta (4-5.99Hz), low-alpha (6-8.99Hz), high-

alpha (9-12.99Hz), beta (13-29.99Hz), and gamma (30-50Hz). As a minor point, we opted 

not to examine power <2Hz to allow use of a 1Hz high pass filter required by HAPPE. 

Power was then averaged across all 2-second segments and then across the frontal electrodes 

for each participant to obtain their average frontal power at each time point. We report 

absolute power values, normalized by a log 10 transform. Power spectra at each time point 

for low- and high-risk groups are shown in Supplemental Figure 2.

EEG data reduction: Longitudinal baseline EEG data from participants were reduced to 

two parameters for each frequency band per participant: (1) estimated power at 6-months 

(intercept at 6 months) and (2) estimated linear slope of power over logarithmic age, 

calculated either over 3-24 months (Models 1 and 2) or 3-12 months (Model 3). Given the 

nonlinear, logarithmic trajectories of EEG power over early brain development observed in 

this dataset (Figure 1) and by other labs(Cornelissen, Kim, Purdon, Brown, & Berde, 2015; 

Jing, Gilchrist, Badger, & Pivik, 2010), we employed Ordinary Least Squares (OLS) to 

model a linear relationship between the log-transformed EEG power as a function of log-age 

for each individual. OLS regression equations utilized all the EEG data available from each 

individual from 3 to 24 months. This linear transform allowed us to include longitudinal 

EEG data from any individual with EEGs from at least two time points across the 3-24 

month period (Models 1 and 3) or 3-12 month period (Model 2), allowing us to maximize 

the sample size included in the model. The average number of EEGs from each participant 

was 3.86±1.2 and was not significantly different between groups (Table 1; p > 0.1). The 

estimated 6-month intercept was used instead of 3-month intercept as not all infants were 

enrolled at 3-months of age (the time of enrollment changed from 6- to 3-month during the 

study), and we aimed to use a timepoint that was inclusive of the full group’s study visit 

parameters.

Statistical Analysis

Group Comparisons of Descriptive Characteristics: A Chi-square test (or Fisher-

exact test in case the cell count < 5) was used to characterize differences in the categorical 

demographic data between groups. One-way ANOVA was used to assess group differences 

in average number of EEGs per participant and MSEL scores. Kruskal-Wallis followed by 

post-hoc Dunn’s test was performed on non-normally distributed ADOS severity scores.

Model Development: Multivariate linear regression was used to characterize the 

relationship between the EEG parameters and 24-month language outcomes across groups. 

Three models were examined, all using 24-month VDQ as the dependent variable. Potential 

EEG predictors for each model included the 6-month intercepts, the slopes, and the 

interaction terms between intercept and slope for each of the 6 frequency bands (18 possible 

variables). For all adjusted models, parental education (averaged maternal and paternal 

education when both available) which is known to affect language development was 
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included as a covariate. Given the marginally significant increased number of males in the 

HR-ASD group, sex was also included as a covariate in adjusted models. Unadjusted models 

(supplemental materials) only included EEG parameters and interactions with either risk or 

ASD outcome.

For each of the models, we performed data-driven selection from the potential parameters 

using a hybrid stepwise approach and minimization of the Akaike Information Criterion 

(AIC).(Hastie, Tibshirani, & Friedman, 2009) This model selection uses an iterative process 

that compares AIC values across candidate models in order to minimize both information 

loss and overfitting. Once model selection was complete, secondary post hoc hypothesis 

testing was performed simultaneously on all parameters to determine which parameters were 

relatively robust predictors of MSEL VDQ and whether interaction effects were significant. 

Correction for multiple comparisons within the secondary analysis was performed using the 

Benjamini-Hochberg procedure(Benjamini & Hochberg, 1995) to limit the false discovery 

rate to alpha level 0.05 across tests, and p-values surviving significance after correction are 

marked with an asterisk.

Model 1 included interactions between risk (LR vs HR) and 15/18 EEG parameters 

calculated from data collected between 3-24 months. Model 2 included interactions between 

risk (LR vs HR) and all 18 EEG parameters calculated from data collected from 3-12 

months of age. Model 3, using data only from high-risk infants, included interactions 

between ASD outcome and 12/18 EEG parameters (Table 2). Due to limited sample size, we 

could not simultaneously include interactions between EEG parameters and both risk and 

ASD outcome. In all models, B coefficients were scaled by a factor of 10, so that they 

represent the change in MSEL score after a 0.1 unit change in EEG intercept or slope.

