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Abstract—Acknowledging that increasing intermittent clean (5'6%)_0f regulgtlon-serwce-down anq 500 MW (12)_2%
energy generation is likely to impose a bottleneckn the regulation-service-up would be required! Finallfudies
demand for regulation reserves, we investigate patéal have claimed that with proper geographical diversitwind
increases in the supply of regulation service thragh enhanced farm locations, a sudden loss of wind generatiomds a
participation of loads in electricity markets. Moreover, we redible event. However, this type of event hasuoed in
focus ‘on future markets where Loads connected at &1 5 o5q with high wind penetration. The Texas batanci
distribution network participate extensively and in direct . . . . ;
competition with centralized generation whole salemarket authority reported that wind output during certb_miurs In
participants. We focus our analysis to distributed PHEV loads 2007 was 2,000 MW less then forecasted, and in 2008
and develop a decision support algorithm for optimhbidding ~ output unexpectedly dropped 1,300 MW in three h¢8}s
to the existing wholesale as well as to prospective [4]. In Europe (e.g., Spain), similar system si@pilssues
retail/distribution market. We argue that generalization to a  qye to wind have been experienced [2], [6].
broad range of load types is reasonably straight fovard. Focusing on alternative sources of fast reservedetfor
promoting the clean energy agenda, we argue tliateeft
load side regulation service support, amongst ethmr
A. Effective Load Management and the Integratibn optimal PHEV charging, is achievable by opening up
Renewable Generation electricity markets to the load side. In this payerpresent

In the ongoing debate about energy and environmenfjaeC'S'on support tools that build upon —today’s

sustainability, the power system’s ability to atisor communication capabilities to enable this partitigra
renewable generation has featured prominently. His t

context, the burden of intermittency that accomeani B. Energy and Reserve Market Transactions: Existing
renewable generation has been a major topic ofezanc Wholesale and Contemplated Retail Markets

[10], [16], [19]. Wind generation variability ovéime-scales
of minutes and inability to dispatch at will ovenger time-
scales is likely to increase the reserves requoeshfeguard
system stability including regulation service (5hote time-
scale) and operating reserves (15 minute time-scal
Although wind generation is a competitive sourcelettric
energy, depending on the burden that renewablergiime
places on load following and regulation serviceeress,
business as usual where such reserves are praodig by
flexible generation resources may not be econotyical
viable. In this case, we will either have to forgjgnificant
renewable generation expansion or rely on effidiead side
support.

Several studies claim that a modest increase mlaggn
service [13] is required to support significantregeses in
wind generation. However, more recent studies dé age EXxisting Whole Sale Markets
empirical evidence [4]-[6], [8], [9] indicate thathe In the US, day-ahead, adjustment, and real-time
conclusion of modest regulation service reserveholesale power marketsave been operating since the mid
requirements is a significant underestimation. Makaet al. 1990s, clearing energy (generation offers and deniéats),

[8] evaluated a scenario similar to that considemgdthe and requisite reserve capacity specified by trassiom
CEC, and reported that for a 4,100 MW incremenivisid ~ system operators. Whole sale market operators declu
farm nameplate capacity, a maximum increase of @80 CAISO, ERCOT, MISO, PJM, ISONE, NYISO, and SPP.
FERC Order 719, has encouraged all Independenei@yst
Operators to initiate demand response programs to
! Division of Systems Engineering, Boston UniversiBoston MA, complement the reserve capacity transactions irctwanly
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|I. INTRODUCTION

We agree with Smith et al. that “operating expearén
from around the world has shown that a deep, liqredl-
time market is the most economical approach to ighoy
éhe balancing energy required by variable-outpundwi
plants” [16]. We next review existing wholesale mow
markets and propose the necessary costs that vgenrea
should be transacted in contemplated distributatail
markets. Since most of the new market participants,
distributed loads, generation, storage and othesourees
(e.g., smart appliances, power electronics capatfie
dynamic var compensation), are connected at theldigon
network, their participation in wholesale markeéegjuires
that they also participate in a distribution/retaigtwork
market that captures local costs and constraints.




