

# **Generative Al**

MET CS 793 Course Format (On Campus)

Reza Rawassizadeh <u>rezar@bu.edu</u> Office hours: by appointment

#### **Course Description**

In this course, first, we learn statistical concepts required for generative artificial intelligence. Next, we review regressions and optimization methods. Afterward, we review traditional neural network architectures, including perceptron and multilayer perceptron. Next, we move to Convolutional Neural Networks and Recurrent Neural Networks and close this part with Attention and Transformers.

The second part of the course focus on generative neural networks. We start with traditional selfsupervised learning algorithms (Self Organized Map and Restricted Boltzmann Machine). Then, we explore Auto Encoder architectures and Generative Adversarial Networks. Afterward, we moved toward architectures that construct generative models, including recent advances in NLP e.g., BERT, InstructGPT (ChatGPT architecture). Finally, we describe Neural Radiance Field and text-2-image models.

### Books

Some chapters of the instructor's ongoing book: <u>https://github.com/Rezar/MLBook</u> Besides, students who are willing to use extra resources can check the following books:

- An Introduction to Statistical Learning: with Applications in R (James et al.)
- Dive into Deep Learning (Zhang et al.)

### **Course Requirements**

- Students should be familiar with Python programming language and some reasonable mathematics.
- Students must pass (CS 544 or CS 555) and (CS 688 or CS 699 or CS 677).
- This course includes lots of theories, and except for assignments, we do not go into implementation details. Students should be able to learn Keras, Tensor Flow, or Pytorch on their own. Besides, they need to be able to use cloud services such as Google Colab environment to build and train their neural network model.

### **Class Policies**

- Attendance & Absences Class attendance is not mandatory but highly recommended. All quizzes and the final exam will be done inside the class, and taking an online exam are impossible.
- 2) Assignment Completion & Late Work –40% 50% of the final grade comes from assignment and project delivery. Late submission of homework is associated with a penalty of 10% grade reduction for any single day.
- **3)** Quiz and Final exam 50%- 60% of the final grade comes from quizzes and the final exam. This course requires a good understanding of mathematics and lots of theoretical concepts to learn. Quiz and final exams focused on concepts and not coding.
- 4) Academic Conduct Code "Cheating and plagiarism will not be tolerated in any Metropolitan College course. They will result in no credit for the assignment or examination and may lead to disciplinary actions. Please take the time to review the Student Academic Conduct Code:

<u>http://www.bu.edu/met/metropolitan\_college\_people/student/resources/conduct/cod</u> <u>e.html</u>.

## **Grading Criteria**

Student grades are the sum of their assignments, final exam, and quizzes. The resulting grade will be calculated as follows.

| А  | 95-100   |
|----|----------|
| A- | 90-94.99 |
| B+ | 85-89.99 |
| В  | 80-84.99 |
| B- | 75-79.99 |
| C+ | 70-74.99 |
| С  | 65-69.99 |
| F  | <65      |

### **Class Meetings, Lectures & Assignments**

Lectures, Readings, and Assignments are subject to change and will be announced in class as applicable within a reasonable time frame.

| Date      | Торіс                               | Assignments Due         |
|-----------|-------------------------------------|-------------------------|
| Session 1 | Review on Machine Learning Concepts | NA                      |
| Session 2 | Statistics for Generative AI        | 14 days after Session 2 |



| Session 3  | Review on Regression Algorithms                   | NA                       |
|------------|---------------------------------------------------|--------------------------|
| Session 4  | Regression Evaluation and Optimizations           | 14 days after Session 4  |
| Session 5  | Basics of Neural Network I                        | NA                       |
| Session 6  | Basics of Neural Network II                       | 14 days after Session 5  |
| Session 7  | Convolution and Convolutional Neural Network,     | NA                       |
|            | Recurrent Neural Network                          |                          |
| Session 8  | Attentions and Transformer Architecture           | 14 days after Session 8  |
| Session 9  | Generative Neural Networks I (Advances in Natural | NA                       |
|            | Language Processing toward Large Language         |                          |
|            | Models)                                           |                          |
| Session 10 | Generative Neural Networks II (Open-source Large  | 14 days after Session 10 |
|            | Language Models, Fine-tuning Large Language       |                          |
|            | Models, Evaluation of Large Language Models,      |                          |
|            | Prompt Engineering and Task Completion Methods)   |                          |
| Session 11 | Generative Neural Networks III (Self- Organized   | NA                       |
|            | Maps, RBM)                                        |                          |
| Session 12 | Generative Neural Networks IV (Auto Encoders,     | 14 days after Session 12 |
|            | Generative Adversarial Network, Image Synthesis   |                          |
|            | Architectures)                                    |                          |
| Session 13 | Generative Neural Network V (NeRF and text-to-    | 14 days after Session 13 |
|            | image models)                                     |                          |
| Session 14 | Review and/or Project Presentations               | NA                       |