RESULTS

Participant Characteristics

Demographic data are shown in Table 1 for the full sample, with statistical analyses 

comparing both outcome groups (LR vs HR-NoASD vs HR-ASD) and risk groups (LR vs 

HR; with HR consisting of combined HR-NoASD and HR-ASD infants).

Developmental EEG Trajectories

Developmental trajectories of EEG power across the 6 frequency bands are shown in Figure 

1, subdivided by outcome group (LR, HR-noASD, and HR-ASD).

Longitudinal EEG measures explain language variability in low- vs high-risk infants (Model 
1)

To test whether EEG predictors of language were different in low- versus high-risk infants, 

Model 1 allowed for potential two-way interactions between risk status and all EEG 

parameters included in the model. Pearson correlations between the modeled language 

scores and observed language scores were all significant, both collapsed across low- and 

high-risk subjects (Model Adjusted R2=0.329; Pearson R = 0.70 [95% CI, 0.595-0.783]; 

P=1x10−18) and when low-risk (Pearson R=0.617 [95% CI, 0.414-0.762]); P=1x10−6) and 
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high-risk (Pearson R=0.709 [95% CI, 0.542-0.812]; P=4x10−11) groups were analyzed 

separately. Pearson correlation for the unadjusted model (Model Adjusted R2=0.211), using 

only EEG parameters, was also significant (Pearson R=0.62 [95% CI, 0.497-0.722]; 

P=6.6x10−14). Scatter plots of model-estimated and observed language scores are shown in 

Figure 2.

Significant differences between risk groups were observed for the effects of beta slope and 

its interaction with its 6-month intercept as well as the effect of 6-month theta intercept on 

language outcomes (Table 2, Model 1). Four EEG parameters were significantly associated 

with language outcome in both low- and high-risk groups and had the same B coefficient: 

theta slope, gamma slope, delta intercept×slope and gamma intercept×slope. Notably, risk 

itself was not a significant predictor of 24-month language in either adjusted or unadjusted 

models (Adjusted Model 1: B coefficient = 19.31 (SE 52.22); P = 0.71; Unadjusted Model 1: 

B-coefficient = −33.9 (SE 58.64); P=0.56). Parental education and sex covariates were 

significant predictors in the adjusted model (Table 2, Model 1). The unadjusted Model 1 had 

similar patterns of significance (data shown in Supplemental Table 1).

Estimating 2-year language from EEG measures over the first year of life (Model 2).

We next examined how well the longitudinal EEG measures restricted to visits from the first 

year of life predicted language ability at 24 months across low and high-risk infants. Model 

2 used EEG data from both low- and high-risk infants, but now restricted to data collected 

between 3-12 months. Pearson correlations between estimated and actual MSEL scores were 

significant (Model Adjusted R2 = 0.249; Pearson R=0.66, [95% CI, 0.540-0.761]; 

P=2.5x10−14) (Figure 2), although not as accurate as Model 1. As in Model 1, beta slope and 

its interaction with the beta 6-month intercept were significantly associated with future 

language ability only for low risk infants, and 6-month theta intercept was associated with 

future language ability only for high-risk infants, however neither remained statistically 

significant after controlling for multiple comparisons. Gamma slope and the interaction 

between intercept and slope were no longer significant predictors in this model, suggesting 

that the trajectory of gamma power beyond 12 months may be more relevant to language 

development than its trajectory over the first 12 months.

Differences in how EEG measures explain language variability in high-risk infants with and 
without ASD (Model 3).