PJM, a pioneer in the evolution of power markellowaed system busses at the day ahead wholesale marlegingle
in 2006 end-use customers to participate througladLo prices. Debits/credits for differences between ddyead
Aggregators (LAs) into the wholesale capacity resgr transacted quantities and actual real-time consomgtius
market on a par basis with generating units [124].[ At line losses are reconciled at the zonal whole sadeket
around the same time ISONE implemented Real-TineePr real-time clearing price. Since bids to the realetimarket
Response and Day-Ahead Load Response Programs. Hne made approximately an hour before the five tainu
NYISO has four demand response programs, includingperiod that the clearing prices refer to, the teme market
Demand-Side Ancillary Services Program. The CAISID w clearing prices can be reasonably considered asxipost
begin in 2010 to offer a Proxy Demand Responseymtpd marginal cost. Wholesale market energy clearingegriat a
which is a load or aggregation of loads that camrgtibids delivery bus represent the marginal generation sobject
into the wholesale day-ahead and real-time marketd to transmission congestion constraints, and malrgina

respond to CAISO'’s dispatch orders. transmission losses for delivery at that bus. Hawethe
There are several related short-term wholesale etsrkfollowing two cost components are not assigned to
that clear sequentially in the course of a day. participants: i) Although requisite reserves are procured

The day ahead marketloses to generation, demand androm the market, their procurement cost is ususdigialized
reserve capacity bids and offers at noon of thebddigre the (i.e. averaged) and charged uniformly to consunpsimce
operating day (t= -12), schedules them simultanigpasnd its marginal cost can not be associated to sjecifi
determines clearing prices for each of the 24 haurthe participants. This may change in the future. Faneple, if
operating day (t=1,2,3,...,24Yhis market performs short- wind farm generation forecast error is deemed nesipte
term planning (e.g., hedging, unit commitment, rese for incremental reserve requirements, wind farms rha
scheduling) functions. charged at the related marginal codt) Although initial

Adjustment marketallow market response to significantproposals [15, 17] prescribed a vector of real seattive
events such as major equipment failures or foregeasdions power clearing prices, technical and economic
that occur after the day-ahead market closes. Thesy in a  considerations at PAMesulted in the decision to not include
manner similar to the day-ahead market, except @erreactive powerexplicitly in the whole sale market. That
shorter time horizon. For this reason, and for $icitp in ~ decision was based on the well founded argumentribia
our exposition, we will not model them explicitly. only is the reactive power market in the transmissystem

The real-time markettypically closes to bids and offers disproportionally small, but also, that the reduced
one hour before the time t and then schedules geoerand effectiveness of distant generators to providetreagower
reserves every 5 minutes. It performs the finalsttients can not guarantee a competitive market.
when essentially all uncertainty has been realized
feasible operational decisions can be made. Clgaites
are used in lieu of ex post marginal costs to ai¥aehit for
deviations from the day ahead schedule. Its baferehce
from the day-ahead and adjustment markets is that
schedules aingleas opposed tmultiple periods. Since bids
and offers are made an hour before the real-timeeha
clears, we will assume that all 12 five minute pdsi in the
hour are similar and approximate the real-time @by an
hour ahead market. Figure 1 below shows the dapd

Proposed Real-Time Distribution/Retail Markets
Retail markets can be construed as markets runnby a
independent distribution system operator bearimilaiities
to the whole sale market's ISO and acting also as a
istribution market operator (DMO). In its initial
instantiations, the DMO can be thought of as aritistion
network that is functionally unbundled from thetdizution
company that owns it for the purpose of providirgua
heficcess to all potential market participants coretetd the

closing att= -12 and scheduling hours 1 through 24, whiIéjiStribUtion n.etwork. In addition t_o a -connecti.cbglm, equal
each real-time market closes at the beginning of hand access requires that the following information hbljzly

scheduling generation, demand, and reserves oggrettiod and freely available:

from t to the beginning of peridg1 as shown in figure 1. The marginal line losses ML resulting from
incremental demand of Smart Microgrid Affiliate

day ahead mark horizor (SMA) i during time period.
| * The marginal unit cost of incremental reactive powe
' ' ($/KVar per hour) consumed during perioidy SMA i.
| | | I N — | The excess distribution capacity available to SMA

