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ABSTRACT With the advent of high-throughput sequencing,
and the increased availability of experimental structures of
antibodies and antibody-antigen complexes, comes the
improvement of computational approaches to predict
the structure and design the function of antibodies and
antibody-antigen complexes. While antibodies pose
formidable challenges for protein structure prediction and
design due to their large size and highly flexible loops in the
complementarity-determining regions, they also offer exciting
opportunities: the central importance of antibodies for human
health results in a wealth of structural and sequence information
that—as a knowledge base—can drive the modeling algorithms
by limiting the conformational and sequence search space
to likely regions of success. Further, efficient experimental
platforms exist to test predicted antibody structure or designed
antibody function, thereby leading to an iterative feedback loop
between computation and experiment. We briefly review the
history of computer-aided prediction of structure and design
of function in the antibody field before we focus on recent
methodological developments and the most exciting
application examples.

INTRODUCTION
The central role antibodies play in our immune system
makes them important targets for computation-based
structural modeling. Antibodies consist of a “constant”
and a “variable” region (Fig. 1). The constant region is
virtually identical in all antibodies of the same isotype,
while the variable region differs from one B-cell-derived
antibody to the next. The variable region of an antibody
is the “business end,” the region that recognizes its
antigen via so-called complementarity-determining re-
gions (CDRs). Their large size (∼150 kDa) and inherent

variability, in particular in the CDRs, make antibodies
a formidable challenge for molecular modeling. Before
we begin to model antibodies, it is useful to briefly re-
view their overall structure.

Relation of Antibody Sequence,
Structure, and Function
The fundamental unit within an antibody is an immu-
noglobulin (IG) domain of around 70 to 110 amino
acids that adopts the characteristic IG β-sandwich fold.
Antibodies are homodimers of heterodimers, where each
heterodimer consists of one heavy and one light chain
(Fig. 1) (1), each chain having multiple IG domains.
A mammalian antibody light chain consists of two IG
domains, the C-terminal one called “constant” and the
N-terminal one, “variable.” The mammalian antibody
heavy chain consists of four or five IG domains, the most
N-terminal one being variable, and all others constant.
The two N-terminal IG domains of the heavy chain in-
teract with the two IG domains of a light chain to form
heterodimers. These heterodimers homo-dimerize via
the C-terminal IG domains of the heavy chain to form
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the final antibody. This domain arrangement ensures
that the variable domains of heavy and light chains co-
localize in space to form the so-called paratope.

Each of these variable domains contains three CDRs
that are the second (CDR1), fourth (CDR2), and sixth
(CDR3) loop regions of the β-sandwich, locating the
CDRs on the same end of the IG fold. The amino acid
sequence within the CDRs is determined by a process

called somatic recombination, where an IG domain
is assembled by combining randomly chosen gene
segments—V and J for the light chain and V, D, and J
for the heavy chain (Fig. 1A). This process generates a
large number of antibody sequences, as there are mul-
tiple copies of each gene type-somatic recombination
combined with “junctional diversity” at the joints of
the gene segments creates a theoretical limit of around

FIGURE 1 Challenges in antibody modeling. Though all antibodies share a common core
structure (center panel, PDB ID 1IGT [1]; heavy chains in magenta, light chains in yellow),
slight differences in variable regions and especially CDR loops can have a great effect on
function. The vast sequence space generated by genetic recombination in V, D, and J
genes (A) results in many different CDR loop conformations. Modeling of CDR loops from
sequence information alone is a necessary computational task for accurate structure
prediction (B). The ability to simulate the affinity maturation process in silico is another
important task that can be used to generate an antibody with either increased higher
affinity for its native target, or for a completely novel target (C) (matured residues shown
in cyan). Accurate antibody modeling requires not only the ability to model an antibody
alone, but also the ability to model its interaction with a given antigen. Computational
docking techniques achieve this by sampling different positions of an antibody on its tar-
get to find the most favorable position (D). doi:10.1128/microbiolspec.AID-0024-2014.f1
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1011 unique V(D)J sequences. In particular, CDR3 of the
heavy chain (HCDR3), encoded by the D-gene, is highly
variable in length, structure, and dynamics (Fig. 1C).
These “germline” antibodies are further modified in a
process called affinitymaturation (Fig. 1D). During B cell
proliferation the genes encoding the variable domains
experience an increased rate of point mutation. This
“somatic hypermutation” causes amino acid changes in
the paratopes of daughter B cells, a process that allows
tighter interaction with the “epitope” region of the an-
tigen, i.e., affinity maturation.