Next we asked whether high-risk infants with ASD (HR-ASD) have different brain-language 

associations than those high-risk infants without ASD (HR-NoASD). Model 3 therefore 

used EEG data only from high-risk infants, allowing for two-way interactions between ASD 

outcome and EEG parameters. This model had improved predictive accuracy as measured by 

the correlation between model-estimated and measured language outcomes (Figure 2) across 

high-risk infants (Adjusted Model: Adjusted R2 = 0.530; Pearson R=0.849 [95% CI, 

0.763-0.905]; P=4x10−19; Unadjusted Model: Adjusted R2 = 0.480; Pearson R=0.83 

[95%CI, 0.737-0.894; P=1x10−17). As expected, ASD diagnosis negatively contributed to 

language outcomes, but was only marginally significant as a predictor (B-coefficient = 

−123.0, P = 0.053). In this adjusted model, two brain-language associations were 

significantly different between high-risk infants with and without ASD: beta and gamma 6-
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month intercepts. For each of these, the brain-language association was significant within 

each group, but directionally opposite (Table 2, Model 3). Higher estimated 6-month gamma 

power was associated with increased 24-month language in HR-noASD infants, and 

decreased 24-month language in HR-ASD infants.

In addition, several longitudinal EEG measures contributed similarly across both groups. 

Consistent with Model 1, both HR-noASD and HR-ASD groups had significant and 

consistent associations between 6-month intercepts of theta and delta and 24-month 

language measures. In addition, the effect of the interaction between intercept and slope for 

the low alpha and beta frequency bands were the same across groups.

Discussion

This work represents our effort to utilize longitudinal EEG measurements to predict a 

functionally relevant developmental outcome in ASD – language ability. In addition, we 

were able to further dissect differences in brain-language associations between low- and 

high-risk infants crucial to furthering our understanding of the neural underpinnings of 

language delay in this population.

Use of EEG as predictor of language ability

All three models were remarkably accurate in within-model estimates of language ability. 

Interestingly, unadjusted models (which did not include parental education and sex 

covariates) also showed high correlation between model-estimated and observed language 

scores, emphasizing the importance of the brain measures in the predictive models. In 

addition, in our adjusted Model 1, ASD-risk status was not a significant predictor of 

language ability. This suggests that when the model accounts for differences in brain-

language associations related to risk-status, as well as sex and parental education, the 

remaining effect of high-risk ASD status on language development is no longer significant. 

In addition, significant interactions between several EEG variables and risk-status were 

present in the model, supporting our hypothesis that there are significant brain differences 

between low- and high-risk infants, and these brain differences rather than risk-status 

contribute to language development.

While EEG parameters in this study sample were able to estimate language scores with 

reasonable accuracy, there are several major caveats that need to be addressed before we are 

fully convinced that EEG measures can be used clinically to accurately predict future 

language risk. First, relatively few participants in this study sample had below average 

language skills. To improve generalizability, a much larger sample with diverse language 

ability is required. Second, the ability of EEG to be used as a clinical biomarker is reliant on 

EEG measures being reproducible across different locations and different collection 

environments. Third, while we used resting power for this study, other measures such as 

intertrial phase coherence, phase amplitude coupling, or newly developed measures such as 

FOOOF(Haller et al., n.d.) (fitting oscillations & one over f), should also be evaluated to 

determine which measures best discriminate language outcomes. Finally, external validity of 

model performance needs to be tested in the future.

Wilkinson et al. Page 10

Neurobiol Lang (Camb). Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further insights into neural mechanisms of early language development.

A secondary goal of this study was to evaluate differences in brain-language associations 

between low- versus high-risk infants. To do this we performed post-hoc analyses of the 

predictors included in the models to determine which EEG measures most robustly 

contributed to language estimates and whether there were significant differences between 

ASD-risk group in how a measure contributed to language estimates. In our models, possible 

EEG measures included both a developmentally early measure of EEG power (estimated 6-

month intercept) and a measure of how EEG power changes over development (slope as a 

function of log-age). We specifically included estimated 6-month power as we have 

previously reported reduced EEG power across frequency bands at this young age in the 

high-risk population(Levin et al., 2017; Tierney et al., 2012) and hypothesized that this 

reduced power may influence the development of language circuitry. Indeed, in Models 1 

and 2, early estimated 6-month EEG power measures (in delta and theta) significantly 

contributed to language scores only in the high-risk group. One possible explanation for this 

is that these early power measures reflect the degree of aberrant brain development or 

differences in cortical maturation in this at-risk population. Consistent with this, in our 

model restricted only to high-risk infants (Model 3), estimated 6-month power of multiple 

frequency bands (delta, theta, beta, and gamma) played prominent roles in predicting 

language.