12 1....2....... | ot 24 during periodt. This excess Capacity is dependent on
available transformer and grid capacity over anovab
Rea-time marke horizor the capacity used by high value added - infinite

reservation price — consumption during petiod
Fig. 1. Day-ahead and real-time market timeline. P P 9p

Distribution companies purchase energy for thetaire 2 Personal communication from PJM's Andrew Oft, tperson
clients from a zone (group) of accessible transioiss responsible for the first liberalized whole salerkedimplementation in the
us.



The following comments address the reasonable igmest (i) through more effectivecomplex bids[20] involving
“why these costs have not been represented in dbe rlinear inter-temporal energy and reserve conssaitb

structure so far, and why the same arguments pwafd for section Ill we present the coordination of the LA’s
reactive power in the transmission system do ntut fos the participation in the real-time wholesale market hwihe
distribution system as well”. participation of the SMAs into the distribution&étmarket.

* The lion’s share of T&D losses are distributionelin In section IV we sketch a preliminary algorithm for
losses. Whereas Transmission system marginal losseordinated decision support, and describe howPtHEV
are of the order of 0.5% to 2%, distribution systenexample can be generalized. We finally conclud8euwtion
losses average to 7-8% with marginal line losseé¢ and describe systems challenges emerging from the

ranging from 4 to 25%. proposed demand provided regulation service.
* Reactive power compensation (dynamic var
compensation) is pursued by multimillion cost Il. LA DECISIONS IN THEDAY AHEAD WHOLESALE

dynamic var compensators installed at distribution MARKET: UNIFORM VS COMPLEX BIDS FORPHEV LOADS
system substations so that they are close to veactiA. Uniform Bids
power consumption by inductive loads. At the samgniform bids constitute the most common market
time, power electronics that accompany distributegarticipation rule today. In the day ahead markepply-
generation and storage-like distributed resouraeb s and demand-side market participants make 24 pdirs o
as PHEVs, are becoming ubiquitous. Thesenergy (KWH) and price ($ per KWH) bids, and 24rpaif
distributed power electronics are capable of priogd capacity reserves (KW) and prices ($ per KW stapgér
particularly effective dynamic var compensatiorhour). The day ahead market clears through 24 samebus
where it is needed. uniform auctions. Although there are three typesagfacity

+ The advent of the smart grid will not only makereserves with 0.5, 5, and 15 minute response fionearity
marginal losses and Var consumption informatiomf exposition we will consider only the 5 minuteseeves
readily available, but will also be able to monitorknown asregulation servicaeserves that require an up and
overloading of transformer and other transmissiodown stand-by-capacity offer. More specificallyguéation
assets. This will make treating congestion as loard reserve offers are associated with a nominal génarar
soft — penalty — constraints feasible. Transmissiog,q,m

asset level loading through optimal maintenance and. ) .
expansion but most importantly through dynamid?”ces correspond respectively to the energy resierv

network reconfiguration can be enhanced by demamijice and the cost of modulating generation/condiemp
response. capacity in real-time to respond to  centralizeshtmol

' o ‘ commands. For example, if the LA is scheduled bg th

Interaction ofWholesale and Dszt;fzbutzon/Retazl Markets clearing of the market to provid@tR of regulation service,

Demand-side market participants are already atyeali
assisted by Load Aggregators — Curtailment Servidewill (i) start the period consuming at the rate@ft KW
Providers in PIJM and Enrolling Participant in ISONEhat
take advantage of pooling, decision support irgetice, and
information gathering. Smart Microgrid AffiliateSKMAs) KWH, (i) be credited at the market regulation service
cc).llaborlat|ng with a LA are responsible for handlin clearing price,lf;Rper KWH, and(iii) promise to respond to
microgrid connected loads such as PHEVs pluggex thmt
outlet in a house on a suburban feeder line orgarage of a
commercial building. HVAC, lighting and other migrd  specified level in the intewz{O,ZQlR} at the rate onf /5
monitored and controlled loads. LAs participate day
ahead wholesale markets to buy and sell in advimaaeir
SMAs. LAs also participate in the real-time wholesa
markets in coordination with their SMAs which peipate
in both the real-time whole sale anthe proposed
distribution/retail markets discussed above.

