Contracting for Coordination

Marina Halac Yale University

Robert Rosenthal Memorial Lecture Boston University, April 2024

Introduction

- Coordination problem: interdependence calls for agents to act consistently but there is strategic risk about what others will do
- Principal contracting for coordination must address strategic risk

Introduction

- Coordination problem: interdependence calls for agents to act consistently but there is strategic risk about what others will do
- Principal contracting for coordination must address strategic risk
- Important for both organizations and markets
 - "The key role of management in organizations is to ensure coordination" (Milgrom and Roberts, 1992: 114)
 - · Firms coordinate buyers to purchase goods with network externalities

Contracting for coordination

- Principal contracts with set of agents
- Induces game, possibly with multiple equilibria
- What is optimal scheme that guarantees high payoff to principal?

Plan

- Part 1: Contractible actions
 - Exogenous externalities
 - Endogenous externalities
- Part 2: Hidden actions
 - Public contracts
 - Private contracts
- Part 3: Hidden types
 - Monopolist problem

Plan

Part 1: Contractible actions

- Exogenous externalities: Segal (2003)
- Endogenous externalities
- Part 2: Hidden actions
 - Public contracts
 - Private contracts
- Part 3: Hidden types
 - Monopolist problem

- Set $N = \{1, \dots, N\}$ of agents. Action $a_i \in \{0, 1\}$ for each $i \in N$
- Bilateral contracts: for each i, payment ω_i conditional on $a_i = 1$
- Given $a := (a_1, \ldots, a_N)$, agent *i*'s payoff is

$$U_i(a,\omega_i) = u_i(a) + a_i\omega_i$$

Implementation

- Scheme $\omega = (\omega_i)_i$ induces simultaneous game
- \widehat{a} is NE iff for each i, $\widehat{a}_i \in \operatorname{argmax}_{a_i} U_i(a_i, \widehat{a}_{-i}, \omega_i)$
- \blacksquare Principal wants to guarantee $a^1:=(1,\ldots,1)$ at least cost
 - Implement a^1 as worst-case ("lowest-action") NE
 - Equivalent to implementing a^1 as unique NE

Principal's problem

- \blacksquare Call $E(\omega)$ the set of NE profiles under ω
- Worst-case implementation constraint (W) is

$$E(\omega + \varepsilon) = \{a^1\} \quad \forall \varepsilon > 0$$

Principal's problem

- \blacksquare Call $E(\omega)$ the set of NE profiles under ω
- Worst-case implementation constraint (W) is

$$E(\omega + \varepsilon) = \{a^1\} \quad \forall \varepsilon > 0$$

Principal solves

$$\min_{\omega} \sum_{i} \omega_i \text{ subject to } (W)$$

Externalities

Distinguish between increasing/decreasing externalities

• Increasing if $\forall i, u_i(1, a_{-i}) - u_i(0, a_{-i})$ increasing in a_{-i}

Implies game with strategic complementarities/substitutabilities

Externalities

Distinguish between increasing/decreasing externalities

- Increasing if $\forall i, u_i(1, a_{-i}) u_i(0, a_{-i})$ increasing in a_{-i}
- Implies game with strategic complementarities/substitutabilities
- Many examples with strategic complementarities
 - Investment
 - Teamwork
 - Goods with network externalities
 - Exclusive dealing
 - Bank runs

Proposition

With decreasing externalities, optimal scheme specifies ω^{NE} s.t. $\forall i$

$$u_i(1, a_{-i}^1) + \omega_i^{NE} = u_i(0, a_{-i}^1)$$

Worst-case focus has no bite

- What if increasing externalities? Supermodular game
- Scheme ω^{NE} induces a^1 as a NE but does not satisfy (W)
- E.g., for $\varepsilon > 0$ small, $(0, \dots, 0)$ is also NE under $\omega^{NE} + \varepsilon$

• 2 agents. For
$$i \in \{1, 2\}$$
, let $u_i(a) = \begin{cases} -1 & : a = a^1 \\ -2 & : a_i = 1, a_{-i} = 0 \\ 0 & : \text{ otherwise} \end{cases}$

• 2 agents. For
$$i \in \{1, 2\}$$
, let $u_i(a) = \begin{cases} -1 & : a = a^1 \\ -2 & : a_i = 1, a_{-i} = 0 \\ 0 & : \text{ otherwise} \end{cases}$