We also hypothesized that specific frequency bands known to be important during speech 

processing (delta/theta and beta/gamma) would be significant predictors of language within 

our models, however we were uncertain whether brain-language associations in these 

frequency bands would be different between risk groups, as differences in resting state and 

task-evoked theta and gamma power have been observed in children and adults with ASD. 

However, in evaluating specific frequency bands it is important to recognize that within the 

multivariate linear regression models developed, the contribution of an individual variable 

exists in the context of the other variables included (EEG measures, risk status, sex, parental 

education). Therefore, the effect attributed to a particular variable reflects only the unique 
portion of that variable that does not overlap with the other variables included in the model. 

Thus, interpreting the direction and weight of B-coefficients within these model must be 

done with caution, as the effects of any frequency band may be different in the multivariate 

model context than when the same frequency band is examined in isolation. With this caveat 

in mind, several observations related to theta and gamma warrant further discussion.

Within Model 1, which included data from 3-24 months from low- and high-risk infants, the 

slope of theta and gamma were significant predictors of language and did not differ between 

risk groups. In addition, estimated 6-month delta and theta power were also significant 

predictors of language in this model, but only for the high-risk group. In particular, 

estimated 6-month theta power was a consistent significant predictor in all 3 models for 

high-risk infants, both adjusted and unadjusted, with increased theta power associated with 

worse 24-month language ability. Notably, increased theta power has been associated with 

learning and attention disorders(Barry, Clarke, & Johnstone, 2003), and increased theta has 

been observed in institutionalized infants and toddlers with increased risk for developmental 

delays(Marshall, Bar-Haim, & Fox, n.d.). There are several biological explanations for 
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theta’s association with language outcomes. Perhaps most intriguing is the observation that 

during speech processing neural oscillations in the delta and theta range phase-lock to the 

syllabic rhythm of speech, which typically peaks in the theta range.(A.-L. Giraud & 

Poeppel, 2012; Power, Mead, Barnes, & Goswami, 2012) Aberrant phase-locking in the 

delta and theta range has been proposed as a possible mechanism for abnormal language 

acquisition.(Goswami, 2011) In addition, theta oscillations are known to influence gamma 

activity and this coupling between frequencies is thought to facilitate the alignment of 

speech components during speech decoding.(A.-L. Giraud & Poeppel, 2012) In adults with 

ASD, atypical coordination between theta and gamma responses to speech have been 

reported, and correlated with clinical measures of ASD.(Jochaut et al., 2015) Future 

investigation of theta oscillations and their coupling with gamma oscillations, at rest and in 

response to speech at this young age in neurodevelopmental populations at risk for 

significant language delays may provide specific insight related to auditory processing 

abnormalities affecting language development. As theta oscillations have also been 

implicated in attention, future comparison of models developed to estimate other 

developmental nonverbal skills (e.g. visual-spatial, motor, attention) would provide more 

information of the specificity of these EEG patterns on language development.

As alterations in theta and gamma power have been observed in children and adults with 

ASD who also have language delays, it is possible that the association between these 

frequency bands and language within Model 1 may be related to their shared variance with 

ASD. In order to further separate out EEG measures that predict language, beyond their 

association with ASD, we developed Model 3 which includes ASD diagnosis as a predictor 

and interaction term with EEG measures. Here, having an ASD diagnosis was a marginally 

significant independent predictor of language (p = 0.05) with a large negative B-coefficient, 

suggesting that factors associated with ASD, but not captured by other variables in our 

model, have a negative impact on language development. Such factors could include other 

structural and functional brain-derived measures besides resting EEG power, or reduced eye 

contact or aberrant sensory processing that may not be captured by resting EEG measures. 

Additionally, with the ASD variable in the model, shared variance between ASD status and 

the EEG measures is no longer reflected in the individual parameters but does contribute to 

the model’s overall ability to differentiate language scores. Interestingly, within Model 3, 

significant and opposing differences in brain-language associations of estimated 6-month 

beta and gamma power were observed when ASD status was included in the model. Here we 

observe that when ASD diagnosis and its effect on language outcomes are accounted for, 

reduced 6-month gamma power positively contributes to estimated 24-month language 

ability. However, when the effects of ASD on language are not included in the model, 

reduced 6-month gamma power negatively contributes to estimated 24-month language 

ability.

