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Abstract— Data centers account for 3% of the national elec-
tricity consumption today. Recent advances in power capping
enable data centers to provide Regulation Service (RS) reserves
to power markets. RS reserve requirements are expected to
increase with the integration of substantial environmentally
sustainable, albeit volatile and intermittent, renewable gener-
ation. We investigate the ability of server clusters to provide
RS reserves while meeting contractual Quality-of-Service (QoS)
guarantees for user applications running on the cluster. We
propose a dynamic server power regulation policy for process-
ing randomly arriving applications within probabilistic QoS
constraints while tracking dynamically broadcasted RS requests
by the power market Independent System Operator (ISO).
Numerical results demonstrate the ability to select optimal
RS reserve and average energy consumption levels that allow
data centers to both deliver probabilistic QoS guarantees to
customers and track real time ISO RS requests. Finally, we
argue that simulated optimal policy performance statistics can
enable data centers to bid for energy and to offer RS reserves
in the the hour-ahead power markets.

I. INTRODUCTION

The unabating increase in data center energy consumption
is a growing concern because of the associated environmental
impacts, the high monetary costs, and the strains imposed on
the National Power System Infrastructure. Electricity used
by data centers worldwide increased by 56% from 2005 to
2010 [9]. In fact, electricity used in the US data centers
currently accounts for around 3% of the total electricity
consumption [9]. At the same time, energy and environ-
mental sustainability objectives are likely to result in the
integration of ever increasing renewable energy generation
into the electricity grid. The volatility and intermittency of
renewable generation, however, combined with the lack of
reliable large-scale energy storage solutions, creates chal-
lenges for grid operators who need to match supply and
demand by securing commensurate flexible capacity reserves
in forward markets and dispatching them in real time. Data
centers offer a unique opportunity as they can provide the
necessary flexibility in their energy consumption. Tapping
this flexibility can lead to satisfying most of the growth in
data center energy consumption from renewables, and also
provide additional reserves to accommodate less flexible uses
of electricity in our society.
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The main contribution of this paper is that it provides a
credible argument on the ability of data centers to participate
profitably in energy markets and provide much needed RS
reserves. To do so, data centers must be able to consume
power in a manner that closely tracks a dynamic power
regulation signal provided by an ISO. Server or data center
power capping techniques, where the real time power con-
sumption of computational nodes are controlled not to exceed
a given cap, have been proposed recently (e.g., [2], [25],
[27]). However, prior work has not investigated the dynamic
power tracking by data centers required to participate in
the advanced energy markets. Solving the runtime power
tracking problem requires specification and optimization of
an implementable dynamic policy that guarantees proba-
bilistic user QoS constraints with reasonably close tracking
of ISO dictated real time power consumption targets. We
demonstrate the optimization of a proposed runtime im-
plementation policy implemented on a commercial multi-
core server. For typical data center utilization levels, our
experiments show that we can achieve up to 30% reduction
in the energy costs while satisfying various probabilistic
performance requirements for high and low priority jobs
running on the server.

The rest of this paper is organized as follows. Section II
provides an overview of power markets and reviews the
related work on the RS provision as well as data center power
management and capping techniques. Section III formulates
the overall data center RS provision problem and how it
applies to a single server. Section IV describes the simulation
methodology and the system model built based on a real-life
server. Section V presents and discusses the numerical results
elaborating our claim that data centers can richly benefit from
the provision of RS through power market participation, and
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In most markets for goods and services, uncertainty results
in a temporary mismatch of supply and demand that usually
does not have overly significant consequences. In electricity
markets, however, system stability requires unfailing balanc-
ing of supply and demand in real time in order to avoid
catastrophic events such as blackouts. As a result, the lack of
reliable and economical large-scale storage solutions, despite
some progress in battery technology and fly-wheel storage



devices, has elevated reserves with the requisite dynamical
characteristics as a key component of modern power markets.