• To make a^1 an equilibrium at least cost, pay $\omega_L := 1$ to each agent

• 2 agents. For
$$i \in \{1, 2\}$$
, let $u_i(a) = \begin{cases} -1 & : a = a^1 \\ -2 & : a_i = 1, a_{-i} = 0 \\ 0 & : \text{ otherwise} \end{cases}$

- To make a^1 an equilibrium at least cost, pay $\omega_L := 1$ to each agent
- To make it unique equilibrium, must make $a_i = 1$ dominant for some i
 - Pay one agent $\omega_H := 2$
 - And then ω_L to the other agent

Ranking schemes

Given permutation π of N, define $a_{-i}(\pi)$ by $\pi_j < \pi_i \iff a_j = 1$

Definition

 ω is ranking scheme if $\exists \pi$ s.t. $U_i(1, a_{-i}(\pi), \omega_i) = U_i(0, a_{-i}(\pi), \omega_i) \ \forall i$

Ranking schemes

Given permutation π of N, define $a_{-i}(\pi)$ by $\pi_j < \pi_i \iff a_j = 1$

Definition

 ω is ranking scheme if $\exists \pi$ s.t. $U_i(1, a_{-i}(\pi), \omega_i) = U_i(0, a_{-i}(\pi), \omega_i) \ \forall i$

Lemma

With increasing externalities,

- 1. Every ranking scheme satisfies (W)
- 2. Any scheme satisfying (W) is dominated by some ranking scheme

Optimal scheme and discrimination

Proposition

With increasing externalities, optimal scheme specifies π^* and ω^* s.t. $\forall i$

$$u_i(1, a_{-i}(\pi^*)) + \omega_i^* = u_i(0, a_{-i}(\pi^*))$$

Optimal scheme and discrimination

Proposition

With increasing externalities, optimal scheme specifies π^* and ω^* s.t. $\forall i$

$$u_i(1, a_{-i}(\pi^*)) + \omega_i^* = u_i(0, a_{-i}(\pi^*))$$

Proposition

With increasing externalities, optimal scheme is discriminatory That is, if same $u_i(\cdot)$ for all i, then π^* is arbitrary and

$$\omega_i^* > \omega_j^* \iff \pi_i^* < \pi_j^*$$

Plan

Part 1: Contractible actions

- Exogenous externalities
- Endogenous externalities: Halac, Kremer, and Winter (2020)
- Part 2: Hidden actions
 - Public contracts
 - Private contracts
- Part 3: Hidden types
 - Monopolist problem

Investment

- Principal (firm) raises capital from multiple agents (investors)
- Principal's project succeeds or fails
 - $P: \mathbb{R}_+ \to [0,1]$, strictly increasing
 - Success yields value V > 0
- Each agent $i \in N = \{1, \dots, N\}$ has capital endowment \overline{x}_i

Contracts

For each *i*, contract specifies investment $x_i \in [0, \overline{x}_i]$, returns (r_i, k_i)

- r_i if success; k_i if failure
- $a_i = 1$ means invest x_i in project
- $a_i = 0$ means invest x_i in safe asset with return $\theta > 0$

Contracts

For each *i*, contract specifies investment $x_i \in [0, \overline{x}_i]$, returns (r_i, k_i)

- r_i if success; k_i if failure
- $a_i = 1$ means invest x_i in project
- $a_i = 0$ means invest x_i in safe asset with return $\theta > 0$
- Given (a_1, \ldots, a_N) , agent *i*'s payoff is

$$\left[P\left(\sum_{j}a_{j}x_{j}\right)r_{i}+\left(1-P\left(\sum_{j}a_{j}x_{j}\right)\right)k_{i}\right]a_{i}x_{i}+\theta(1-a_{i})x_{i}$$

Contracts

For each *i*, contract specifies investment $x_i \in [0, \overline{x}_i]$, returns (r_i, k_i)

- r_i if success; k_i if failure
- $a_i = 1$ means invest x_i in project
- $a_i = 0$ means invest x_i in safe asset with return $\theta > 0$
- Given (a_1, \ldots, a_N) , agent *i*'s payoff is

$$\left[P\left(\sum_{j}a_{j}x_{j}\right)r_{i}+\left(1-P\left(\sum_{j}a_{j}x_{j}\right)\right)k_{i}\right]a_{i}x_{i}+\theta(1-a_{i})x_{i}$$