Gamma oscillations are associated with many processes thought to be relevant to language 

processing, including visual and auditory sensory integration(Senkowski, Schneider, Foxe, 

& Engel, 2008), attention(Fries, Nikolic, & Singer, 2007; Taylor, Mandon, Freiwald, & 

Kreiter, 2005), and working memory(Howard et al., 2003; Pesaran, Pezaris, Sahani, Mitra, & 

Andersen, 2002). In infants, induced gamma-band power in response to native phonemes 

matures between 3- and 6-months of age.(Ortiz-Mantilla, Hamalainen, Musacchia, & 
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Benasich, 2013; Peña, Pittaluga, & Mehler, 2010) Resting frontal gamma power has also 

been positively associated with language ability in toddlers and preschool aged children.

(Benasich et al., 2008; Brito, Fifer, Myers, Elliott, & Noble, 2016; Gou et al., 2011; Tarullo 

et al., 2017) However, increased gamma power has been observed in older children with 

ASD and other ASD-related neurodevelopmental disorders such as Fragile X Syndrome 

(FXS), and this aberrant increase in gamma power is thought to reflect imbalances in the 

excitatory and inhibitory systems of the brain.(Buzsáki & Wang, 2012; Sohal, 2012; Traub et 

al., 2003; Whittington & Traub, 2003) Further, in FXS increased baseline gamma power has 

been associated with decreased stimulus induced phase-locked gamma activity and therefore 

hypothesized to represent an hyperexcitable system with reduced ability to synchronize to a 

stimulus.(Ethridge et al., 2016) In minimally verbal children with ASD, reduced frontal 

gamma during visual processing has been observed and hypothesized to be modulated by 

attention, although how this related to baseline gamma was not reported.(Ortiz-Mantilla et 

al., 2019) Thus, one hypothesis for the difference between gamma-language associations in 

HR-noASD vs HR-ASD infants, is that reduced gamma power in an individual with 

underlying excitatory/inhibitory imbalance (HR-ASD) may represent successful 

compensation of early aberrant neurocircuitry, whereas reduced gamma power in an 

individual without such underlying imbalances (HR-noASD) may reflect delayed neural 

maturation as is relates to speech processing. Future investigation of how differences in 

resting gamma may influence evoked gamma across development may inform both the 

timing and development of therapeutics.

Finally, sex and parental education both were significantly associated with language in 

adjusted models, supporting an independent role of each in language development. This is 

not surprising as previous studies have observed relationships between both sex(Campbell et 

al., n.d.; Choudhury & Benasich, 2003; Reilly et al., 2007; Schjølberg et al., 2011; Zubrick, 

Taylor, Rice, & Slegers, 2007) and parental education(Campbell et al., n.d.; Schjølberg et al., 

2011; Tomblin, Hardy, & Hein, 1991; Tomblin, Smith, & Zhang, n.d.) and language 

development. However, unadjusted models which used EEG data alone, also estimated 

language scores that were highly correlated with actual scores, suggesting that longitudinal 

EEG measures may also reflect differences in sex and parental education. Interestingly in 

Model 3 which was restricted to high-risk infants and included ASD outcome, sex continued 

to have a marginally significant effect on language outcomes. Given the growing evidence of 

sex differences in early brain development within ASD(Baron-Cohen Simon, 2010; Kim et 

al., 2013; Lai et al., 2017; Mottron et al., 2015; Werling & Geschwind, 2013), it is possible 

that within the high-risk infant sibling population, there are additional brain-language 

differences between males and females. A larger sample size is needed to fully tease apart 

the effects of sex and parental education on brain development as it relates to language 

development in this complex population.