The remainder of this paper evolves as followssdation
Il we present the optimal LA day ahead wholesaleketa
participation problem. To fix ideas, we consides ttase of
PHEV battery charging loads. We present two vessioh
the LA partic)i/pationginq[he Wholesalg day aheadketr() participant to evgluate .the probability of four keyents g,
through a run-of-the-miluniform bidsas practiced today, K=0,1,2,3 described in (1), (2), (3), and (4). These
where the decision problem is to determine thenugdti probabilities, are denoted lm}( k=0, 1, 2, 3 and are
inter-temporally uncoupled 24 price quantity paitld) and

ption rateQ", and two pricesus", andy"°. The

and be charged at the market energy clearing pfid%E per

market operator commands to move towards an operato

KW per min.

The market operator receives bids and offers frbmarket

participants and schedules them to minimize cogts all

24 day-ahead hourly periods. For each period, navice

clearing prices are determined for energy and egigul

service. One usually assumes competitive conditiand
equitable availability of information on the joitikelihood

of clearing prices conditional upon the state @f $lgstem at
time -12. This likelihood or j.p.d. allows each teair



specific to each participant's price bids and affer dan(r), daQR(r): Day ahead market energy requested and

Scheduled quantities are denoted by superseript

eventey US = PEwith probability p; 1)
and the MO schedule®™* = QF with probability p; .
Regulation service offers are accepted, schedutad,
rejected according to (2), (3), and (4).

evente;: [P® —u™|+u" < P"with probabilityg  (2)
and the MO schedule®™ ™ *=Q"and Q** =Q".

event e: |PT-u“[+u“>P" n y“2P" with
probability p? ®3)

and the MO does not schedule the regulation sertige
does schedule the associated energy,

QtR Energy s = Q Rand QtR,s — O
ﬁ!E_u‘RE +u'RC>ﬁ!R n qRE<~P!E W|th
probability p? 4)
and the MO schedules neither the regulation semicehe
associated energy, namel@"="**=0and Q** = 0.

event es:

Note that since probabilities and expectationswali as

namelgéE 3 ( da,
1

regulation service offered, respectively by the LA.

%Q%*(r), ““Q"*(r): Energy and regulation scheduled to the
LA in the clearing of the day ahead market.

dautE, daUtRE, dal.{RC: price bids

92pE 9pR: Random variables for the day ahead wholesale

market clearing prices for energy and regulatiorvise
during periodt, described by their probability distribution as
known when the day ahead market closes.

I_,, and |, the information/state vectors at time -12 and 1,

J,(*™1_,,) the expected cost to go function at time -12
when the day ahead market clears,

U(®1_,) the allowable decision set given the state or
information of the system at time -12, and

I,) the expected cost to gotatl estimated on the
basis of information available &t-12.

Note thatdal1 includes () the energy and regulation service

scheduled in the clearing of the day ahead maalseivell as
(i) forecasts on expected wind output, system outages
available at=-12.

We denote the evolution of information by:

| _,, is the relevant information or state vector usbhe

control/decision  variables depend on the informmatiogay-ahead market closes. It contains the jpd ofrljtou

themselves, they are identified by an additionalt lecapacities, as well as other power system infonasiuch

superscript ofla or rt.

The optimal LA bids to the day ahead wholesale miark
are made anticipating)(that adjustments will be possible

as outages, wind farm output forecasts.