Motivations for Antibody Modeling
The large number of theoretically possible antibodies
and the large number of antibodies actually present in
humans prohibit a comprehensive experimental char-
acterization of antibody structure and dynamics. While
great progress has been made in antibody structure de-
termination via crystallization (currently around 2,000
depositions in the Protein Data Bank [PDB] contain the
phrase “antibody”), the number of experimental struc-
tures available in the PDBwill always be small compared
to the total immune repertoire, leaving room for struc-
ture prediction of important antibodies with unknown
structure. As antibody structures in the PDB have in-
creased exponentially in recent years (Fig. 2), computa-
tional biologists have gained a greater understanding of
the molecular determinants of proper loop folding and
antigen binding, ultimately allowing high-throughput,
accurate structural modeling on a scale infeasible for
experimental methods alone. Understanding the struc-
tural determinants of antibody-antigen interaction (i.e.,
how the paratope engages the epitope) is critical for un-
derstanding antibody function and processes such as
affinity maturation. As the number of cocrystal struc-
tures of antibody and antigen will always be small, com-
putational docking algorithms can provide models for
antibody-antigen complexes that are not experimentally
determined (Fig. 1D). Note that computational structure
prediction usually does not replace the experiment but
complements experimental data. For examples, starting
from an experimental structure of antibody and antigen,
their interaction could be modeled; starting from one
antibody-antigen complex, models for affinity-matured
antibody-antigen complexes can be constructed; or
modeling can add atomic detail not present in lower-
resolution electron density maps obtained, for example,
through electron microscopy (EM). Computational de-
sign of antibody-antigen complexes can be used, for
example, to study the process of affinity maturation in
silico or identify antibodies with novel sequences not

present or not yet observed in nature (Fig. 1B). Com-
putational antibody engineering is also applied to hu-
manize or stabilize therapeutic antibodies.

Challenges for Antibody Modeling
Challenges when predicting the structures of antibodies
via comparative modeling include how changes in IG
sequence change the relative orientation of the two var-
iable IG domains in the complex and therefore influence
the paratope structure. Obviously, modeling the con-
formation of CDR loops is a substantial challenge, in
particular for CDR3, which has an average length of
around 15 amino acids in humans and can be as long as
30 residues or more—well beyond the loop lengths
tested in a typical loop construction benchmark (4, 8,
and 12 amino acids). The plasticity of the paratope with
the often flexible CDRs presents a formidable challenge
to antibody/antigen docking simulations, as they require
flexibility of both paratope and epitope, creating a huge
conformational search space. When engineering anti-
bodies, these challenges are multiplied by the enormous
number of possible antibody sequences and the result-
ing gigantic size of the sequence space that needs to be
sampled, in addition to the conformational space. These
challenges result in another formidable motivation for
modeling antibodies: the benchmarking of new compu-
tational techniques. The challenges related to modeling
antibodies combined with the availability of many ex-
perimental structures make antibody structure predic-
tion and functional design an important playground to
test new algorithms.

COMPARATIVE MODELING OF ANTIBODIES
Given the large number of theoretically possible and
actually existing antibodies, experimental structure de-
termination will remain reserved to a small fraction of
particularly important antibodies. Therefore, computa-
tional construction of a structural model is of central
importance. A particular focus of comparative modeling
techniques is accurate modeling of the CDRs.

Canonical Structure of CDRs
The concept of canonical structures of light CDR (LCDR)
and heavy CDR (HCDR) loops can be traced back to
seminal work by Chothia, Thornton, Lesk, and others in
the 1980s and 1990s describing the conformational space
sampled by all CDR loops with known structure and
linking these to conserved residues among these se-
quences (2–4). Formally, the canonical structure hypoth-
esis states that the CDR loops of antibodies typically
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adopt one of a discrete set of conformations and that
these conformations can be inferred from the amino
acid sequence. This concept has been pursued to dis-
cretize the conformational space of CDRs and predict a
loop conformation based on its primary sequence. The
set of canonical conformations has been relatively well
defined for all LCDR loops and for the heavy HCDR1
and 2 loops. However, the HCDR3 loop is by far the
most variable in sequence and length, drastically in-
creasing the conformational space it can sample. As the
number of experimentally determined antibody struc-
tures has exploded since the initial reports of canonical
structures, attempts to group CDR loops and create a
definitive set of loop conformations have continued to
add new clusters to the known set. While it is likely that
this trend will continue for some time, the fact that the
number of clusters is still orders of magnitude lower
than the known antibody repertoire validates the origi-
nal canonical structure hypothesis by Chothia et al. for
CDRs other than HCDR3 (2).

Studies of canonical non-HCDR3 loop conforma-
tions have focused on clustering known structures and
deriving common characteristics in primary sequence
to enable a priori prediction of a loop conformation
based on sequence alone. The number of canonical loop
conformations has increased along with experimental
structures available for analysis; initial studies using
only 17 structures identified 18 non-HCDR3 clusters
(2), whereas more recent studies using∼1,200 structures
have increased the number of non-HCDR3 clusters to
72 (5). Clusters are identified by their loop type and
length, with the majority of non-HCDR3 loops falling
between 8 and 13 residues in length. Though the number

of non-HCDR3 loop clusters has increased with each
subsequent analysis, the overall clustering pattern still
maintains a high degree of uniformity and predictability.
Figure 3 shows median loop structures of loops deriving
from the largest cluster for each of the CDR L1, L2, L3,
H1, and H2 loops (5). Studies have consistently reported
85 to 90% accuracy in predicting the structure of non-
HCDR3 loops based on their gene source and primary
sequence, lending credibility to the use of cluster analysis
in non-HCDR3 loop modeling.