Limitations

While this is a comparatively large infant-sibling study, we were limited in our analyses by 

our sample size. In order to maximize the number of individuals included in model 

development, we included individuals with only two EEG timepoints (n=21). While 

requiring more time points could provide more stable estimations of trajectories it would 
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also significantly reduce the sample size. Indeed, limiting Model 1 to individuals with at 

least 3 EEG sessions, reduced model fit (Adjusted R2 = 0.2574 vs 0.3295) and accuracy 

(Pearson correlation coefficient 0.65 vs 0.70). This study also limited its analysis to frontal 

power. The decision to use frontal power was made a priori based on previous resting-state 

EEG literature in both the ASD and language fields. However, it is possible that power 

analysis using a different set of electrodes could be more informative. To evaluate this 

possibility, models using whole brain or temporal electrodes were built from the same 

individuals included in Model 1. Both of these models had reduced Adjusted R2 values 

(Whole Brain – 0.2065, Temporal – 0.2334, Frontal – 0.3295) and lower Pearson correlation 

coefficients for predicted vs observed Mullen scores (Temporal – 0.59, Whole Brain – 0.60, 

Frontal – 0.70). Finally, as discussed above, in order to improve generalizability of future 

predictive models, a larger and more diverse study sample is required, followed by external 

validity testing of model performance.

Conclusions

This study supports the possible use of EEG measures as predictive biomarkers for language 

development in infants. It also provides further insight into which neurobiological substrates 

may specifically relate to language development, potentially informing future work and 

therapeutic interventions. In addition, our findings support further investigation of brain 

differences in high-risk infants at, or prior to, 6-months of age, and how such differences 

affect future language development and response to services. To do this, collaboration across 

laboratories is needed in order to collect larger datasets for accurate model development that 

can then be leveraged clinically. Ultimately, early prediction of developmental outcomes will 

require improved knowledge of how underlying genetic and environmental risk factors affect 

neural measures and their association with outcomes.
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Figure 1. Developmental trajectories of frontal EEG power across multiple frequency bands 
from 3 to 24 months.
Longitudinal trajectories of log 10 transformed absolute frontal EEG power across 6 

frequency bands for individuals from low risk (LR, green, n=58), high-risk without ASD 

(HR-NoASD, orange, n=51), and high-risk with ASD (HR-ASD, blue, n=21) are shown. 

Both individual and mean trajectories by group are shown. Shaded regions represent the 

95% confidence interval.
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Figure 2. Correlations of observed and model estimated Verbal Developmental Quotient (VDQ).
Observed and estimated MSEL VDQ for each model. Adjusted models include sex and 

parental education as covariates. Regression line shown represents estimate based on all 

individuals included in the model. Each data point is colored based on the independent 

variable included in the model (Models 1 and 2 = Risk Status; Model 3 - ASD diagnosis)
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Table 1:

Sample Characteristics

LR
N = 58

HR-NoASD
N = 51

HR-ASD
N = 21

P value by outcome
(LR vs HR-NoASD vs HR-

ASD)

P value
by risk (LR vs 

HR
a
)

Sex
b 30M, 28F 25M, 26F 14M, 7F 0.4 0.86

Parental Education
b
, n (%)

0.060 0.04

Not answered 6 (10) 2 (4) 5 (24)

< 4-year college degree 3 (5) 10 (20) 3 (14)

4-year college degree 10 (17) 10 (20) 6 (29)

>4-year college degree 39 (67) 29 (57) 7 (33)

Household income
b
, n (%)

0.82 0.44

Not answered 8 (14) 3 (6) 6 (29)

<$75,000 9 (15) 6 (12) 2 (9)

>$75,000 41 (71) 42 (82) 13 (62)

Race
b
, n (%)

0.28 0.57

Non-White 7 (12) 3 (6) 4 (19)

Ethnicity
b
, n (%)

0.08 0.13

Hispanic or Latino 1 (2) 3 (6) 3 (14)

Number of EEG time points
c
 Mean±SD

4.03±1.1 3.64±1.2 3.9±1.3 0.23 0.13

24m MSEL VDQ
d
 Mean±SD

118.0±15.3 112.0±14.3 96±22.6 0.0007 0.03

24m MSEL NVDQ
d
 Mean±SD

110.1±15.0 107.0±11.9 97±22.6 0.02 0.14

24m ADOS Severity Score
e
 Mean±SD

1.61 ±0.86 1.91±1.13 5.25±2.47 0.0001 0.003

Participant EEG Data Included in Analysis, n (%)

3 months 9 (15) 15 (29) 7 (33)