Principal's budget constraint (BC) is

$$\sum\nolimits_i r_i a_i x_i \leq V \quad \text{and} \quad \sum\nolimits_i k_i a_i x_i \leq 0 \quad \forall a = (a_1, \ldots, a_N)$$

Principal's problem

Two-step approach:

- 1. For fixed $(x_i)_i$, find optimal $(r_i, k_i)_i$
- 2. Given step 1, find optimal $(x_i)_{i \in N}$

Principal's problem

Two-step approach:

- 1. For fixed $(x_i)_i$, find optimal $(r_i, k_i)_i$
- 2. Given step 1, find optimal $(x_i)_{i \in N}$

• (W) requires
$$E((r_i + \varepsilon, k_i)_i) = \{a^1\} \ \forall \varepsilon > 0$$

• Let $X_N := \sum_i x_i$. Principal solves

$$\min_{(r_i,k_i)_i} \sum_{i} \left[P(X_N) r_i x_i + (1 - P(X_N)) k_i x_i \right]$$

subject to (BC) and (W)

Optimal scheme

- By (BC) and $\theta > 0$, must set $r_i > 0 \ge k_i \ \forall i$
- Implies supermodular game, so ranking lemma applies

Optimal scheme

- By (BC) and $\theta > 0$, must set $r_i > 0 \ge k_i \ \forall i$
- Implies supermodular game, so ranking lemma applies
- Optimal scheme specifies π^* and $(r_i^*, k_i^*)_i$ s.t. $\forall i$

$$r_{i}^{*}P(X_{i}(\pi^{*})) + k_{i}^{*}(1 - P(X_{i}(\pi^{*}))) = \theta$$

where

$$X_i(\pi) := \sum_{j:\pi_j \le \pi_i} x_j$$

Optimal returns

First characterize returns, then solve for permutation

First characterize returns, then solve for permutation

Proposition

Optimal scheme specifies π^* and $\left(r_i^*,k_i^*\right)_i$ s.t. $\forall i$

$$r_{i}^{*}=rac{ heta}{P\left(X_{i}(\pi^{*})
ight)}$$
 and $k_{i}^{*}=0$

Optimal permutation

• Optimal permutation π^* minimizes $\sum_i \frac{\theta}{P\left(X_i(\pi)\right)} x_i$

Optimal permutation

• Optimal permutation
$$\pi^*$$
 minimizes $\sum_i \frac{ heta}{P\left(X_i(\pi)
ight)} x_i$

Proposition

Suppose 1/P(x) convex over [0, X]

For any $(x_i)_i$ with $X_N \leq X$, π^* satisfies

$$\pi_i^* < \pi_j^* \implies x_i \ge x_j$$

Hence, larger investors receive higher net returns than smaller investors

•
$$\theta = 10\%$$
, $(x_1, x_2) = (10, 20)$, $P(x) = \frac{x}{30}$

• So far $(x_i)_i$ as given. What are the optimal investments?

• So far $(x_i)_i$ as given. What are the optimal investments?

Proposition

If $(\widehat{x}_i)_i$ majorizes $(x_i)_i$, principal's cost is lower under $(\widehat{x}_i)_i$

Corollary

Given $(\overline{x}_i)_i$, principal raises capital from agents with largest endowments

Plan

■ Part 1: Contractible actions

- Exogenous externalities
- Endogenous externalities

Part 2: Hidden actions

- Public contracts: Winter (2004)
- Private contracts
- Part 3: Hidden types
 - Monopolist problem

Teamwork

Principal induces team of agents to exert effort

- $a_i \in \{0,1\}$ is hidden action
- Effort costs $(c_i)_i$ with $c_i > 0 \ \forall i$

Teamwork

Principal induces team of agents to exert effort

- $a_i \in \{0,1\}$ is hidden action
- Effort costs $(c_i)_i$ with $c_i > 0 \ \forall i$
- Principal's project succeeds or fails
 - $P: \{0, 1, \dots, N\} \rightarrow [0, 1]$, strictly increasing and convex
- Scheme specifies success-contingent bonuses $b = (b_i)_i$
 - Agents protected by limited liability

