Multi-step treatment for acquired alexia and agraphia: Two-dimensional analysis of reading and writing errors Katrina Ross, Jeffrey P. Johnson, & Swathi Kiran Boston University, Sargent College of Health and Rehabilitation Sciences

BOSTON UNIVERSITY

- interrelated in reading and writing tasks
- Gonzalez-Rothi, 2003)
- Balachandran, & Lucas, 2014)
- Kiran et al., 2001; Kiran & Viswanathan, 2008)

Deep

Deep

Deep

_

- Current error-analysis systems typically focus on:

based on (c) relative accuracy to a target

- ways:

- in favor of clinical analysis (Johnson, Ross, & Kiran, 2016)

• 8 patients with chronic, post-stroke aphasia, alexia, and agraphia

Participant	Treatment Assignment	Age (years)	Time Post- Onset (months)	WAB AQ	Aphasia Type	Alex Type
P1	Writing	51	192	52.6	Broca	Dee
P2	Writing	58	30	59.7	Wernicke	Dee
P3	Reading	72	54	37.6	Wernicke	Dee
P4	Reading	44	20	46.9	Broca	Phor
P5	Writing	66	110	37	Wernicke	Dee
P6	Writing	70	52	80.6	Anomic	Phor
P7	Writing	75	168	90.6	Anomic	Phor
P8	Writing	67	72	67.4	Broca	Phor
Mean (SD)	-	62.9 (10.9)	87.3 (63.7)	59.1 (19.5)	-	

WAB = Western Aphasia Battery-Revised; AQ = Aphasia Quotient; Phon. = Phonological

Methods

- Stimuli
- Trained and related items (n = 48) were probed in both modalities (oral reading, writing to dictation) before, during, and after eight-week treatment protocol (Johnson et al., 2016)
- 16 trained words
- 32 related words, matched for frequency and length

Selected References Beeson, P. M., Hirsch, F.M, & Rewega, M.A. (2002). Successful single word writing treatment: Experimental analyses of four cases. Aphasiology, 16(4/5/6), 463-491 Beeson, P. M., Rising, K., Kim, E. S, & Rapcsak, S. Z. (2008). A novel method for examining response to spelling treatment. Aphasiology, 22(7–8), 707–717. doi:10.1080/02687030701800826 Bowes, K., & Martin, M. (2007). Longitudinal study of reading and writing rehabilitation using a bigraph-biphone correspondence approach. Aphasiology, 21(6-8), 687-701. doi:10.1080/02687030701192117. Ellis, A. W., & Young, A. W. (1988). Human cognitive neuropsychology. Hove, UK: Lawrence Erlbaum Associates Ltd. Folk, J., & Jones, A., (2010). The purpose of lexical/sublexical interaction during spelling: Further evidence from dysgraphia and articulatory suppression. Neurocase: The Neural Basis of Cognition, 10(1), 65–69, doi: 10.1080/13554790490960512

Pre-treatment Post-treatment Follow-Up

Houghton, G., & Zorzi, M. (2003). Normal and impaired spelling in a connectionist dual-route architecture. *Cognitive Neuropsychology*, 20, 115–162. Johnson, J.P., Ross, K., & Kiran, S. (2016) Multi-step treatment for acquired alexia and agraphia: treatment effects, generalization, and response to individual therapy steps. Poster presented at the 54th Annual Meeting of the Academy of Aphasia.

Kendall, D., Conway, R., Rosenbek, J., & Gonzalez-Rothi, L. (2003). Phonological rehabilitation of acquired phonological alexia. Aphasiology, 17, 11. 1073–1095. doi: 10.10800268703034400355. Kiran, S. (2005). Training phoneme to grapheme conversion for patients with written and oral production deficits: A model-based approach. Aphasiology, 19(1), 53–76. http://doi.org/10.1080/02687030444000633

Kiran, S., Balachandran, I., & Lucas, J. (2014). The nature of lexical-semantic access in bilingual aphasia. Behavioural Neurology, Article ID 389565, 18 pages. doi: 10.1155/2014/389565. Kiran, S., & Viswanathan, M. (2008). Effect of model-based treatment on oral reading abilities in severe alexia: a case study. Journal of Medical Speech-Language Pathology, 16(1), 43–59. Rapcsak, S. Z., Henry, M. L., Teague, S. L., Carnahan S. D, & Beeson, P. M. (2007). Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia? *Neuropsychologia, 45, 2519–2524.*