Indeed, the need to match supply with demand in real time
has resulted in the adoption of a series of power markets that
operate at several different time-scales and clear energy and
reserve transactions simultaneously. Focusing on the short-
term markets ([10], [15], [16]) that are most relevant for the
proposed work we identify: (i) day-ahead markets that close
at noon of the previous day and clear energy and reserve bids
by market participants for each of the 24 hours of the next
day, (ii) hour-ahead adjustment markets that close an hour
in advance of each hour allowing participants to adjust their
day ahead positions on both energy and reserves at clear-
ing prices that reflect new information, and (iii) 5-minute
close-to-real-time economic dispatch markets that determine
actual ex post variable marginal cost of energy employed to
adjust participant revenues and costs for deviating from the
quantities cleared in the previous two markets.

Power markets provide a socially efficient mechanism
for pricing and allocating energy, and also for securing
the reserves needed for uncertainty contingency planning.
Reserves secured in the forward markets include primary
(also known as frequency control), secondary (known also
as regulation service, or RS) and tertiary reserves which are
deployed by commands issued respectively in millisecond,
5 second and 5 minute intervals [21]. We focus here on RS
reserves since they usually command high prices [22] and we
show that data centers are well qualified for their provision.
RS reserves are presently offered primarily by centralized
generators, but market rules are already changing to allow
the demand side to offer reserves as well. For example, PJM,
one of the largest US ISOs, has allowed electricity loads to
participate in reserve transactions since 2006 [20] with other
ISOs contemplating to follow suit.

A power market participant in the PJM balancing area who
is cleared during hour h to consume on average at P̄ kW and
provide RS reserves of R kW with market clearing prices for
energy and RS reserves ΠE and ΠR respectively, is charged
for its average power consumption and credited for the RS
reserves as ΠEP̄ − ΠRR [22]. However, the credit for the
RS reserves does not come for free. As the hour unfolds,
the provider has the obligation to modulate dynamically its
power consumption, P (t), so as to track the ISO Regulation
Signal, z(t), by ensuring that P (t) ≈ P̄ + z(t)R. Part of the
hour ahead RS income ΠRR is reduced in proportion to the
tracking error [22]. Moreover, if the tracking error exceeds
a probabilistic tolerance constraint, the participant may lose
its license to participate in the RS reserves market [21]. The
ISO determines z(t) through an integral proportional filter
of the Area Control Error (ACE)1, and frequency excursions
outside of the tolerance interval [59.980, 60.020Hz]. The RS
signal, z(t), is a zero time average scalar taking values in the
interval [−1, 1] and is updated every 4 seconds in increments
that do not exceed ±R/(τ/4) where τ is 150 seconds for

1ACE measures the difference between actual and scheduled net imports
from adjacent balancing areas.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Re
gu

la
ti

on
  S

ig
na

l  

Time 

F: 10/1/11

S: 9/1/10

Fig. 1. Typical PJM 150sec ramp rate (F) and 300sec ramp rate (S)
regulation signal trajectories.

the fast (F) RS and 300 seconds for the slower (S) RS [19].
Typical hour long trajectories of fast (F) and slow (S) RS
signals2, zF (t) and zS(t) respectively, are shown in Figure
1, which are indicative of the statistical behavior of z(t).

Recent research has investigated demand side provision
of RS. Paschalidis et al. [17] propose a market-based mech-
anism that enables a building smart microgrid operator to
offer RS reserves and meet the associated obligation issued
by the ISO, using a dynamic pricing policy. Caramanis et al.
[1] study optimal dynamic pricing policies for a single load
type and their implications to hour ahead bidding decisions.

As part of the related work on data centers, Rao et
al. [24] consider electricity cost minimization subject to
QoS guarantees by exploiting spaciotemporal variations in
electricity market clearing prices. Mohsenian-Rad et al. [14]
propose a grid-aware service request routing design subject
to power flow constraints applicable to a smart grid with load
balancing and reliability objectives. Ghamkhari et al. [6] in-
vestigate the potential profits from data centers’ participation
in an ancillary service market.