Principal's problem

• Given (a_1, \ldots, a_N) , agent *i*'s payoff is

$$P(|j:a_j=1|)b_i - a_i c_i$$

Principal's problem

• Given (a_1, \ldots, a_N) , agent *i*'s payoff is

$$P(|j:a_j=1|)b_i - a_ic_i$$

• (W) requires
$$E(b + \varepsilon) = \{a^1\} \ \forall \varepsilon > 0$$

Principal solves

$$\min_{b} P\left(N\right) \sum_{i} b_{i} \text{ subject to (W)}$$

• 2 agents, $c_i = c$, project succeeds with prob. $\begin{cases}
1 & : \text{ both work} \\
\alpha^2 & : \text{ both shirk} \\
\alpha & : \text{ one each}
\end{cases}$

• 2 agents, $c_i = c$, project succeeds with prob. $\begin{cases} 1 & : \text{ both work} \\ \alpha^2 & : \text{ both shirk} \\ \alpha & : \text{ one each} \end{cases}$

To make work an equilibrium at least cost, pay both agents

$$b_L := \frac{c}{1 - \alpha}$$

• 2 agents, $c_i = c$, project succeeds with prob. $\begin{cases} 1 & : \text{ both work} \\ \alpha^2 & : \text{ both shirk} \\ \alpha & : \text{ one each} \end{cases}$

To make work an equilibrium at least cost, pay both agents

$$b_L := \frac{c}{1 - \alpha}$$

To make it unique equilibrium, pay one agent

$$b_H := \frac{c}{\alpha(1-\alpha)}$$

and then b_L to the other agent

Optimal scheme and discrimination

Supermodular game, so ranking lemma applies

Proposition

Optimal scheme specifies π^* and b^* s.t. $\forall i$

$$b_i^* = \frac{c_i}{P(|j:\pi_j \le \pi_i|) - P(|j:\pi_j < \pi_i|)}$$

Optimal scheme and discrimination

Supermodular game, so ranking lemma applies

Proposition

Optimal scheme specifies π^* and b^* s.t. $\forall i$

$$b_i^* = \frac{c_i}{P(|j:\pi_j \le \pi_i|) - P(|j:\pi_j < \pi_i|)}$$

Proposition

Optimal scheme is discriminatory

That is, if $c_i = c \ \forall i$, then π^* is arbitrary and

$$b_i^* > b_j^* \iff \pi_i^* < \pi_j^*$$

Plan

Part 1: Contractible actions

- Exogenous externalities
- Endogenous externalities

Part 2: Hidden actions

- Public contracts
- Private contracts: Halac, Lipnowski, and Rappoport (2021)
- Part 3: Hidden types
 - Monopolist problem

Private contracts

• Incentive scheme $\sigma = \langle T, g, B \rangle$:

- $T = \prod_i T_i$, where each T_i is finite (WLOG $T_i \subseteq \mathbb{N}$)
- $g \in \Delta T$ (WLOG g_i has full support on T_i)
- $B = (B_i)_i$, where $B_i : T_i \to \mathbb{R}_+$ is *i*'s bonus from success

Private contracts

• Incentive scheme $\sigma = \langle T, g, B \rangle$:

- $T = \prod_i T_i$, where each T_i is finite (WLOG $T_i \subseteq \mathbb{N}$)
- $g \in \Delta T$ (WLOG g_i has full support on T_i)
- $B = (B_i)_i$, where $B_i : T_i \to \mathbb{R}_+$ is *i*'s bonus from success
- (W) requires $E(\langle T, g, B + \varepsilon \rangle) = \{a^1\} \ \forall \varepsilon > 0$
 - Where $E(\sigma)$ is set of BNE under σ , and $a := (a_i(t_i))_{i,t_i}$

Private contracts

• Incentive scheme $\sigma = \langle T, g, B \rangle$:

- $T = \prod_i T_i$, where each T_i is finite (WLOG $T_i \subseteq \mathbb{N}$)
- $g \in \Delta T$ (WLOG g_i has full support on T_i)
- $B = (B_i)_i$, where $B_i : T_i \to \mathbb{R}_+$ is *i*'s bonus from success
- (W) requires $E(\langle T, g, B + \varepsilon \rangle) = \{a^1\} \ \forall \varepsilon > 0$
 - Where $E(\sigma)$ is set of BNE under σ , and $a := (a_i(t_i))_{i,t_i}$
- Principal solves

$$\inf_{\sigma} P(N) \sum_{i} \sum_{t_i} g_i(t_i) B_i(t_i)$$

subject to (W)