I, is the relevant information or state vector jusiope

h . .

and the revenue of regulation service scheduleithénday
ahead market will be offset by the expected revenomm

energy sales to its SMAs and the expected costi@hases
of regulation service from its SMAs in the real-imarket.
Note that the LA can not consume energy or offgul&tion

unless it either sells-to/buys-from its SMAs orlsélack-
to/buys-back-from the real-time market. This cooglof the
day-ahead and real-time markets can be descrigetbrisly
as the solution of the following broadly constrigtdchastic
dynamic program (DP), for the day-ahead (5) market.

da _
‘]—12( I—lZ)_
Fag da daRE da da,.t
min 2[E TP
daQ[E'daqR’daU[E’daqREv dmRCDU(lz)Dt t=1 d%ﬂ% t p)
+ daE da|5

B tE(daFi"' daptz) daQQ
RleUe
_ daE dal’:‘t,E daq daQR)] + daE‘]l( dﬁl)}

“Rle

Where:

“q
(5)

clearing of the day-ahead market and all past tieed-
markets, the jpds of future real-time market clegnprices,
PHEV charging demand, local line capacities, ofh@wer
system information, the actual local line capasittkiring
periodt to t+A;, and the actual uncharged battery capacity
and desired departure times of PHEVs plugged-itina t.

It contains all the relevant information Ip_; augmented by

the clearing of the-1 real-time market, PHEVs plugged-in
by timet . To generalize we define a functiafy which
updates the information vector as

“, =V (4 _, day ahead market schedy,

rt
|1

—127

="V, ("1, new forecast info available at t= and

="V, ("I ,rt makr. sched. att, new foreca (6)

t+1 t

C. Complex Bids

The uniform bids described above have the advantdge
standardization but they also have a major disadgan the
LA has the onerous task of satisfying inter-tempora



dependencies in the energy requirements of its SMAs consumed/offered in

real-time. The

relying on imperfect knowledge of system-wide costslearing prices are in fact the ex post prices &ickv

embedded in the available estimates of clearingepip.d
functions.

A complex bid that consists of providing the ddead
whole sale market operator with the actual intemgeral
constraints that describe important state dynamézgpacity
constraints and requirements may be much moretsfiéec
In particular, if the above can be described byedn
relationships, the market operator can include therthe
market clearing optimization algorithm and schedhtam to
optimize costs and benefits with full information the bids
of other participants. Inter-temporal constraints mutinely
considered in what are in fact complex bids by gaioes
whose change in output across hours is subjectatapr
constraints. Chen et al [18] analyze market behawvidhe
presence of inter-temporal demand response mocdeleth
elementary complex bid.

In the case of PHEV loads considered in detadeiction
lll, complex bids would consist of linear relatitngs that
capture SMA-specific local distribution capacitynstraints,
line losses and the requirement that batteries fallg
charged at the declared departure time. Referdnggttion
lll, the decision variables in the LA's complex bidill
include the appropriatestimates at time=t12 of §) random

variables “An’,, “Ax, ,(daCiTax) realized at future times

differences relative to day-ahead transactions maieed.
More specifically, the LA solves the stochastic DBkpem
(5) in the day-ahead market to obtain uniform omptex
bidding policies. Note that in the day-ahead matketLA
incurs a cost for energy purchases and realizesntey for
regulation service sales. In the real-time markatbitains
revenue by selling energy to SMASs or back to trad-tiene
wholesale market but incurs costs from buying ratjoth
service from the SMAs or buying it back from thalréme
wholesale market. Viewed in a broadly construed

context where sequentially clearing day—ahead aaltime
markets are related, the LA day-ahead problem, (Perds
on the expected LA cost to go in the first realdimarket,

d""EJ(Il), where the expectation is taken over day-ahead

clearing quantities as well as future informatiorkimown at
the time of the bidding.

The LA solves the real-time problem (7) to detemnin
optimal prices, P® andR" at which it transacts with its

SMAs. To describe (7) we define real-time LA enesgies
to and reserve purchases from its

I’té‘E — Z rt('jiti (T), rt Q‘R - Zrt QT(T)a

where

°(7),"Q’(r)are determined by the SMAs in

t=1,2,3,...,24, () the battery and number of car dynamicgenyes/neighborhoods1,2,...M, from the solution of the

shown below in equations (8) and (9), and) (the
requirement that PHEV batteries full at declaregadtire

da){r =0 for all . Note that left superscriptsia,

times,

appear in place aft to denote that the estimates represe

knowledge at the time the day ahead market closes.