Predicting the Conformation of HCDR3
Prediction of HCDR3 loop conformations presents a
considerably larger challenge, as they are much more
structurally diverse and tend to be longer, ranging usu-
ally from 5 to 26 residues, with an average of 16 resi-
dues (6). In rare cases they can be substantially longer.
HCDR3 loops are generally divided into “torso” and
“head” regions for clustering purposes (7), and loops
are characterized by either a bulged or extended beta-
sheet conformation in the torso region. Since HCDR3
loops cannot typically be placed into a conformational
cluster based on sequence alone, recent work has fo-
cused on developing a set of rules to predict certain
aspects of the conformation based on key residue posi-
tions (8). The more stable bulged conformation tends
to be preferred by HCDR3 loops, stabilized by a hy-
drogen bond between a conserved tryptophan and a
backbone carbonyl. One rule dictates that an aspartate
residue two positions upstream of the conserved tryp-
tophan is sufficient to displace this hydrogen bond and
results in a shift to the extended conformation. Another
states that the position of a basic residue opposite this

FIGURE 2 Exponential growth of structurally determined
antibodies. Total antibody structures in the Protein Data
Bank (PDB) are shown by year. The increase in structures
enables more accurate computational approaches to anti-
body modeling and engineering. doi:10.1128/microbiolspec
.AID-0024-2014.f2
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aspartate dictates the formation of a bulged or extended
conformation. Taken together, these rules are able to
correctly predict torso conformation with ∼85% accu-
racy, comparable to that of non-HCDR3 loops.

Though the torso conformation of HCDR3 loops can
be predicted by sequence analysis, the antigen-binding
head region of the loop remains intractable to clustering,
leading to considerable efforts to use de novo modeling
to predict HCDR3 conformation. Currently, software
packages such as Rosetta (9) and Prime (10) have been
adapted to predict low-energy loop conformations, ei-
ther based on peptide fragments gleaned from the PDB
or generated de novo. These protocols have achieved
varying degrees of success: HCDR3 loops shorter than
12 to 14 residues can be consistently predicted within a
reasonable margin of error (∼2 Å), while longer loops

are less predictable and tend to have higher deviation.
As the average HCDR3 loop is ∼16 residues in length,
current algorithms for de novo modeling remain insuf-
ficient to address a large proportion of important anti-
bodies. However, the recent advances in predicting the
conformation of the HCDR3 base via clustering and
improvements in de novo loop construction promise
to enable more reliable HCDR3 prediction in the near
future.

Programs, Platforms, and Servers
Dedicated to Antibody Modeling
Because of the large number of antibody-based thera-
peutics, there is substantial interest in determining the
structure of antibodies in a high-throughput, accurate

FIGURE 3 Canonical CDR loop conformations.
Pictured above are median loop structures rep-
resenting the largest cluster of (A) CDR L1,
(B) L2, (C) L3, (D) H1, and (E) H2. Light and heavy
chain loop variability varies widely between the
CDR loops, with heavy chain loops tending to
bemore variable. doi:10.1128/microbiolspec.AID
-0024-2014.f3
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manner. Experimental methods such as X-ray crystal-
lography and nuclear magnetic resonance (NMR) spec-
troscopy, while highly informative, are labor-, time-,
and resource-intensive. In addition, complete antibodies
tend to be too large for NMR spectroscopy. X-ray crys-
tallography, in the absence of the antigen, often strug-
gles to determine the conformation of a long HCDR3
loop in the biologically relevant conformation needed
to engage the antigen. Sometimes the HCDR3 loop can
be locked into a different conformation by crystal pack-
ing or its coordinates cannot be determined because
of flexibility. Therefore, many groups have worked on
automated protocols to computationally model anti-
body variable region structures to predict the confor-
mational space including the conformation needed for
binding. This has resulted in a number of publicly acces-
sible antibody-modeling servers, which use a combination
of comparative modeling, de novo structure prediction,
and energy minimization to generate an ensemble of po-
tential conformations. Recently, organized efforts such as
the Antibody Modeling Assessment (AMA) have focused
on comparing these modeling servers and determining the
accuracy of antibody-modeling techniques relative to one
another (11, 12).

Antibody-modeling servers typically rely on compar-
ative modeling to model framework regions and CDR
loops, with the notable exception of HCDR3. Frame-
work regions are well conserved between antibodies,
and a suitable template can usually be found among an-
tibodies with experimentally determined structures in
the PDB. One concern with comparative modeling is
the issue of generating chimeras, combining heavy and
light chain frameworks and CDR loops from different
templates to use the template with the highest sequence
homology. The relative orientation of the heavy and light
chain V domains has a significant impact on the antigen-
binding properties of an antibody (13). Although the
framework regions are well conserved, combining heavy
and light chain frameworks from different templates
results in just one and possibly incorrect relative orien-
tation of the heavy and light chain V domains, intro-
ducing error into the predicted antibody structure. In
addition, although LCDR loops andHCDR1 and 2 have
canonical conformations, grafting these loops onto a
disparate framework can result in errors in the relative
placement of these loops and their interactions. To ad-
dress these problems, modeling servers have introduced
several different solutions. Some servers such as PIGS al-
low the user a great deal of input regarding themanner in
which chimeras are built, allowing the user to tune these
parameters for each model (14). The MOE and WAM

modeling servers build an ensemble of chimeras built
from different templates and use force field energy min-
imization algorithms to relieve clashes and determine
the most likely conformation (15, 16). RosettaAntibody
takes a similar approach but uses a knowledge-based
potential rather than molecular mechanics force field to
relieve clashes in framework and loop placements (17).

