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Introduction
Semantics: relationships between words and the signified knowledge.
Semantic representation in healthy adults:

• left-lateralized in frontal, temporal parietal, and prefrontal regions1.
• Controlled semantic cognition (CSC)2 : ATL, PFC, pMTG, IPS, pre-SMA, ACC/mPFC.
• Multiple-demand network3.

Semantic representation in individuals with aphasia (PWA): distributed network involved in access to or executive control of language4.
Category-specific representation: anatomically distinct account5; distributed account6; continuous account7.
Feature-specific representation: semantic typicality

• Faster and more accurate access to typical than atypical exemplars in healthy adults8; Inconsistent behavioral performance in PWA9.
• Hierarchical theory of object processing: early visual regions and higher temporal regions in healthy adults10.
• Prediction in PWA: different neural representation of typicality than healthy adults.

Multi-voxel pattern analysis18 (MVPA): machine learning algorithms (e.g., LSVM) extract information from brain activity patterns, and predict 
corresponding condition of interest in fMRI task.

• Searchlight-based MVPA11: reduce overfitting; no a priori region specification is needed
• Linear classifier: f(x) = g (w1x1 + w2x2 … wyxy)

Objectives
1. Which brain regions show neural encoding of semantic typicality associated with behavioral performance in healthy adults?
• Hypothesis: faster and more accurate responses in typical than in atypical exemplars; above-the-chance (%50) classification accuracy in the

visual and temporal regions.
2. Which brain regions show neural encoding of semantic typicality associated with behavioral performance in PWA?
• Hypothesis: behavioral typicality effect would vary from healthy adults; different brain regions differentiating between typical and atypical 

exemplars. Above-the-chance (%50) classification accuracy in these brain regions.

Methods
Subjects

• 35 PWA due to left MCA infarct1, 14 excluded (N = 21, 7F, mean age = 60.76 + 10.64 y, mean months post onset = 65.71 + 102.13); mean
lesion volume (SD) = 104,647 + 69,682.17 mm3

• 21 neurologically healthy adults, 3 excluded (N = 18, 8F, mean age = 59.86 + 10.50 y)
Standardized Language Assessments
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Discussions

Post-hoc brain-behavior analysis (PWA):
1) Spearman’s rank correlation between behavioral language performance (total RTs, accurate RTs, % PAPT, WAB-AQ) and classification 

accuracies in LMOG and R Calcarine in all PWA (N = 21), Anomic (N = 9), and Broca’s (N = 9):
• Significant correlation between accurate RTs and classification accuracy in LMOG (ρ = .77, p < .05) in Anomic PWA
• ROI classification in PRoNTo 2.115, binary LSVM with leave-one-run-out cross validation
2) Linear mixed-effects model predicting ROI classification from behavioral measures: main effect of accurate mean RTs (β = .08, |t| = 2.77, SE 

= .03, p < .05) in the Anomic Group.

Selected References

fMRI Data Acquisition and Preprocessing
• 3.0 T Siemens Trio Tim using 20-channel head + neck coil
• T1: TR = 2300 ms, TE = 2.91 ms, 176 sagittal slices, 1 x 1 x 1 mm voxels, 256 x 256 matrix, FOV = 256 mm, flip angle = 9o, fold-over 

direction = AP
• T2*-weighted EPI: TR = 2570ms, TE = 30ms, 40 axial slices, 3mm slices interleaved with 2 x 2 x 3 mm voxels, 80 x 78 matrix, FOV = 220 x 

220 mm, 40 axial, flip angle = 90o

Data Analysis
Percentage of spared tissue: volume of the spared tissue ROIs divided by the total volume of the region from AAL Atlas in the MarsBAR for 
SPM (Brett et al., 2002)
Behavioral analysis: linear mixed-effects model (accurate RTs) and generalized mixed-effects model (accuracy; 1 = accurate, 0 = inaccurate)
• Fixed factors: typicality, group, category, typicality-by-group; random intercept: subject