In the complex bid case, the LA is a price takeswiver,
since the MO schedules LA energy purchases andatagu
service sales to minimize overall system costs réiselting
clearing prices will guarantee the lowest costtlfi@r LA.

I1l. COORDINATED REAL-TIME MARKET DECISIONS ON
PHEVLOADS: LA PARTICIPATES INWHOLESALE MARKET,
SMAS IN THERETAIL MARKET.

A. Load Aggregator Master Problem

SMA sub-problems described below.
In the real-time market the LA is a price takeritasells
back to the real-time market excess energy reldtivéhe
uantities secured in the day-ahead but not dendalpgi¢he

MAs and buys back from the real-time market excess

reserves scheduled when the day-ahead market ¢leate
not supplied by the SMAs. Therefore the LA evaludtes
cost to go by solving (7).

rtJ(I t) - n[pinl’]R rt E{ r éE[ rt étE _n QE,S] _n ﬁtEl’t QIE
i (7)
_rtErt rt FER[H ("?tR _n QR‘S] +rt E)th étR_'_rt J(Im)}

B. SmartGrid Affiliate Sub-Problems

We now consider the real-time market problem farhea
SMA. SMAs are grouped based on characteristics ef th

The LA bids to the day ahead market — uniform ophysical distribution network and therefore, eachASiust
complex — secure hourly energy purchases and régula abide by specific local congestion constraints taaé

reserve sales farl,2,...,24 daQ‘E'S and dan”.

At the real-time market, the L{) sells energy and buys

reserves from its SMAs according to pricé§ and IA?R that

it selects, andii) sells to/buys from the real-time market thePHEVS. In

associated with a specific transformer or feedee in the
distribution network. In addition, each SMA is sulbjéc
location specific marginal line losses. To fix idees focus
on loads for battery charging of a neighborhoodttflef
the concluding section we argue

surplus or deficit relative to the secured day-dheageneralization to HVAC, lighting and other loads sla®t

guantities. The real-time market transactions of Lhe
provide a market based accounting for differencetsvéen
day-ahead energy and regulation

guantites and the actual quantities that

increase problem complexity significantly.
1) Indices and parameters.

service scheduledindex of SMAs.
arg:

. index denoting real time market, appearing defa
superscript

real-time market

DP

SMAs

that



T : Index of plugged-in PHEV departure classes. "“pi\": The probabilities of the four key everits0,1,2,3
N : Number of time periods in the finite horizon.

C: Penalty ($ per KWh) of uncharged energy at tinfie o
PHEV departure.
P : Charging rate (KW) of each PHEV. ~RST .

"I
/l,f, : Marginal costs ($ per KWh) of charging PHEVs with "t

bid vector "u/,

defmed in detail in Section I.C in relation tog&ibid vector
t _(rt Eor rt REr rt RCT)
|t

U 4,

: A random indicator function dependent upon price

. : . that equals 1 with probability
departure class outside of the horizon (te.N).
n . ar

2) State and decision variables. p = ﬂx + 1 9

', X, : Numberi" SMA PHEVs and their uncharged 4) System DynamicsCertain types of non-capacitive
energy (KWh) plugged-in at the beginning of peripdn loads, for example PHEV charging, will require SiglA to
departure class predict, monitor, and maintain system dynamics. Non
A A ith capacitive loads can be defined as loads that mecai
Q'l(T) Q (7): I SMA energy rate purchased from the specmc qguantity of energy, which can be acquirad
LA and regulation service capacity sold to the LAdifferent time periods. Up-and-down reserves, including
respectively, during period regulation service, are exercised by the marketatpe so
”Q”(r) “Q (r): i™ SMA energy rate requested andthat over a half hour or longer period energy radityr is
maintained. As a result, we can write the remairéngrgy
capacity dynamics (9). Also, included in these dgita is a
E it connection between the wholesale and the retailketar
"WE (7) : i" SMA bid price to real-time market f8tQ"(r).  namely marginal line losses. Equations (8) and fityide
(“u.RE(r) ")) i™ SMA energy and capacity price the remaining system dynamics needed for non-ctyaci
' ; load. Equation (12) updates the information vector.

