Data and New Directions in Urban Mobility

Henry Kelly Boston, April 20, 2016

The future, according to GM. (Alfred Eisenstaedt/Getty Images)

What's New?

- Demand (demographics, life-style, online shopping/optimized delivery, telecommuting)
- Vehicle owner/operator -> buying mobility
- Urban design (transit oriented)
- Ubiquitous mobile devices
- New business models- mobility on demand (Uber, Lyft, Bridj, eBay Now, Amazon...)
- New Vehicle types (Connected, Automated, Right sized, Electric)
- Ubiquitous sensors and controls (including video)
- Vast amounts of data and powerful new data tools to describe, predict, and prescribe

Metrics

- Economic (efficiency, supply chain)
- Social (access, opportunity, equality)
- Energy & Environment (cut waste, accelerate electric)
- Health (access, safety, air quality)
- Disaster management (evacuations)

Data

- From personal vehicles and trucks (location, speed, bumps, maintenance)
- From emergency vehicles & transit
- From Infrastructure sensors including cameras
- Weather
- Specially instrumented vehicles

Example Analytical Challenges: Learning

Driver Assist/ Connected, Automated Vehicles

- Hazard detection
- Anticipate driver/pedestrian behavior
- Route planning (people & delivery)

Traffic Management

- anticipate driver route choice behavior
- manage traffic under routine conditions
- manage traffic under emergency conditions

System Planning

- Infrastructure/urban design
- Transit design and anticipated operations
- Simulations

US Vehicle Miles Traveled

Source: Kolko, Terner Center for Housing Innovation, UC Berkeley 2016

Impact of Automated Vehicles on Energy Consumption

MacKenzie, Wadud, Leiby: Oak Ridge National Lab, 2014

Energy Use Impact of Automated Vehicles

Study	Metric	Effect Magnitude	Time Frame	Notes
Anderson et al. (RAND), 2014	Fuel Economy	+100% - +1000%	2050+	Based on aggressive vehicle weight reductions
Brown et al., 2014	Fuel Demand	-91% - +173%	90% AV penetration	Range based on scenarios with different effects
Fagnant & Kockelman (Eno Center), 2013	VMT	+9%	90% AV penetration	Estimates also given for lower market share; fuel efficiency gains assumed
	Fleet size	-42.6%		
Fagnant & Kockelman, 2014	Energy use	-12%	Fleet is all shared AVs	Per shared AV, vs. avg. light-duty vehicle
	GHG	-5.1%		
Spieser et al., 2014	Fleet Size	-66%	Fleet is all shared AVs	No energy-only outputs modeled

Raphael Barcham Goldman School of Public Policy, UCB 2014

Mobility Transformation Center

- Ann Arbor: Up to 9,000 equipped vehicles (cars, trucks, bus, bicycle, pedestrian)
- SE Michigan: 20,00 connected vehicles, 500 nodes, 5000 devices
- Ann Arbor Automated Vehicle Fleet Operational Test in M City
 - 27 square miles of coverage, including surrounding highways as well as city and suburban streets.
 - Equipped infrastructure (Mcity) includes
 - 45+ intersections
 - 3 curve-related sites
 - 12 freeway sites
 - All dedicated short-range communications (DSRC) logged
 - Testing selected vehicle-to-infrastructure functions

Current Research Topics

- Legal and Regulatory Issues CAV
- Cybersecurity Roadmap
- Remote Intrusion Detection
- Transfer-of-Control During Automated Driving
- Drivers' Adaptation Behavior
- Age-related Differences in Driver
- Parking Guidance System in Ann Arbor
- Improving fuel economy of heavy-duty vehicles using vehicle-to-vehicle communication
- Cybersecurity Testing Center
- Simulating vehicle automation

Willow Run: 335 Acres

PRIVACY

SECURITY