Another major challenge is modeling the noncano-
nical HCDR3 loop. The sequence and structural vari-
ability of this loop make it difficult to model it simply
by homology in most cases. The PIGS server attempts
to model HCDR3 in the same manner as it models the
other loops, by sequence homology to known HCDR3
structures (14). This approach can be effective in cases
where a similar HCDR3 exists in the PDB, and as more
structures are added, this likelihood increases. TheMOE
server also grafts HCDR3 loops from a template, fol-
lowed by a more complicated protocol of HCDR3
clustering, force field energy minimization to build an
ensemble of structures (16). However, the variability
of the HCDR3 loop is such that a more sophisticated
modeling technique is necessary in many cases. Other
notable approaches for HCDR3 loop modeling involve
either fragment-based or de novo modeling. Rosetta
Antibody uses a fragment-based approach, pulling short
peptide fragments from the PDB and using robotics-
based algorithms in conjunction with knowledge-based
potentials to close the HCDR3 loop in an energetically
favorable conformation (17). WAM uses a similar ap-
proach, modeling based on PDB-derived peptides based
on different parameters of the HCDR3, such as length
and predicted kinked conformation. However, the server
follows fragment assembly with a force field-based min-
imization to achieve a local energy minimum (15).

Since the introduction of these antibody-modeling
servers, a standing question has been which method is
most effective—in user friendliness, structural accuracy,
and transparency of results. To this end, the Antibody
Modeling Assessment has held a biannual blinded study
to give groups the chance to model the structures of un-
published antigen-binding fragment (Fab) X-ray struc-
tures to assess the state of the field. The assessments in
2011 and 2014 involved blind prediction of 9 and 11
Fab fragments, respectively, and analyzed the results
by a number of parameters, including total root mean
square deviation (RMSD), loop and framework-specific
RMSD, and overall structural integrity. Overall RMSD
values for all servers are generally within 1.0 to 1.5 Å,
with results varying between framework andCDR loops.
Framework regions were generally predicted most ac-
curately, with RMSD values consistently within 1.0 Å.

6 ASMscience.org/MicrobiolSpectrum

Sevy and Meiler

http://www.ASMscience.org/MicrobiolSpectrum


Downloaded from www.asmscience.org by

IP:  155.41.210.179

On: Thu, 31 May 2018 15:45:01

The highest deviation was seen for HCDR3 loops, with
RMSD values ranging from 0.5 to 8.0 Å and predictive
ability depending heavily on the details of individual Fab
fragments. Overall, the servers are comparable in their
modeling accuracy, with variation dependent on parti-
culars of the Fab fragment and metric used to analyze
accuracy (11, 12, 18).

ANTIBODY DOCKING AND
EPITOPE MAPPING
Another significant challenge in modeling antibody-
antigen complexes is docking the antibody onto its epi-
tope on the surface of the antigen. Though general
protein-protein docking has been successful in many
cases, antibody-antigen docking represents a special chal-
lenge among protein-protein docking cases. Although
useful in other protein-protein docking problems, shape
complementarity is not a good determinant of correct
antibody placement, as epitopes and paratopes are typ-
ically flat. Binding affinity is instead determined by hy-
drophobic “hot spot” and electrostatic interactions (19,
20). Short, aggregation-prone regions are common in
many antibodies, consisting of mainly aromatic residues
and concentrated in HCDR2 loops, and can contribute
significantly to buried surface area in antibody-antigen
interactions (21). In addition, the model for the antibody
used as a starting point for docking might have to be al-
tered when the epitope is engaged: if a single conforma-
tion is used, conformation of CDR loops or the relative
orientation of the V domains might have to be changed
when engaging the epitope. If an ensemble of states is
used, the best conformation needs to be selected and
possibly refined further for optimal binding (22, 23).
Additionally, if the location of the epitope is unknown,
a global search needs to be performed. This adds another
degree of complexity by requiring the docking algorithm
to sample epitopes across the entire surface of the anti-
gen. Several approaches have been implemented to ad-
dress these challenges, such as algorithms to remodel
antibody loop conformations in the presence of the an-
tigen and application of experimental data to inform the
energy evaluation of docked models.

Antibody Docking Algorithms
One docking algorithm that has had success in the
realm of antibody-antigen docking is the RosettaDock
algorithm, originally described by Gray et al. (24). The
algorithm uses alternating rounds of low-resolution
rigid body perturbations and high-resolution side-chain
and backbone minimization to generate a model of the

docked complex. The RosettaDock protocol relies on
random perturbation of the complex and creates large
numbers (∼105) of models to capture a global energy
minimum. The original protocol was able to recover
native conformations with an RMSD on the order of
5 to 10 Å for local searches, with a higher error for
global searches. Encouragingly, the antibody-antigen
docked complexes showed a strong energy funnel, with
low energy structures corresponding to a low RMSD
to the native structure. This funnel validates the creation
of a large number of complexes, with confidence that
those with the lowest scores are most likely to recover
the native conformation.