Example: Recall public contracts

• 2 agents,
$$c_i = c$$
, project succeeds with prob.

$$\begin{cases}
1 & : \text{ both work} \\
\alpha^2 & : \text{ both shirk} \\
\alpha & : \text{ one each}
\end{cases}$$

To make work unique equilibrium with public contracts, pay one agent

$$b_H := \frac{c}{\alpha(1-\alpha)}$$

and then pay the other agent

$$b_L := \frac{c}{1 - \alpha}$$

First agent reassures second agent

Example: Introduce private contracts

Now suppose one agent offered private contract with random bonus:

$$b_H$$
 or b_L , each with prob. $rac{1}{2}$

And the other agent is offered

$$b_M := \frac{c}{\frac{1}{2}\alpha(1-\alpha) + \frac{1}{2}(1-\alpha)}$$

Example: Introduce private contracts

Now suppose one agent offered private contract with random bonus:

$$b_H$$
 or $b_L,$ each with prob. $rac{1}{2}$

And the other agent is offered

$$b_M := \frac{c}{\frac{1}{2}\alpha(1-\alpha) + \frac{1}{2}(1-\alpha)}$$

• Agents "reassure" each other \implies both work

Example: Principal's cost and discrimination

 $\bullet b_M < \frac{1}{2}b_H + \frac{1}{2}b_L$

 \implies Total average payments decrease with private contract

- $\bullet b_L < b_M < b_H$
 - \implies Less transparency can mean less discrimination
- In fact, we show the optimal scheme eliminates discrimination

Ranking schemes

• $\sigma = \langle T, g, B \rangle$ is a ranking scheme if:

- Every distinct i, j have $g\{t : t_i = t_j\} = 0$
- Every i and t_i have

$$B_i(t_i) \mathbb{E}_g \left[P(|j: t_j \le t_i|) - P(|j: t_j < t_i|) \mid t_i \right] = c_i$$

Ranking schemes

• $\sigma = \langle T, g, B \rangle$ is a ranking scheme if:

- Every distinct i, j have $g\{t : t_i = t_j\} = 0$
- Every *i* and *t_i* have

$$B_i(t_i) \mathbb{E}_g \left[P(|j: t_j \le t_i|) - P(|j: t_j < t_i|) \mid t_i \right] = c_i$$

Lemma

- 1. Every ranking scheme satisfies (W)
- 2. Any scheme satisfying (W) is dominated by some ranking scheme

- \blacksquare Let Π be set of permutations on N
 - Each t (without ties) induces an agent ranking $\pi(t)\in\Pi$
 - Ranking scheme σ induces ranking distribution $\mu^{\sigma} \in \Delta \Pi$
 - Type t_i has ranking belief $\mu_i^{\sigma}(\cdot|t_i) \in \Delta \Pi$

- \blacksquare Let Π be set of permutations on N
 - Each t (without ties) induces an agent ranking $\pi(t)\in\Pi$
 - Ranking scheme σ induces ranking distribution $\mu^{\sigma} \in \Delta \Pi$
 - Type t_i has ranking belief $\mu_i^{\sigma}(\cdot|t_i) \in \Delta \Pi$

Given $\mu_i \in \Delta \Pi$, let

$$\frac{c_i}{\mathbb{E}_{\pi \sim \mu_i} \left[P(|j: \pi_j \leq \pi_i|) - P(|j: \pi_j < \pi_i|) \right]}$$

- \blacksquare Let Π be set of permutations on N
 - Each t (without ties) induces an agent ranking $\pi(t)\in\Pi$
 - Ranking scheme σ induces ranking distribution $\mu^{\sigma} \in \Delta \Pi$
 - Type t_i has ranking belief $\mu_i^{\sigma}(\cdot|t_i) \in \Delta \Pi$
- Given $\mu_i \in \Delta \Pi$, let

$$f_i(\mu_i) := \frac{c_i}{\mathbb{E}_{\pi \sim \mu_i} \left[P(|j: \pi_j \le \pi_i|) - P(|j: \pi_j < \pi_i|) \right]} \cdot P(N)$$