Server power management has been widely studied in
recent years. As a result, most current processors have built-
in control knobs such as Dynamic Voltage and Frequency
Scaling (DVFS) and turning off idle units. Multi-core pro-
cessors introduce new opportunities for power management
as they enable larger degrees of freedom in job scheduling
and allocation. Combining DVFS with thread allocation
improves the granularity and dynamic range of server power
control, and enables better tuning of the performance-power
tradeoffs ([23], [3]). It is also possible to enhance the global
power management policy on a multi-core processor by
including objectives such as prioritization, power balancing,
or optimized throughput [7]. Taking processor hardware
heterogeneity into account during job scheduling and DVFS
expands the applicability and efficiency of power manage-
ment ([26], [23]). There are other approaches that require
hardware support for meeting power budgets through micro-
architectural reconfiguration ([13], [8]).

Power capping, where compute nodes operate below a
given peak power value, is commonly used today for meeting

2The data is from: http://www.pjm.com/markets-and-operations/ancillary-
services/mkt-based-regulation/fast-response-regulation-signal.aspx.



peak power constraints. A software-based power capping
strategy meets a given average power budget by inserting
idle cycles during execution [4]. Recent research investi-
gates designing control techniques to coordinate multiple
levels of capping in a data center [27]. These management
techniques use the DVFS and throttling capabilities of the
processors. In addition to throttling, power nap modes, in
which the system can enter and exit from low-power modes
in milliseconds, have been proposed to cope with demand
variations in data centers [12]. A recent approach trains
power-performance models for a target server and uses thread
allocation along with DVFS to improve performance under
dynamically changing power caps ([2], [25]).

To the best of our knowledge, our work is the first to com-
bine power RS control and data center power management
together. Instead of solely targeting peak power constraints,
our goal is to design capping techniques for the data center
to be able to first promise a certain flexible stand-by capacity
and then modulate this capacity up or down in real-time so
as to follow closely the RS signal broadcasted by the ISO.
While power management of computers is being addressed
at many levels today, none of the prior techniques leverage
data center energy management as a grid load stabilizer.

III. PROBLEM FORMULATION

Data center power consumption can be broadly divided
into the cooling system power (chillers, air circulation, etc.)
and the computational power. Data centers can provide RS
by responding to power market outcomes which vary by
day, hour and 5 minute periods, and to ISO RS signals
broadcasted in 4 second intervals through controlling (1) the
5 minute or longer time-scale power consumption dynamics
of the cooling system, and (2) the practically real-time
dynamics of the computing systems (i.e., servers). In this
section, we first briefly describe a data center level RS
provision algorithmic framework and then concentrate on the
control of a single server, which constitutes the framework’s
main building block.

A. Data Center Level Framework

As mentioned earlier, dynamic power markets are cas-
caded. The energy and reserve schedules are co-optimized
when the day-ahead market clears, and are subsequently re-
scheduled at the hour-ahead adjustment market. A load side
participant, in our case a data center, who commits in the
hour ahead market to consume at the average rate of P̄ kW,
and to provide R kW of RS reserves, is obligated to modulate
the real-time data center consumption, P (t), so as to track
an RS signal z(t) broadcasted in 4 second intervals by the
ISO. Thus, if the data center has agreed at hour h to P̄ and
R values for the next hour [h, h+ 1], it must respond to the
dynamics of the ISO RS signal, to consume at the instant
power rate P (t) ≈ P̄ + z(t)R.

The data center RS provision algorithmic framework con-
sists of a master problem, which interacts with a cooling
system sub-problem and server sub-problems, all of which
communicate in the 5 minute time-scale as shown in Figure
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Fig. 2. Data center level power regulation framework.