Since its original publication, the RosettaDock proto-
col has been benchmarked thoroughly with large num-
bers of both native and homology-modeled structures.
Advances in comparative antibody-modeling capabilities
beg the question of how well these comparative models
can be docking into their native antigens to produce
a native-like structure. In general, antibody-modeling
servers provide similar results in terms of success in
docking comparative models. However, since scores
fail to correlate perfectly with RMSD values, with the
lowest RMSDmodel frequently not being the best scoring
and vice versa, the best results have been obtained with
ensemble docking models, using multiple models from
the lower end of the energy landscape as inputs for dock-
ing. Using such an ensemble approach has been shown
to flatten the energy funnel and increase the proportion
of models deemed high and medium quality (9).

Additional docking protocols have been published
based on the core algorithm in RosettaDock but tailored
specifically to antibody-antigen complexes. In particu-
lar, the SnugDock algorithm has been shown to increase
docking accuracy for antibody-antigen complexes (25).
This algorithm uses the same approach of alternating
low- and high-resolution perturbation and minimization
steps. However, it adds additional perturbation moves
that are specific to antibody-binding motifs, such as
CDR loop remodeling and reorientation of the angle be-
tween the V domains. This addresses the issue of anti-
body CDR loops adopting alternate conformations in
the bound and free states, and the algorithm is designed
to accommodate slight errors in comparative modeling
that may disrupt adoption of the native conformation
during docking. Although SnugDock benchmarking
shows similar results to RosettaDock when using the
lowest energy models for docking, ensemble docking
using SnugDock shows a marked improvement of the
energy funnel and increase of high- and medium-quality
structures. This result is consistent with a conformational
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selection paradigm for the initial antibody-antigen in-
teraction with a subsequent induced fit.

Incorporation of Experimental Data To Guide
Antibody Docking and Epitope Mapping
The ability to identify a precise binding epitope of an
antibody with its corresponding antigen is of obvious
use for any antibody being studied. The knowledge of a
binding epitope at the individual residue level allowsmore
detailed analysis of the nature of an antibody’s interaction
with its antigen, including prediction of the mechanism
of neutralization of an antibody, escape mutations that
may evade binding, specificity of an antibody in binding-
related antigens, etc. However, epitope mapping is an
area that has relied on low- and medium-throughput ex-
perimental techniques, which canmake it difficult to map
the epitopes of large numbers of antibodies.

Experimental methods such as EM, NMR spectros-
copy chemical shift mapping, competitive enzyme-linked
immunosorbent assays, site-directed mutagenesis, force
spectroscopy, and hydrogen-deuterium exchange have
made it possible to obtain structural information on the
antibody-antigen complex, including epitope and para-
tope, without the need for a crystal structure (26–31).
Each technique faces its own challenges that make high-
throughput epitope mapping difficult (32), but these
data have been used successfully to create reliable com-
putational models. A comprehensive example of inte-
grating experimental data into computational modeling
is shown in Fig. 4: data from EM, hydrogen-deuterium
exchange, and site-directed mutagenesis were used to
create a high-resolution model of an antibody-antigen
complex for an influenza hemagglutinin directed anti-
body (33).

Computational methods have also made great strides
in recent years to enable the large-scale, rapid mapping
of binding epitope. As with experimental methods,
computational approaches come with their own dis-
advantages and cannot be used reliably in isolation.
However, various hybrid methods that use different
types of experimental data to reduce the complexity of
computational searches have shown great promise in
providing a feasible approach to the epitope mapping
problem. A promising approach to increase the accuracy
of docking predictions is the incorporation of experi-
mental data to supplement in silico epitope prediction.
RosettaDock, in particular, has been benchmarked on
both local and global searches and predictably shows
better results when perturbations are kept to a minimum
and the antibody is placed in the vicinity of the epitope
to begin with. Such approaches reduce the conforma-
tional space that needs to be sampled.

In addition to reducing sampling space, limited ex-
perimental data can also be used to improve scoring.
One major issue with docking using current methods
is that a near-native conformation is frequently present
in the large set of models, but the distinguishing power
of the energy function is not sufficient to identify the
near-native conformation without any a priori knowl-
edge of the structure. Low-resolution epitope mapping
using experimental methods can provide an extra dis-
tinguishing feature to eliminate incorrect models and
identify those that are most likely to adopt the native
conformation. Simonelli et al. have validated this hy-
pothesis by using NMR chemical shift mapping to iden-
tify an epitope before the start of computational docking
(26). Models that do not agree with the experimental
results can be discarded, and lower scoring models are
more likely to represent the native conformation.