- \blacksquare Let Π be set of permutations on N
 - Each t (without ties) induces an agent ranking $\pi(t)\in\Pi$
 - Ranking scheme σ induces ranking distribution $\mu^{\sigma} \in \Delta \Pi$
 - Type t_i has ranking belief $\mu_i^{\sigma}(\cdot|t_i) \in \Delta \Pi$
- Given $\mu_i \in \Delta \Pi$, let

$$f_i(\mu_i) := \frac{c_i}{\mathbb{E}_{\pi \sim \mu_i} \left[P(|j: \pi_j \le \pi_i|) - P(|j: \pi_j < \pi_i|) \right]} \cdot P(N)$$

 \blacksquare A ranking scheme $\sigma = \langle T, g, B \rangle$ costs the principal

$$\sum_{i} \mathbb{E}_{t_i \sim g_i} f_i \bigg(\mu_i^{\sigma}(\cdot | t_i) \bigg)$$

The optimal value

- Principal chooses profile of distributions over ranking beliefs
 - But constrained: if increase an agent's belief, must lower another's
- Interpret as choosing average ranking distribution plus information

The optimal value

Principal chooses profile of distributions over ranking beliefs

- But constrained: if increase an agent's belief, must lower another's
- Interpret as choosing average ranking distribution plus information
- Show problem reduces to optimizing over average ranking distribution:

Theorem Principal's optimal value is

$$\min_{\mu \in \Delta \Pi} \sum_{i} f_i(\mu)$$

Back to example

Back to example

Optimal scheme

Auxiliary program characterizes optimal incentives:

Theorem

There is unique bonus profile b^* which minimizes $\sum_i b_i$ among all

$$b \in \left\{ \frac{1}{P(N)} \left(f_1(\mu), \dots, f_N(\mu) \right) : \ \mu \in \Delta \Pi \right\}$$

A sequence $(\sigma^m)_m$ that satisfies (W) is optimal iff the limit bonus distribution under σ^m (exists and) is degenerate on b^*

No discrimination

Corollary

If
$$c_i = c_j$$
, then $b_i^* = b_j^*$ and every optimal $(\sigma^m)_m$ has

$$\mathbb{P}^m\{|b_i - b_j| < \varepsilon\} \to 1 \ \forall \varepsilon > 0$$

- \implies No discrimination between identical agents; little between similar
- \implies Rank uncertainty strictly optimal for similar agents

Plan

Part 1: Contractible actions

- Exogenous externalities
- Endogenous externalities
- Part 2: Hidden actions
 - Public contracts
 - Private contracts
- Part 3: Hidden types
 - Monopolist problem: Halac, Lipnowski, and Rappoport (2024)

Monopolist problem

- Monopolist sells good to set of buyers
- Externalities: Buyer's benefit from good increases with # other buyers
- Hidden types: Buyer's benefit from good depends on private info

Setup

 \blacksquare Unit population of buyers. Seller offers personalized $p_i \in \mathbb{R}_+$ to each

• Buyers have private types $heta_i \in [\underline{ heta}, \overline{ heta}]$

 \blacksquare Given total purchased quantity $q \in [0,1],$ buyer of type θ_i gets payoff

$$u(\theta_i, q) - p_i$$

if he buys at p_i , and zero if he does not buy
Setup

 \blacksquare Unit population of buyers. Seller offers personalized $p_i \in \mathbb{R}_+$ to each

• Buyers have private types $heta_i \in [\underline{ heta}, \overline{ heta}]$

 \blacksquare Given total purchased quantity $q \in [0,1],$ buyer of type θ_i gets payoff

$$u(\theta_i, q) - p_i$$

if he buys at p_i , and zero if he does not buy

• Today's presentation: take $\theta_i \sim U[0,1]$ and $u(\theta_i,q) = \theta_i \overline{v}(q)$

• With $\overline{v}(0) = 0$ and $1/\overline{v}(\cdot)$ convex

Seller's problem

• Quantity demanded and revenue from price distribution $\Pi \in \Delta(\mathbb{R}_+)$:

$$D_q(\Pi) := \int D_q(p) \, \mathrm{d}\Pi(p) \quad \text{where } D_q(p) := 1 - \frac{p}{\overline{v}(q)}$$
$$R_q(\Pi) := \int R_q(p) \, \mathrm{d}\Pi(p) \quad \text{where } R_q(p) := pD_q(p)$$