2. The 5-minute interval is selected here as the cooling power
cannot be controlled and regulated as fast as the computing
power due to the thermal time constants. Based on an esti-
mate of the stochastic arrival rates of processing jobs of type
j during the next hour, λDC,jh , the master problem negotiates
the hourly data center average consumption rate, P̄DCh , and
maximum RS, RDCh . At the beginning of each 5 minute
period within the hour, denoted by k ∈ [1, 2, 3, ..., 11, 12]:

1) The master problem provides targets to the sub-
problems. First, it allocates a power budget to each server
i ∈ {1, 2, . . . , n} and to the cooling system such that

P̄DCh = P̄Coolk +
n∑
i=1

P̄ ik. Note that P̄h is constant across

the next hour but the power budgets of the sub-problems, P̄ ik,
need to be adjusted every 5 minutes as workload and cooling
dynamics may change. The master problem also distributes

the hourly RS requirements, RDCh =
n∑
i=1

Rik and the jobs,

λDC,jh =
n∑
i=1

λi,jk , ∀j, where λDC,jh is the arrival rate of job

type j to the data center. P̄ ik and Rik are related to the type
and the rate of the workloads when the servers are identical
(in terms of their architecture, configuration, location, etc.).
Budgeting algorithms proposed recently (e.g., [28], [5]) can
be applied to solve this allocation problem. In this work, we
focus solely on regulating the computational (server) power.

2) Each server sub-problem i = {1, 2, . . . , n} then in-
dividually performs the RS signal tracking by consuming
at the rate P (t)i ≈ P̄ ik + z(t)Rik and evaluates its ex-
pected performance during the next five minute period. The
server then returns to the master problem its performance,
J ik(λi,jk ∀j, P̄ ik, Rik), i.e., how well it expects to be able to
perform for the given allocations, as well as the sensitivities
of its performance with respect to each of the allocated
quantities, ∇λi,j

k ∀j, P̄ i
k, R

i
k
J ik(λi,jk ∀j, P̄ ik, Rik).

3) The master problem uses the sub-problem feedback to
determine its overall performance, which is in essence the
aggregation of the performance of the individual servers. The
objective is to maximize the sum of the benefits achieved by
all the servers, and, as such, it uses the sensitivity information
to reallocate P̄DCh , RDCh and λDCh among the servers so as
to maximize overall data center performance.

In this paper we focus on the individual server sub-
problem (the 2nd step above), which is the main building



block in our data center RS provision optimization frame-
work. For notational convenience, in the rest of the paper,
we do not denote the time slot (h or k) or the server (i).
In addition, jobs are no longer identified by job type j but
instead by designation of priority and application type.

B. Single Server problem

The single server problem has two coupled objectives:
1) For given targets P̄ and R, it must determine an opti-

mal dynamic policy that maximizes its ability to track
the regulation signal z(t) while maintaining acceptable
QoS in servicing applications;

2) It must search for the optimal target levels P̄ and R
that can be bid at the hour ahead power market to
minimize the energy cost, provided that the optimal
dynamic policy will be used during the hour.

We proceed by defining tracking and QoS performance.
The server needs to control its real time power consumption
P (t) so as to minimize the tracking error defined as ε(t) =
|P (t) − (P̄ + z(t)R)|/R. The control policy at its disposal
is a set of rules that (i) select a job in the queue to process
and (ii) determine the speed, and hence the power usage rate,
at which to process the job. The tradeoff at play is between
better tracking, i.e., achieving a small ε(t), and worse QoS
by introducing delays in processing jobs and forcing them to
wait longer in queue. Categorizing jobs by priority p, (high,
medium, low, etc.) and application type a, (e.g., blackscholes,
bodytrack, etc.) we define by dpa, an instance of the system
time, i.e., waiting time plus processing time, of a job of this
type expressed as a factor of the shortest possible processing
time of that job. Shortest possible processing time is the
time if the server works on that job at its highest power
consumption level, and hence at the fastest possible service
rate. We denote the system time measured in this way by d to
underscore the fact that it can be related to the degradation in
the job’s processing time relative to the situation in which the
server is dedicated to work on that job as soon as it arrives.
dpa = 1 means there is no degradation at all, while dpa > 1
represents various levels of degradation. The performance of
a dynamic policy for given P̄ and R targets is quantified by
the mean and standard deviation of the tracking error ε(t)
and the system time of each job type dpa, which we denote
by ε̄, σε and d̄pa, σdpa .