FIGURE 4 Integrating experimental data to aid computationalmodeling. (A) Low-resolution
cryo-EM maps, (A and B) combined with hydrogen-deuterium exchange (DXMS) data and
site-directedmutagenesis, were used togenerate a dockedmodel of a potent anti-influenza
antibody. Reprinted from Journal of Clinical Investigation (33) with permission from the
publisher. doi:10.1128/microbiolspec.AID-0024-2014.f4
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Docking algorithms have been adapted to incorporate
experimental data, which increases the accuracy of the
final docked complex and the residues involved in the
antibody-antigen interface. There are many different
steps during the docking protocol in which experimental
data can be incorporated. Mutagenesis data and cryo-
EM density maps have been used to constrain the initial
placement of the antibody on the surface of the antigen
prior to docking, allowing for a more limited search and
resulting in more native-like contacts (33–35). In addi-
tion, complex scores can be weighted such that residues
experimentally shown to interact are encouraged to do
so during the docking protocol (34, 35). This approach
drives the formation of models that contain the correct
residue pairwise interactions across the interface, while
allowing for the creation of new interacting pairs within
this framework. Final models can then be clustered and
analyzed visually for adherence to experimental data,
eliminating those that do not contain key residues at the
interface or have topologies inconsistent with EM data.

Another source of experimental data that has been used
to improve computational epitope prediction is hydrogen-
deuterium exchange (36). This technique involves the dis-
sociation of amide hydrogens on a protein backbone and
replacement with deuterium from a solvent. The extent
of exchange can then be quantified using NMR or mass
spectrometry. Antibody binding to its antigen causes a
decrease in solvent accessibility of peptides at the epitope
and a concomitant decrease in deuterium incorporation.
Epitopes of many different antibodies have been mapped
using this technique, with higher throughput than other
methods such as X-ray crystallography or mutagenesis
(27, 28, 37). Several studies have taken advantage of
this phenomenon to improve docking predictions by
constraining the initial placement of the antibody and
rewarding residue interactions that agree with hydrogen-
deuterium exchange data (33, 38).

Other approaches to epitope mapping have moved
away from docking and instead use bioinformatics strat-
egies to identify interacting regions. One such approach
uses binding of randomly created peptide libraries to
determine motifs that are important for antibody rec-
ognition (39). The algorithm then identifies pairs of res-
idues within peptide fragments that covary with the
binding by the target antibody, allowing for identifica-
tion of key residues both proximal and distal to the epi-
tope. This method has been validated using antibodies
targeting viral protein gp120 from HIV and is beneficial
as a complement to docking. Another similar approach
uses neutralization data of an antibody with different vi-
ral strains varying by sequence. This algorithm identifies

mutations that tend to correlate with a decrease in neu-
tralization and proposes these as the binding epitope. In
addition, the algorithm can incorporate structural data
to eliminate purported epitope residues on the basis of
solvent-accessible surface area (40, 41). This method can
be beneficial in cases where a large body of neutralization
data already exists in the literature for an antibody, as
extra experimental data do not have to be collected solely
for use by the algorithm.

ANTIBODY DESIGN
The computational design of antibodies is not only the
most stringent test of our understanding of the rules
that govern antibody structure and interaction, but it
also has exciting applications in designing an antibody
optimized for a given epitope (affinity maturation) or
an antibody that recognizes multiple similar target epi-
topes (broad neutralization). Through this approach
the relation between the sequence, structure, and activ-
ity of antibodies can be better understood, as the se-
quence and structural space can be explored in a more
comprehensive manner than possible by analysis of
naturally occurring antibodies only. Recently, an im-
portant proof-of-principle experiment for computer-
aided epitope-focused vaccine design was reported (42).
For this paradigm to reach its full potential, knowledge
of the optimal antibodies to engage an epitope and the
relation between sequence, structure, and activity in-
ferred from computational design must be integrated.
Besides the obvious application for the development of
better therapeutic antibodies, computational antibody
engineering also has the potential for formulation and
humanization of therapeutic antibodies (43–46).

Broad Neutralization versus
Affinity Maturation
Affinity maturation is a process by which the variable
region of an antibody undergoes somatic hypermutation
to introduce point mutations in the framework and
CDR loops to select for a variant with increased binding
affinity for its target. Along with V(D)J recombination
and junctional diversity, it is a fundamental reason why
a finite set of antibody sequences is able to recognize a
virtually infinite array of antigens (47). Experimental
methods can be used to re-create maturation in an ex
vivo context to create an antibody with higher affinity
for a given target. For example, phage display combined
with random mutagenesis can screen for mutations in a
high-throughput manner to create new, tighter-binding
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antibodies (48). This form of “directed evolution” has
been successfull in the maturation of many types of an-
tibodies (48). Additionally, computational algorithms
have been developed that mimic the process of directed
evolution to produce similar results. Computational
methods have been successful in both studying the na-
ture of affinity maturation in germline and matured
antibodies and in further refining matured antibodies
to increase affinity even more.