Seller's problem

• Quantity demanded and revenue from price distribution $\Pi \in \Delta(\mathbb{R}_+)$:

$$D_q(\Pi) := \int D_q(p) \, \mathrm{d}\Pi(p) \,$$
 where $D_q(p) := 1 - \frac{p}{\overline{v}(q)}$
 $R_q(\Pi) := \int R_q(p) \, \mathrm{d}\Pi(p) \,$ where $R_q(p) := pD_q(p)$

Seller's optimal value is

$$\begin{split} \sup_{\Pi\in\Delta(\mathbb{R}_+)} & \min_{q^*\in[0,1]} & R_{q^*}(\Pi) \\ & \text{subject to} & D_{q^*}(\Pi) = q^* \end{split}$$

Benchmark 1: Complete information

Suppose no hidden types: θ_i 's are observable

Benchmark 1: Complete information

- Suppose no hidden types: θ_i 's are observable
- Monopolist sells to everyone using ranking scheme
 - Offer each buyer price that makes him indifferent if only preceding buy

Benchmark 1: Complete information

- Suppose no hidden types: θ_i 's are observable
- Monopolist sells to everyone using ranking scheme
 - Offer each buyer price that makes him indifferent if only preceding buy
- Cannot apply same methodology under incomplete information
 - Seller cannot control order of deletion of dominated strategies
 - New approach: work with anticipated q rather than buyer types

Benchmark 2: Best-case implementation

Suppose seller can select her preferred equilibrium. Then problem is

$$\begin{split} \sup_{\Pi \in \Delta(\mathbb{R}_+)} & \max_{q^* \in [0,1]} & R_{q^*}(\Pi) \\ & \text{subject to} & D_{q^*}(\Pi) = q^* \end{split}$$

Benchmark 2: Best-case implementation

Suppose seller can select her preferred equilibrium. Then problem is

$$\begin{split} \sup_{\Pi\in\Delta(\mathbb{R}_+)} & \max_{q^*\in[0,1]} & R_{q^*}(\Pi) \\ & \text{subject to} & D_{q^*}(\Pi) = q^* \end{split}$$

Proposition

Under best-case implementation, every optimum has degenerate Π

Worst-case implementation

Externalities mean other equilibria under any posted p>0

- Worst equilibrium has zero revenue
- Optimal Π under worst-equilibrium selection must be non-degenerate
- What is the optimal form of price dispersion?

Which constraints matter?

Proposition

Under worst-case selection, (q^*, Π^*) is optimal iff it solves

$$\begin{array}{ll} \max_{q \in [0,1], \ \Pi \in \Delta(\mathbb{R}_+)} & R_q(\Pi) \\ \\ \textit{subject to} & D_{\hat{q}}(\Pi) \geq \hat{q} \quad \forall \hat{q} \in (0,q) \end{array}$$

Which constraints matter?

Proposition

Under worst-case selection, (q^*, Π^*) is optimal iff it solves

$$\begin{array}{ll} \max_{q \in [0,1], \ \Pi \in \Delta(\mathbb{R}_+)} & R_q(\Pi) \\ \\ \text{subject to} & D_{\hat{q}}(\Pi) \geq \hat{q} \quad \forall \hat{q} \in (0,q) \end{array}$$

• Let $\Gamma : \mathbb{R}_+ \to \mathbb{R}_+$ right-continuous, nondecreasing. Say Γ is greedy if

$$D_{\hat{q}}(\Gamma) = \hat{q} \quad \forall \hat{q} \in (0,1)$$

Optimal price distribution

Theorem

Any optimal Π^* is greedy up to

$$p^* := \max \operatorname{Supp}(\Pi^*) < \overline{v}(q^*),$$

with mass point at p^*

Example 1

- $\bullet \ {\rm Take} \ u(\theta,q) = \theta q \ {\rm and} \ \theta \sim U[0,1]$
 - $\Gamma(p) = p/\mathbb{E}[\theta]$ satisfies $D_q(\Gamma) = q$ for all $q \in [0,1]$

Example 1

- $\bullet \ {\rm Take} \ u(\theta,q) = \theta q \ {\rm and} \ \theta \sim U[0,1]$
 - $\Gamma(p)=p/\mathbb{E}[\theta]$ satisfies $D_q(\Gamma)=q$ for all $q\in[0,1]$

Example 2

- \blacksquare Take $\theta \sim U[0,1]$ and $u(\theta,q) = \theta \overline{v}(q)$ with $\overline{v}(q) = q^2$
 - $\Gamma(p) = (3/2)\sqrt{p}$ satisfies $D_q(\Gamma) = q$ for all $q \in [0,1]$

Effects of externalities

- Seller induces higher max price and higher quantity than in best-case
- If stronger externalities, higher quantity and lower weight on low p's
- If groups of heterogeneous externalities, build demand weak to strong

- Contracting for coordination arises in many applications
- Possibility of multiple equilibria calls for robust approach
- We studied principal's optimal worst-case implementation scheme
 - Implications for contracts and outcomes in organizations and markets
 - And still many open questions!