Observing frequency distributions that are prevalent in
the simulated sample trajectories of ε(t) and dpa, we notice
that they fit the Gamma distribution Γ(k, θ) with shape k:
kε = ε̄2/σ2

ε , kdpa = d̄pa
2
/σ2

dpa
and scale θ: θε = σ2

ε /ε̄,
θdpa = σ2

dpa
/d̄pa. We therefore use the Gamma distribution3

to form probabilistic constraints from estimated mean and
variance statistics.

Mean and standard deviation estimates of ε(t) define the
RS signal tracking performance, which on one level affects
RS revenues, and on another, if a tolerance is exceeded with
an agreed upon probability, the data center is disqualified

3We also did experiments by using Gaussian and uniform distribution.
The proposed solution produces similar results in all the cases.

from participation in the power market. Mean and standard
deviation estimates of job system time are used to construct
QoS guarantee constraints that are specified in data center
client contracts. For example, a high paying customer may
require that system time of jobs it sends to the data center
does not exceed a certain tolerance upper bound at some
agreed upon probability or confidence level, while a low
paying customer would have a relatively larger tolerance.

Finally, denoting the known limits on P (t) (i.e., the limits
determined by the specific hardware) by Pmax and Pidle,
the tolerances agreed upon between the data center and the
ISO as εtol, tolerances between the data center and its clients
by dp,tola , and the statistical confidence level by Pconf , we
formulate the following optimization problem:

maximize
P̄ ,R,dynamic policy

ΠRR−ΠEP̄ −ΠRc[σ2
ε + ε̄2]

subject to Γ−1(kε, θε, Pconf ) > εtol,

Γ−1(kdpa , θdpa , Pconf ) > dp,tola ,

P̄ +R < Pmax,

P̄ −R > Pidle,

P̄ ≥ 0, R ≥ 0.

(1)

where ΠR is the hour-ahead clearing price of RS reserves
($/kWh), ΠE is the hour-ahead clearing price of energy
($/kWh), and c is the penalty associated with the second
moment of the tracking error.

The problem above is a hard problem that requires the
solution of an optimal stochastic dynamic programming
problem for each set of targets, P̄ and R. In this exploratory
paper, we do not attempt to solve for the optimal policy, leav-
ing this task to future work. Instead we select a reasonable
real-time tracking policy described by the following rules:

1) Upon completion of servicing a job, the server selects
a new job from the highest priority queue that is not
empty, using a first-in first-out (FIFO) protocol.

2) The server has a range of power consumption rates for
that job as described in detail in the next section. The
policy, in real time, selects an allowable consumption
rate that minimizes the tracking error ε(t).

Given this simple yet reasonable policy we simulate a
1-hour period multiple times and estimate the mean and
standard deviation performance measure statistics described
earlier. We perform a search over the target values P̄ and R
at a sufficiently fine granularity. An alternative approach that
we explore is to estimate the sensitivities of the performance
measure statistics with respect to the target parameters P̄ and
R, and use these sensitivities to perform a more structured
search. In the next section we describe the server model and
our simulation methodology.

IV. MODELS AND METHODOLOGY

In this section, we introduce the models and the system
simulation methodology for solving the problem formulated
in Section III and describe our experimental infrastructure
on a real life server.
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A. The System Model

A single server in a data center can be abstracted into two
parts: the job waiting queues and the processor. When a job
arrives, it waits in a FIFO queue until it is scheduled to run
on the processor. In our model we assume that the processor
runs only one job at a time, while there are other jobs waiting
in queues with various priority levels (e.g., a high priority
job queue and a low priority queue).