Affinity maturation can be simulated in silico to an-
alyze compromises in an antibody sequence that lead
to a decrease in polyspecificity with a concomitant in-
crease in specificity for a single partner. For example, a
general computational method for the design of anti-
body CDR loops for targeted epitope binding was in-
troduced by Pantazes andMaranas (49). Computational
methods such as multistate design are capable of de-
termining the protein sequence optimal for binding an
arbitrary number of binding partners (50, 51). This
technique has been applied to explore the changes in
antibody sequence and conformation responsible for
the shift from a polyspecific, germline antibody to one
with higher affinity for a single target. In complementary
work, Babor and Kortemme and Willis et al. used mul-
tistate design to show that antibody germline sequences
are optimal for conformational flexibility of both CDR
loops and framework residues, allowing the binding
of multiple targets, whereas affinity-matured antibodies
have decreased flexibility (52, 53). These authors have
also identified the key residues responsible for either
mono- or polyspecificity for several commonly seen
germline genes. These studies validate the biological rel-
evance of design algorithms, since sequences can be both
computationally matured and reverted to germline by
using different sets of antigens as inputs.

In silico Affinity Maturation
The understanding of the nature of affinity maturation,
as well as the ability to selectively modify the specificity
of antibody sequences, has led to advances in antibody
engineering that enable maturing antibodies in silico to
create new sequences with higher affinity. In one case,
Clark et al. were able to use computational design to
mature an antibody and generate candidate sequences
with higher predicted affinity (54). Using a combina-
tion of side chain repacking and electrostatic optimiza-
tion, a triple mutant was created with 10 times higher
affinity. A comparable increase in affinity was achieved
by Lippow et al. by redesigning an antilysozyme anti-
body along with the therapeutic antibody cetuximab
(55). The design protocol was also able to predict

mutations in bevacizumab that had been previously
shown to increase affinity. The designed mutations pri-
marily affected the electrostatic nature of the binding
interface, either by removing a poorly satisfied polar
residue at the interface or by adding a polar residue
at the solvent-facing periphery of the interface (55). A
similar approach has been taken to increase the species
cross-reactivity of an antibody, rather than increasing
affinity for a previously targeted antigen. By analyzing
sequence differences between two serine protease ortho-
logs, Farady et al. created novel antibody designs by res-
tricting the search space to positions that contact points
of difference between orthologs (56). In this manner they
were able to target positions that would be most likely
to establish new contacts across the binding interface to
enable interaction at a reasonable affinity. This method
was able to create antibody mutants with increases in
affinity of over two orders of magnitude.

One significant limitation of most computational
design protocols is that they require a high-resolution
crystal structure of the antibody-antigen complex, or
alternatively high-resolution structures of each com-
ponent separately. However, several antibody designs
have been made for complexes that do not have a solved
structure available, using a combination of comparative
modeling, protein-protein docking, and design. Barderas
et al. used experimental epitope mapping data to dock
a comparative model of an antigastrin antibody onto
the surface of its target (57). They then used the docked
models to estimate regions of antibody-antigen interac-
tion and created mutants using both phage display and
in silico affinity maturation to mutagenize antibody res-
idues in contact with the antigen and produce designs
with high predicted affinity. In several cases the in silico
suggested mutations matched the mutations seen by di-
rected evolution, and overall the designs were able to
increase affinity to nanomolar levels. Another case used
docking of an antidengue antibody with an NMR-
mapped epitope to identify and rationally design muta-
tions in the antibody CDR loops (58). The authors used
this information to create several types of antibody mu-
tations, including those that abolish binding, those that
increase affinity for a single target, and those that in-
crease the breadth of binding to multiple serotypes.

Eliciting Neutralizing Antibodies
through Antigen Design
Although much focus has been directed at engineering
antibodies with desired properties, recent work has tar-
geted the opposite side of the problem: engineering an
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antigen that can elicit a desired antibody in an effective
and reproducible manner. This comes with the ultimate
goal of the rational design of antigens to be used in
vaccination that can elicit antibodies targeting a pre-
cise, conserved, and neutralizing epitope. Giles et al.
attempted to create a broadly reactive antigen by iden-
tifying divergent sequences between different clades of
influenza hemagglutinin and clustering the consensus se-
quences. In this way they created a compromise antigen,
incorporating elements of various clades designed to
elicit antibodies binding all of them (59). This strategy
was validated with the finding that the broadly reactive
antigen was capable of eliciting greater antibody breadth
than a polyvalent virus-like particle displaying the native
antigens (60). Wu et al. pursued a similar goal, instead
using HIV surface protein gp120 as the antigen. This
group used computational design to engineer a modified
gp120 that maintained the structure of the neutralizing
portion of the molecule while eliminating other antigenic
regions that may elicit nonneutralizing antibodies (61).
Since the antigenic region of gp120 they targeted was
the CD4 binding site, a highly conserved region among
divergent HIV strains, they used this engineered antigen
as a vaccine to elicit broadly neutralizing antibodies and
successfully identified two novel antibodies with a high
level of breadth of reactivity (61).

Epitope Grafting To Elicit
Neutralizing Antibodies
A complementary task to antigen design is so-called
epitope grafting—removing an epitope from its native
antigen and grafting it onto a protein structure that can
present it to immune receptors in a way that maximizes
the immune response. This design task encompasses sev-
eral unique challenges, the most difficult of which is the
selection of an appropriate peptide onto which the epi-
tope can be placed, known as the scaffold. This scaffold
must maintain the native conformation of the desired
epitope and have minimal immunogenicity in its off-
epitope regions, all while maintaining favorable bio-
physical properties. Advances in scaffold selection and
design have made this problem tractable and have
shown promise in immunization.

