Data Structures and Algorithms CS526 B1, Spring 2019

• **Course Format**: On Campus

• **Time and Location**: Tuesday 6:00 – 8:45 PM, PHO 202

• **Instructor**: Jae Young Lee

Office: Room 303, 1010 Commonwealth Ave.
Phone: 617-358-5165, E-mail: jaeylee@bu.edu

• Office Hours: 4:00 – 5:15 PM, Monday and Wednesday, and by appointment

• Course Objectives

Upon successful completion of this course, students will be able to:

- 1. Describe and illustrate fundamental data structures.
- 2. Use fundamental data structures to support the implementation of algorithms.
- 3. Given a problem definition, develop an algorithm to solve the problem.
- 4. Write an algorithm using a pseudocode.
- 5. Illustrate the execution of a pseudocode of an algorithm using a sample input.
- 6. Analyze the performance of an algorithm.
- 7. Implement a given algorithm using a high-level programming language.
- 8. Solve computational problems using algorithms.
- This course is a core course for MSSD and an elective course for MSCIS.
- Prerequisites:
 - o MET CS300 and either MET CS520 or MET CS521, or instructor consent.
 - o Must have knowledge of or experience in at least one high-level programming language, such as Java, C++, C#, Python, etc.
- **Text**: Michael T. Goodrich, Roberto Tamassia, and Michael T. Goldwasser, "Data Structures and Algorithms in Java," John Wiley & Sons, 6th Edition, January 2014.
- Courseware: Blackboard Learn
- Grading:

• Midterm: 30%, Final: 30%

Homework: 30%Project: 10%

• Letter Grade:

```
\begin{array}{lll} 90 \leq G < 94 \text{: A-} & 94 \leq G \text{: A,} \\ 80 \leq G < 83 \text{: B-} & 83 \leq G < 87 \text{: B} & 87 \leq G < 90 \text{: B+} \\ 70 \leq G < 73 \text{: C-} & 73 \leq G < 77 \text{: C} & 77 \leq G < 80 \text{: C+} \\ 60 \leq G < 70 \text{: D} & & & \end{array}
```

Note: Course grades will not be rounded up. For example, a course grade of 93.9 will receive a letter grade A-, not A.

- **Assignment**: There will be 10 homework assignments (the number of assignments is subject to change according to the actual progress of the class) and all assignments include Java programming.
- **Project**: This is a programming project. Details will be discussed in the class.

• Academic Integrity Policy

- Cheating and plagiarism will not be tolerated in any Metropolitan College course. They will result in no credit for the assignment or examination and may lead to disciplinary actions.
- Please take the time to review the Student Academic Conduct Code: http://www.bu.edu/met/metropolitan_college_people/student/resources/conduct/code.html.
- This should not be understood as a discouragement for discussing the
 material or your particular approach to a problem with other students in
 the class. On the contrary you should share your thoughts, questions and
 solutions. Naturally, if you choose to work in a group, you will be
 expected to come up with more than one and highly original solutions
 rather than the same mistakes.
- Attendance and Absence: Attendance is not required but strongly encouraged. If a student misses a class it is his/her responsibility to catch up with the material discussed during the missed class.

• Late Policy

- All assignments are due at the beginning of the class on the due date.
- There is a 2-day grace period.
- If you submit an assignment beyond the grace period, a penalty of 10% per day will be deducted.

Make-up Exam

- A make-up examination for the midterm can be arranged only when a student has an emergency (e.g., a medical emergency or an urgent family matter). Students may need to provide the instructor with an appropriate document (such as a letter from a physician).
- There will be **no make-up exam for the final exam**. If a student cannot take the final exam on the designated day, she/he will receive an incomplete grade.

• Tentative Schedule

- The schedule is subject to change according to the actual progress of the class.
- Students are strongly encouraged to read book chapters assigned for each lecture before coming to the class.

Week	Date	Lecture	Reading Assignment (Book chapters)
1	1/22	Java review	1, 2
2	1/29	OO design, fundamental data structures	1, 2 2, 3
3	2/5	Fundamental data structures, algorithm analysis	3, 4
4	2/12	Recursion	5
5	2/19	No class	
6	2/26	Stacks, queues, and deques	6
7	3/5	List and iterator ADTs, trees	7, 8
8	3/12	No class	
9	3/19	Midterm	
10	3/26	Trees, priority queues	8, 9
11	4/2	Maps and hash tables	10
12	4/9	Search trees	11
13	4/16	Sorting and selection	12
14	4/23	Greedy algorithm, dynamic	13
		programming	
15	4/30	Graph algorithms, P and NP	Note
16		Final Exam	

Communication

- All official announcements will be made in the class.
- All assignments will be posted on the class web page.
- **Important:** The primary method of communication is through in-class announcements. The class web page is only supplementary. So, if you miss a class you need to talk to a friend in the class or contact me to find out whether there was any important announcement.
- **Email communication**: When it is necessary to communicate to you, I will send an email to your BU email account. So, you need to check your BU email regularly (e.g., once a day).