We assume that jobs arrive to the server following an
exponential distribution. Jobs with different priorities arrive
at different arrival rates; i.e., higher priority jobs have a lower
arrival rate, as in general the number of higher priority jobs
will be smaller than that of the low priority jobs. Similarly,
high priority jobs are more urgent in general, and hence
operate under tighter delay constraints. In order to minimize
the delay, we design a policy to always serve the high priority
job queues before servicing low priority job queues.

We generate the job queues using Monte Carlo simulation.
For each job with priority p, a random number rj is gener-
ated. rj is used to determine the job arrival time interval;
i.e., τpj = −ln(1 − rj)/λp, where λp is the arrival rate of
the job with priority p.

B. The Processor Model

A job running on a server is composed of a number
of instructions. Finishing a job is equivalent to executing
all its instructions. Retired Instructions Per Second (RIPS)
is a metric showing the number of instructions finished
in each second, and is commonly used for evaluating the
performance of the processor. A higher RIPS represents a
faster processor service rate.

Our goal is to provide RS without violating performance
constraints; therefore, a model between the processor service
rate and the corresponding power consumption is needed. In
order to design a practical and effective model, we conduct
our experiments on a 1U server that has an AMD Magny
Cours (Opteron 6172) processor, which has 12 processing
cores on a single chip. The server is virtualized by the
VMware vSphere 5.1 ESXi hypervisor. We use the resource
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Fig. 4. Power-performance profiles of Blackscholes with P̄ = 117.65W
and R = 30W . (i) P̄ + z(t)R and P (t) trajectories (in Watts) over a
11-hour period (10 replications of a 1-hour period, the first hour data is
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ε̄ = 0.20, σε = 0.60. (ii) HPQ system time degradation (the system time
as a factor of the shortest job processing time on our sever) for each job
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bls
= 1.22. (iii) LPQ system time degradation for each

job arrival shown as a red dot on the time trajectory. The overall statistics:
d̄Lbls = 11.27, σdL

bls
= 9.31.

limits control knob in the hypervisor to control the power-
performance settings at runtime. Resource limits enable
dynamically changing the resources allocated to a virtual
machine (VM) quickly and at a fine granularity. For example,
cutting the resource limits for a VM to half of the original
setting (without limits) cuts the server’s power consumption
also to half of the original power level while running that
VM. Similarly, we can set the performance of the server
to any level we need. As more than 50% of the data
center servers are virtualized today, controlling the power
and performance for the applications through changing the
resource limits for the VM is a practical and efficient method.

We run each application from the PARSEC-2.1 [18]
benchmark suite on a VM in isolation (by itself, without
consolidation) in our experiments and apply regression on
the data collected to derive the model between the power
consumption and RIPS. We construct the following model
with a mean square error of less than 5%:

Pa = Ca ∗RIPSa + Pidle (2)

where Pa and RIPSa are the power consumption and the
RIPS of job type a, Ca is a constant which is specific to
the job type a, and Pidle is the power consumption of the
idle states of the processor (when service rate is 0). The data
and model fits are shown in Figure 3. Next, we discuss the
simulation and experimental results.

V. EXPERIMENTAL RESULTS
This section introduces ours experimental settings and

evaluates the proposed policy and method.

A. Experimental Settings

Workloads used in our experiments are from the PARSEC-
2.1 [18] benchmark suite. PARSEC-2.1 contains 13 multi-
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threaded applications. We first run each of them on our 12-
core AMD Magny Cours based server, record their dynamic
power ranges (Pidle to Pmax), shortest possible processing
time (used for system time degradation calculation men-
tioned in Section III) and power consumption values at
different RIPS levels (See Section IV). We then simulate
the server power regulation using these data and models.