Early work in this field focused on placing a neu-
tralizing linear epitope on a stable scaffold that could
maintain the native conformation while enhancing pre-
sentation of this epitope. HIV has been widely used as a
test case, since there are well-characterized broadly neu-
tralizing antibodieswith high-resolution crystal structures
available (62). Two independent groupswere able to graft

the linear epitopes of two broadly neutralizing anti-HIV
antibodies, 4E10 and 2F5, onto scaffolds to enhance their
presentation and affinity for the desired antibodies (63,
65). These groups used similar approaches of searching
the PDB for scaffolds with a region of backbone confor-
mation with high structural similarity to the epitope and
using Rosetta Design to place epitope side chains onto
the backbone scaffold and minimize the energy of side
chain packing. This protocol resulted in several designed
peptides with nanomolar affinity for their respective an-
tibody targets and the ability to elicit broadly neutralizing
sera upon immunization (63–65). These earlier studies
provided an important proof-of-principle for vaccine-
based antigen design.

One major limitation of initial reports on epitope
grafting is the nature of the scaffold selection process.
Since it relies on placing epitope side chains on a back-
bone with a high degree of similarity to the epitope
backbone, success is highly dependent on the presence
of a suitable scaffold among structurally determined
proteins. In cases where there is no template with struc-
tural similarity, this procedure is ineffective. To address
this concern, Azoitei et al. published a backbone grafting
method wherein they select a structurally similar tem-
plate and, rather than transfer individual epitope side
chains to a template, remove the epitope-mimetic region
en masse and transplant the entire epitope backbone
region from the native antigen (66). This protocol was
benchmarked and shown to produce peptides with
higher affinity than the previously described side-chain
grafting method, with the added advantage that back-
bone grafting can be applied to templates with lower
structural similarity.

Another challenge in the pursuit of a generalizable
epitope grafting method is that initial reports focused
on linear, continuous epitopes, even though many neu-
tralizing epitopes are discontinuous. Azoitei et al. devel-
oped amore aggressive scaffold search and designmethod
to identify scaffolds that can accommodate multiple dis-
continuous epitope peptides while maintaining their con-
formations and relative orientations andminimizing steric
clashes (67). The result of this protocol was an epitope
scaffold that accurately recapitulates the conformation
of the epitope and interactions necessary for antibody-
antigen interactions. McLellan et al. pursued a similar
strategy to create a discontinuous epitope-presenting scaf-
fold with a respiratory syncytial virus (RSV) epitope (68).
In addition to the selection of an appropriate scaffold,
there has also been work in redesigning a scaffold to re-
duce unwanted, nonepitope immunogenicity. Correia et
al. showed that epitope scaffolds can be further optimized
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by flexible backbone remodeling and resurfacing to en-
hance thermostability, increase binding affinity, and re-
duce immune reactivity (64).

To circumvent the problem of scaffold selection,
Correia et al. recently described a method to build a
de novo scaffold for optimal epitope presentation of an
RSV epitope (42). They selected a three-helix bundle as
a template topology and used extensive rounds of se-
quence optimization and minimization to create an op-
timized conformation for presentation. These scaffolds
were purified and shown to be thermodynamically sta-
ble, with affinities in the picomolar range (42). The pu-
rified scaffolds were then used to immunize macaques
and were shown to induce neutralizing titers comparable
to natural RSV infection, a significant landmark for the
epitope-grafting methodology.

CONCLUSION
Computational approaches to predict the structure of
antibodies and antibody-antigen complexes are of critical
importance, as the large number of naturally occurring
antibodies restricts experimental characterization to the
most important cases. While computational methods
are already sufficiently accurate to be useful, it remains
a focus of future research to develop better sampling
methods and more accurate energy functions. The exist-
ing limitations in modeling antibodies make compu-
tational methods most useful when applied in a tight
feedback loop with experimental data, a situation that
is expected to continue for the foreseeable future. The
increasing throughput in methods to collect limited ex-
perimental data on antibodies and antibody-antigen
complexes will further increase the need for computa-
tional methods to add atomic detail not present in these
datasets. The rapidly increasing availability of high-
resolution crystal structures of antibodies and antibody-
antigen complexes is expected to improve computational
prediction algorithms, for example, through increasing
the accuracy of knowledge-based potentials and through
further completing the conformational clusters of CDR
loop conformations. Ultimately, the reliable computa-
tional design of antibodies that recognize a target epitope
is a long-term goal for computational structural biol-
ogy. Given the even larger number of theoretically pos-
sible antibody sequences, computational prioritization
of the ones to characterize experimentally is imperative.
Computational design of the tightest or most broadly
neutralizing antibodies is not only important for the
development of optimal therapeutic antibodies or the
development of vaccines. Antibody design is also the

most stringent test of our understanding of the rules that
govern antibody structure and interaction.
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