WAB AQ: Western Aphasia Battery Aphasia 
Quotient; PPT: Pyramids and Palm Trees; 
PALPA: Psycholinguistic Assessment of 
Language Processing in Aphasia; HI: Hight 
Imageability; LI: Low Imageability.

fMRI Task Stimuli and Procedure
Picture stimuli: 36 color photos (half typical and half atypical) of real items from each of
five semantic categories: birds, vegetables, furniture, clothing, fruits; 36 scrambled
pictures; split across two runs
• Balanced for: familiarity, length, lexical frequency, concreteness12

• Each subject viewed fruits + two other categories (counterbalanced across subjects)
• Semantic features: Core, prototypical, and distinctive; controlled for type of information 

conveyed, and whether defining or characteristic of the category

Behavioral

Main effect of typicality (β = -
.34, |z| = 2.46, SE = .14, p

< .05)
Main effect of group (β = -.98, 
|z| = 2.45, SE = .40, p < .05)

Main effect of typicality (β = 
106.61, |z| = 3.66, SE = 29.11, 

p < .01)

Results

1. Which brain regions show neural encoding of semantic typicality associated with behavioral performance in healthy adults?
• Neural representation of typicality is built by the visual system at an intermediate processing stage16.
• Hierarchical organization of category structure, whose influence on the organization of neural patterns becomes apparent as early as visual 

regions23.
• LMOG: shape discrimination of objects17; R Calcarine: processing certain semantic categories18.
2. Which brain regions show neural encoding of semantic typicality associated with behavioral performance in PWA?
• Similar behavioral typicality effect as healthy adults, but different neural typicality.
• Maybe semantic typicality does not directly modulate the neural representation of typical and atypical stimuli in early visual processing due to a 

damaged semantic network post-stroke, or such effect is not perceived as early as in healthy adults10.
• LMOG is still associated with accurate processing of semantic typicality in less severe PWA, but comes at a cost with longer processing time 

suggesting not as automatic as in healthy adults.
Future studies: functional/structural connectivity between the visual cortex and semantic network in PWA.
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Preprocessing (SPM1213)
1) Slice timing
2) Spatial realignment with 4th degree B-spline
3) Coregistration
4) Structural segmentation
5) Spatial and functional normalization to the MNI space; high-pass filter with a cutoff of 1/128 s
6) *Spatial smoothing with 4mm Gaussian kernel (for univariate analysis)

fMRI Univariate Analysis (SPM12)
1) 1st-level GLM: typical, atypical, scrambled
• Typical > Atypical
• Atypical > Typical
Onsets and durations convolved with the canonical HRF 
and its temporal derivative
2) 2nd-level: one-sample t test (p < .001); corrected for 

multiple comparison (FDR at p < .05)

Searchlight MVPA
The Decoding Toolbox (TDT14); Radius = 9mm
Input: beta values from 1st-level univariate analysis 
(unsmoothed)
Classifier: LSVM with leave-one-run-out cross validation
Output: individual’s accuracy map (-50 to 50)
Group-level: smoothing with 6mm FWHM; one-sample t test 
(p < .001), corrected for multiple comparisons (FWE at p < .05)

Results

Healthy PWA

Univariate

uncorrected at p < .001 (extent size k > 10) uncorrected at p < .001 (extent size k > 10)

Typical > Atypical

1) R Supramarginal
2) R Middle Cingulate

Atypical > Typical

L Middle Occipital

Typical > Atypical

N.A

Atypical > Typical

N.A

Searchlight 
MVPA

cluster-level FWE correction at p < .05

1) LMOG (t = 5.57) extending into L Lingual (t = 5.39)
2) R Calcarine (t = 5.31) extending into R SOG (t = 5.03)

uncorrected at p < .001

1) R Rolandic Operculum (t = 5.14)
2) L Fusiform (t = 3.74)