offered, respectively to the real-time market 7). o t 7
pectively () (=", + A, (8)

7 _rtr rt _
Xi‘t+1_ )ﬂx+ A)l(t

regulation service capacity offered, respectivadythe real-
time wholesale market during peribod

“m, =(1-Marg.Losses : the factor of marginal line
©)

losses that converts energy and reserves at thefethe - it s
wholesale market transmission system to the auailab M QM+ + QD +7] Qt(r)]

energy and required reserves at the site of SMA T =t X, L= =0 [r< t (10)
l,,: the information available to th&" SMA at timet,

including j.p.d.s of future PHEV demand, and rémlet
market clearing prices conditional upon physicammena
such as weather forecasts and the overall powésrsystate
including known plant outages and wind output fasts
that may affect reserve requirements, bids by otharket
participants and ultimately clearing prices. In itdd, it
contains SMA location-specific  distribution capgcit

"1 a ="V, (”I ., » newinfo during period) (11)

it+1
5) Allowable DecisionsThe SMA must follow market
rules to make sure that its energy bid and reguiadervice
offer are realizable. This requires that two caaists (12)-
(13) on the maximal consumption rate (i.e., theuested
energy rate pluswice the offered regulation servicdjirst,
the excess SMA location specific capacity should be
_ ot Ama . sufficient to support the maximal consumption r&econd
available for PHEV battery charging C;, ) and "M,  there must be enough load (non-capacitive or otisejvto

Finally, it includes quantities scheduled and chegaiprices absorb the maximal charging rate. The allowabldrobset

observed in aII hourly markets that closed previgusA also includes non-negativity constraints on all skete and
= np decision variables.

and the number of PHEVs plugged-in . ac . g
Z,"m QI +"Q(+ 2" Q) +" Q ()]
< rtémax (12)

prices P

SMA i and their uncharged capacﬁy‘h, )ﬁ,t :

3) Random Variables it
"P%,"P": Random variables for the real-time market e . o o
clearing prices for energy and regulation servieging m,["Q. (M) +"Q.(M+2( QM) +" Q ()]
periodt, described by their probability distribution asokm <p n n,

when the real-time market closes. " 0o T Ae - H AR
m.[ Q.(n+ Q.(n+ " Q,(1)+ Q(7)]

“An’,," A, : Random variables indicating the number of th ; (14)
PHEVs and their uncharged energy (KWh) expecteudug- <" >ﬂr,t
in ati™ SMA during period in departure class 5) Bellman EquationDecisions are made at the beginning

of each time period employing the information or state



v Lt i

variables that have to be decided at tithghe Bellman Qii(’)’QT (7).

Equation can be written as (15). 3) Solve (7) and estimate the gradient of the objectiv
"J (I i,t) = function w.r.t. rtQi (), " QF: (r). Since we know that
_ ) g, ("1, B a5  9"QE(@)/9"P* <0 whiled"Q"(r)/0"P" 2 0, the sign
min, .0.) ] (“I ) of elements of the gradient of the objective fummetin.r.t.
AT "P®,"P® can be estimated, a direction of improvement in
with boundary condition, - -
¢ o ; . the prices P%, " P® can be implemented and steps 2 and 3
‘](rIiN)_Cr ){VN-FZ t)'{NA‘vN' l. l SE AR . .
>N repeatedly with the most receﬁR , P" estimates till the
Wherert . W e real-time market LA and SMA problems converge.
Egit( Iit’ u, EE’ qut): . dar-da T rt
; : ! 4) Repeat step 1 usin§*E J()="E "3(,) for
5. rtErtlaErt ot T +rtA 7 )+ Iy
r{ Blo ﬁ’o Q:—t ( ) F‘; Q ( ) t=1 obtained from the converged real-time problem above.
|5l'(;IDE62 "B gitdg(r)- er I?Ert P pi" @(r) 5) Repeat steps 2-5 untl(l,) converges fot=1.
U R R N We acknowledge that at this point in time we have not been
+( "pE-" E’R) "Q(r)+c "X, able to prove that the algorithm 1-5 converges. However,

preliminary computational experience is encouraging. A
reasonable problem simplification that appears to be near
optimal is to restrict SMA real-time problem decisions to
transactions with the LA, limiting real-time transactions t
the LA.