6 months 44 (76) 30 (59) 13 (62)

9 months 48 (83) 37 (73) 15 (71)

12 months 52 (90) 33 (65) 19 (91)

18 months 37(64) 32 (62) 14 (67)

24 months 44 (76) 39 (77) 14 (67)

Abbreviations: ASD, autism spectrum disorder; LR, low-risk without ASD; HR-NoASD, high-risk without ASD; HR-ASD, high-risk with ASD; 
ADOS, Autism Diagnostic Observation Schedule

a
HR = HR-NoASD + HR-ASD; n = 72

b
Fisher exact;

c
One-way ANOVA;

d
One-way ANOVA with parental education as covariate

e
Kruskal-Wallis
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Table 2:

Predictive Models of Mullen Verbal Developmental Quotient

MODEL 1 (Adjusted R2 = 0.329)

Low Risk High Risk Difference (High-Low Risk)

B Coefficient (SE) P Value B Coefficient (SE) P Value B Coefficient (SE) P Value

6-month Intercept

Delta 3.55 (6.03) 0.56 20.07 (6.59) 0.003* 16.53 (8.15) 0.05

Theta −7.04 (6.22) 0.26 −24.47 (6.69) <.001* −17.43 (8.26) 0.04

Low Alpha - - - - - -

High Alpha 7.92 (5.55) 0.15 4.51 (4.40) 0.31 −3.41 (6.44) 0.60

Beta 0.08 (4.66) 0.98 −0.1 (2.86) 0.97 −0.18 (4.68) 0.97

Gamma −0.76 (2.37) 0.75 −0.76 (2.37) 0.75 - -

Slope

Delta −2.91 (5.56) 0.60 −2.91 (5.56) 0.60 - -

Theta −13.50 (4.33) 0.002* −13.50 (4.33) 0.002* - -

Low Alpha −0.21 (3.57) 0.95 5.41 (2.66) 0.05 5.61 (4.13) 0.18

High Alpha 42.55 (16.68) 0.01* 8.97 (8.54) 0.3 −33.58 (18.02) 0.07

Beta −77.88 (19.78) <0.001* −17.19 (9.35) 0.07 60.70 (20.29) 0.004*

Gamma 16.77 (6.18) 0.008* 16.77 (6.18) 0.008* - -

Intercept x Slope

Delta 0.65 (0.32) 0.04 0.65 (0.32) 0.04 - -

Theta - - - - - -

Low Alpha - - - - - -

High Alpha −3.28 (1.48) 0.03 −0.04 (0.87) 0.97 3.24 (1.69) 0.06

Beta 5.33 (1.24) <0.001* 0.81 (0.72) 0.26 −4.53 (1.42) 0.002*

Gamma −1.33 (0.51) 0.01* −1.33 (0.51) 0.01 - -

Covariates

Sex, reference = Female −6.96 (2.93) 0.02 −6.96 (2.93) 0.02 - -
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MODEL 1 (Adjusted R2 = 0.329)

Low Risk High Risk Difference (High-Low Risk)

B Coefficient (SE) P Value B Coefficient (SE) P Value B Coefficient (SE) P Value

Parental Education

College Degree 13.05 (4.91) <0.01* 13.05 (4.91) <0.01* - -

> College Degree 16.94 (4.37) <0.001* 16.94 (4.37) <0.001* - -

Model 2 (Adjusted R2 = 0.249)

Low Risk High Risk Difference (High-Low Risk)