This project was supported by the Dudley Allen Sargent Research Fund, Boston University

Patient

Pre-treatment Post-treatment Follow-up

- (*F*(1,376) = 28.36. *p*<.001); Lexical (F(1,376) = 30.29, p < .001)

- Rapp, B., & Caramazza, A. (1997). From graphemes to abstract letter shapes: Levels of representation in written spelling. Journal of Experimental Psychology: Human Perception and Performance, 23, 1130–1152.

Individual DRES Results

• Individual heat maps of 144 items (48 words x 3 probes) pre and post in the trained modality

- Trained in reading
- Pre-treatment: very wide spread of scores high volume of non-words ([L3])
- Post-treatment: consolidated lexical scores to mostly single real words ([L6]) and single nonwords ([L3]); whole word improvement ([S9, L9])

P8

- Trained in writing
- Pre-treatment: very wide spread of scores
- Post-treatment: consolidated lexical scores and reduced perseverations (<[L4] and [L1]); whole word improvement

Group DRES Trends

• Four main patterns of error evolution:

1. From nonresponses, descriptions, gestures to appropriate response types (e.g. single-nonword and single real word productions)

Objective 2. ADRES Agreement and Accuracy

- Subexical system agreement = 97%
- Lexical system agreement = 91% Discrepancy is primarily due to related vs. unrelated words

= nonword: descr = description: graph = graphemically: phon = phone

• Ongoing work is being conducted to resolve this and enhance overall ADRES accuracy

- The DRES system captures significant treatment effects as well as significant between-subject differences
 - •This is evident in patients' statistical change scores as well as the error evolution shown by individual heat maps
- Multiple patterns of change were observed in individual and group error progressions
- Manual DRES scores were in strong agreement with ADRES scores, indicating reliability and objectivity of the scoring hierarchies
- This scoring system could be used in the future to assess what treatment approaches and elements are most effective for particular clients (e.g. degree of impairment; profiles of aphasia, alexia/ agraphia)
- Research may also be undertaken to evaluate DRES effectiveness in capturing non-print errors, specifically naming as this is most often the focus of treatment for individuals with aphasia

Aphasia Research Laborator

Results (cont.)

Post-Treatment

2. Toward novel nonword productions from other response

					TAKG
	≤50%, REAL WORD	>50%, REAL WORD	>50%, REAL WORD	GRAPH/ PHON	-
E	≤50%, DESCR	>50%, ACC DESCR	>50%, ACC DESCR	PLAUSIBLE	
•	≤50%, PERSEV	>50%, PERSEV	>50%, PERSEV	ERROR	
E	≤50%, NW AND DESCR	>50%, NW AND DESCR	>50%, NW >50%, DESCR		•
•	≤50%, NW PERSEV	>50%, NW PERSEV	>50%, NW PERSEV		
2					

<50%/>50% gran NW = nonword; descr = description; graph = graphemically; phon = phor From nonwords to real words

	≤50%; REAL WORD	>50%, REAL WORD	>50%, REAL WORD	GRAPH/ PHON	
E	≤50%, DPSCR	>50%, ACC DESCR	>50%, ACC DESCR	PLAUSIBLE	
	≤50 /o, PELSEV	> 50%, PERSEV	> 50 %, PER SEV	ERROR	
E	≤50%, NW AND DESCR	>50%, NW AND DESCR	>50%, N₩ >50%, DESCR		
	≤50%, NW PERSEV	>50%, NW PERSEV	>50%, NW PERSEV		

RESPONS

<50%/>50% Exerpt from Python ADRES script for the sublexical system

def main(target, response):
""" Scores"""
target = target.lower()
response = response.lower()
if "don't know" in response: return 0
if "not sure" in response: return 0
if ';' in response:
"If multiple responses entered, take the last one afer semicolon as the whole response.
III
response = response.split(';')[-1]
if len(response) > 1:
while response[0] == " ": response = response[1:]
while response[-1] == " ": response = response[:-1]
if response == target: return 9
if response == "" or response == "-" or response == "-": return 0