IV. COORDINATION ALGORITHM AND EXTENSION TO
OTHERLOAD TYPES

A Preliminary Coordination Algorithm

Solution of the cascading markets problem defineava Extension to Loads Other than PHEV Loads
requires the simultaneous solution of several lihke the PHEV paradigm of a responsive load with linear
stochastic DPs. The LA undertakes the hedging fomct dynamics generalizes to other important loads. Cendor
through participation in the day-ahead market ahent example, HVAC systems with the following parameters.
distributes the scheduled quantities to its SMAsufgh the T inside Inside temperature during periad

real-time markets when the SMAs know the actudHieee vt ) . .
distribution network constraints. Ttoms'de Outside temperature during peribd

In [1], [5], we report an algorithm solving t_he eane Tmn Tmx  Occupant preferences during pertod
SMA sub-problem for PHEV loads. The solution appfoa 't ’ 't

included an Optimal Open Loop Feedback approximatio K, Known building constants far= 1, 2.
employing Mult|s_tage Stochastic Programming forirate HC.E Energy rate bid for decision periad
look-ahead estimate of the expected cost to go.%t

Implementation of the algorithm on CAISO and ERCOT QHC,R Regulation service offer for decision perind
data indicates substantial benefits from demanticzation !

in the various markets, particularly in terms cfubstantial QI'®°**v  Capacity of the HVAC system during

incrg_ase in the _supply of regulation service _wh'rmﬁcates_ The heating and cooling system dynamics (19)-(21) a
positive synergies between PHEV and wind generatiogjowable control sets are closely analogous to WHE
Using this computational experience as a buildf@Ek  gynamics and constraints (8)-(14). New plug in viehic
to obtain efficient solutions to the multiple SMAUB  grrival random variables are also analogous tadngl heat
problems we can employ the following algorithm: losses and outside temperature, which can be easily

ﬁ) dSollvg the day-aheag LA prob(ljem to ?l?[f‘ai” esmg;\tg‘ predicted from weather forecasts and building properties
scheduled energy purchases and regulation serdfes s, e o )
gy p g TTfldE = -I-!mslde_ Kl(-[ oulslde_ -I: |ns|dj + Ig( Q HC + Q HC):& (19)

Q™" andQ"* for t=1,2,...,24using a reasonable — possibly . o R o

f , H max , Capacit)
from a similar previous day — estimate of the exgecost Q™ +2Q =min(C™,Q ’) (20)
tO go J (I t) fOr t:l 'I"min < -I-[inside < -Emax (21)

2) Using at first reasonable LA real-time energy and Other load examples include dimmable lighting loads

reserve prices,FA{E, |£t>R, for example setting them equal towith a preferred lumen range as well as the loadnoért

. . . appliances.
the expected value of the real-time clearing prisetve the



V. CONCLUSION

We argue that regulation service reserves areylikel
present a major bottleneck as significant capaafy
intermittent clean energy generation is integrai&@. also
argue that demand side participation in existingletale
power markets and emerging retail/distribution retskcan
provide the needed additional supply of regulatenvice

that

is capable to eliminate the bottleneck. Weallin

(15]

(16]

(17]

(18]

propose an enabling coordinated market participatio [19]
decision support algorithm, explore its applicapilito
PHEV loads, and show that it can be extended tade w

variety of loads

including HVAC, lights and smart

appliances.
The issues investigated in this paper point to rsdve

systems challenges

ranging from

opportunities in dealing with random variable fasts
needed in the proposed complex bid to the day ahead
market, to the coordination of multiple stochastimamic
programming based decisions, and to market equifibr
considerations, particularly regarding the allamatof local

distribution

network asset

competing SMAs.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
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