References

- Halac, Marina, Ilan Kremer, and Eyal Winter. 2020. "Raising Capital from Heterogeneous Investors." AER
- Halac, Marina, Elliot Lipnowski, and Daniel Rappoport. 2021. "Rank Uncertainty in Organizations." AER
- Halac, Marina, Elliot Lipnowski, and Daniel Rappoport. 2024. "Pricing for Coordination."
- Segal, Ilya. 2003. "Coordination and Discrimination in Contracting with Externalities: Divide and Conquer?" JET
- Winter, Eyal. 2004. "Incentives and Discrimination." AER

More work (1)

- Ali, S. Nageeb, Nima Haghpanah, Xiao Lin, and Ron Siegel. 2022. "How to Sell Hard Information." QJE
- Bernstein, Shai, and Eyal Winter. 2012. "Contracting with Heterogeneous Externalities." AEJ: Micro
- Camboni, Matteo and Michael Porcellacchia. 2023. "Monitoring Team Members: Information Waste and the Self-Promotion Trap."
- Chan, Lester. 2023. "Weight-Ranked Divide-and-Conquer Contracts."
- Cusumano, Carlo, Tan Gan, and Ferdinand Pieroth. 2023. "Unique Implementation with Optimal Monitoring."
- Dal Bó, Ernesto. 2007. "Bribing Voters." AJPS
- Eliaz, Kfir, and Ran Spiegler. 2015. "X-Games." GEB
- Genicot, Garance, and Debraj Ray. 2006. "Contracts and Externalities: How Things Fall Apart." JET
- Halac, Marina, Ilan Kremer, and Eyal Winter. 2024. "Monitoring Teams." AEJ:Micro

More work (2)

- Halac, Marina, Elliot Lipnowski, and Daniel Rappoport. 2022. "Addressing Strategic Uncertainty with Incentives and Information." AEA P&P
- Innes, Robert, and Richard Sexton. 1994. "Strategic Buyers and Exclusionary Contracts." AER
- Inostroza, Nicolas, and Alessandro Pavan. 2020. "Persuasion in Global Games with Application to Stress Testing."
- Kapon, Samuel (r) Lucia Del Carpio (r) Sylvain Chassang. 2022. "Using Divide-and-Conquer to Improve Tax Collection."
- Li, Hongcheng, and Tan Gan. 2024. "Robust Advertisement Pricing."
- Luo, Dan. 2023. "Raising Capital from Investor Syndicates with Strategic Communication."
- Luo, Dan and Ming Yang. 2023. "The Optimal Structure of Securities under Coordination Frictions."
- Mookherjee, Dilip. 1984. "Optimal Incentive Schemes with Many Agents." REStud

More work (3)

- Mookherjee, Dilip, and Stefan Reichelstein. 1992. "Dominant Strategy Implementation of Bayesian Incentive Compatible Allocation Rules." JET
- Moriya, Fumitoshi, and Takuro Yamashita. 2020. "Asymmetric-Information Allocation to Avoid Coordination Failure." JEMS
- Morris, Stephen, Daisuke Oyama, and Satoru Takahashi. 2020. "Implementation via Information Design in Binary-Action Supermodular Games."
- Rasmusen, Eric, J. Mark Ramseyer, and John Wiley, Jr. 1991. "Naked Exclusion." AER
- Sákovics, József, and Jakub Steiner, 2012. "Who Matters in Coordination Problems?" AER
- Segal, Ilya. 1999. "Contracting with Externalities." QJE
- Segal, Ilya, and Michael Whinston. 2000. "Naked Exclusion: Comment." AER
- Spiegler, Ran. 2000. "Extracting Interaction-Created Surplus." GEB
- Winter, Eyal. 2006. "Optimal Incentives for Sequential Production Processes." RAND

Thank you!