B Coefficient [SE] P Value B Coefficient [SE] P Value B Coefficient [SE] P Value

6-month Intercept

Delta −1.16 (5.48) 0.83 11.17 (6.19) 0.08 12.33 (8.04) 0.13

Theta 7.25 (7.33) 0.33 −16.07 (6.14) 0.01 −23.32 (9.44) 0.02

Low Alpha −2.41 (3.86) 0.54 1.76 (3.44) 0.61 4.16 (5.24) 0.43

High Alpha - - - - - -

Beta −4.28 (4.08) 0.30 2.52 (2.86) 0.38 6.80 (4.28) 0.12

Gamma 5.45 (3.46) 0.12 0.61 (2.87) 0.83 −4.84 (3.84) 0.21

Slope

Delta - - - - - -

Theta 1.05 (1.93) 0.59 −2.75 (1.78) 0.13 −3.80 (2.57) 0.14

Low Alpha 8.21 (5.01) 0.11 −3.06 (2.82) 0.28 −11.27 (5.82) 0.06

High Alpha - - - - - -

Beta −19.09 (7.39) 0.01 −1.39 (7.65) 0.86 17.70 (8.79) 0.048

Gamma 6.11 (4.09) 0.14 6.11 (4.09) 0.14 - -

Intercept x Slope

Delta - - - - - -

Theta - - - - - -

Low Alpha −0.70 (0.44) 0.12 0.47 (0.21) 0.03 1.17 (0.50) 0.02

High Alpha - - - - - -

Beta 1.41 (0.49) 0.005 0.22 (0.56) 0.69 −1.18 (0.62) 0.06
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MODEL 1 (Adjusted R2 = 0.329)

Low Risk High Risk Difference (High-Low Risk)

B Coefficient (SE) P Value B Coefficient (SE) P Value B Coefficient (SE) P Value

Gamma −0.51 (0.32) 0.12 −0.51 (0.32) 0.12 - -

Covariates

Sex, reference = Female −7.14 (3.11) 0.02 −7.14 (3.11) 0.02 - -

Parental Education

College Degree 5.73 (4.93) 0.24 5.73 (4.93) 0.24 - -

> College Degree 13.40 (4.55) 0.004 13.40 (4.55) 0.004 - -

MODEL 3 (Adjusted R2 = 0.530)

No Autism Autism Difference (Autism – No 
Autism)

B Coefficient [SE] P Value B Coefficient [SE] P Value B Coefficient [SE] P Value

6-month Intercept

Delta 12.49 (5.78) 0.04 34.59 (14.37) 0.02 22.10 (15.53) 0.16

Theta −15.95 (6.42) 0.02 −53.11 (18.94) 0.008* −37.16 (20.02) 0.07

Low Alpha −3.23 (3.91) 0.41 7.12 (7.34) 0.34 10.35 (7.97) 0.20

High Alpha 9.08 (4.58) 0.06 9.08 (4.58) 0.06 - -

Beta −7.13 (3.48) 0.047 20.73 (7.81) 0.01 27.86 (8.63) 0.003*

Gamma 7.66 (3.74) 0.048 −15.56 (6.19) 0.02 −23.22 (7.35) 0.003*

Slope

Delta - - - - - -

Theta −2.89 (4.34) 0.51 −23.17 (11.93) 0.06 −20.29 (12.29) 0.11

Low Alpha −13.04 (5.42) 0.02 4.97 (11.10) 0.66 18.01 (10.92) 0.11

High Alpha 9.19 (4.89) 0.07 9.19 (4.89) 0.07 - -

Beta 12.39 (10.88) 0.26 28.84 (12.81) 0.03 16.46 (9.02) 0.08

Gamma 5.26 (3.39) 0.13 −4.63 (6.19) 0.46 −9.89 (7.07) 0.17

Intercept x Slope

Delta - - - - - -

Theta - - - - - -
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MODEL 1 (Adjusted R2 = 0.329)

Low Risk High Risk Difference (High-Low Risk)

B Coefficient (SE) P Value B Coefficient (SE) P Value B Coefficient (SE) P Value

Low Alpha 1.30 (0.40) 0.002* 1.30 (0.40) 0.002* - -

High Alpha - - - - - -

Beta −1.61 (0.77) 0.04 −1.61 (0.77) 0.04 - -

Gamma - - - - - -

Covariates

Sex, reference = Female −6.50 (3.62) 0.08 −6.50 (3.62) 0.08 - -

Parental Education

College Degree 9.25 (5.44) 0.09 9.25 (5.44) 0.09 - -

> College Degree 11.80 (4.64) 0.015 11.80 (4.64) 0.015 - -

B Coefficient are scaled by a factor of 10. For example, B Coefficient for the 6-month intercept represents change in MSEL DVQ for every 0.1uV 
increase in spectral power. P values in bold are significant. SE; Standard Error.

*
Maintained significance after False Discovery Rate correction, using an FDR at alpha = 0.05
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