Without loss of generality, we assume that all jobs are
classified in two priority levels: high and low. Thus, we have
one High Priority Queue (HPQ) and one Low Priority Queue
(LPQ). We set job arrival rates to achieve a system utilization
around 50%; i.e., the server is processing jobs around 50% of
the whole time period, and is in idle state for the rest of time.
Such utilization level is typical in today’s data centers. We
assume that the arrival rate of the low priority jobs is three
times larger than that of high priority jobs. Finally, in order
to measure statistics described in Section III, we simulate a
1-hour period 10 times to achieve statistical confidence.

B. The Capability Test for Server RS Provision

Generally, three capabilities are going to be tested based
on the ISO requirements if a server requests a license to
provide RS: keeping power consumption value stable for a
period of time; ramping up and down to P̄ +R and P̄ −R
within 2.5-5mins; and regulating the power up and down at
each time interval at a sufficiently fine granularity [21]. In
addition, a sufficiently large dynamic power range is needed
for the RS provision.

Our real-life server experimental result shows: (i) Dynamic
Power Range: by running all the workloads selected from
the PARSEC-2.1 benchmark suite on our server, we achieve
a power range from Pidle = 66W to Pmax = 130-170W
(maximum value depends on the job). Hence, ideally the
maximum regulation power value that can be provided is
(Pmax − Pidle)/2 = 32-52W, which is approximately 25-
31% of Pmax. (ii) Power Stability: we fix the resource
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Fig. 6. Power-performance profiles of Blackscholes and Canneal arriving
at the server with P̄ = 115.33W and R = 30W . (i) P̄ + z(t)R and
P (t) trajectories (in Watts). The tracking error statistics: ε̄ = 0.20, σε =
0.58. (ii) HPQ system time degradation trajectory with overall statistics: for
Blackscholes d̄Hbls = 3.53, σdH

bls
= 2.02 and for Canneal d̄Hcan = 2.64,

σdHcan
= 1.01. (iii) LPQ system time degradation trajectory with overall

statistics: for Blackscholes d̄Lbls = 16.84, σdL
bls

= 11.63 and for Canneal

d̄Lcan = 8.36, σdLcan
= 5.77.

limit setting at a specific value for a while and observe
the fluctuation of power. The standard deviation of the
power consumption is 1-3W, which is only 1-2% of P̄ . (iii)
Ramping up Capability: from test our server is able to ramp
up from 66W to 153W (Pidle and Pmax of Blackscholes) at
1s intervals. (iv) Granularity of Regulation: Resource limit
settings enable regulating the power at a granularity of a
few milliwatts. Overall, we conclude that our server has the
sufficient fundamental capabilities in providing RS.

C. Tracking Capability and QoS Evaluation

In general, different types of jobs have different dy-
namic power ranges, shortest processing time and power-
performance models. When we formulate the optimal prob-
lem in Eq.(1), we need to separately determine performance
constraints for each type of job. In this section, we discuss the
tracking capabilities and evaluate QoS by using our policy for
both homogeneous and heterogeneous sets of jobs running
on the server.

1) The homogeneous Job System: We first investigate the
performance under the circumstance that all jobs arriving at
the server are of the same type. Figure 4 and Figure 5 show
the power tracking along with HPQ and LPQ system time
degradations of the jobs Blackscholes and Canneal, each
with a corresponding (P̄ , R) setting. We see from the power
tracking figures that at the given (P̄ , R) setting and under the
policy proposed in Section III, our system is able to track
the regulation signal with a very small error. Larger errors
only appear when both queues are empty, in which case the
processor is forced to stay in the idle state with a power
consumption of Pidle and cannot be regulated. The system
time degradation figures show that the degradation of LPQ
is much larger than that of HPQ. This is because LPQ has a
larger arrival rate and it is always served after the HPQ jobs
are served.



TABLE I
THE MONETARY COSTS OF DIFFERENT JOB TYPES FOR VARIOUS (P̄ , R) SETTINGS

Blackscholes Bodytrack Canneal Facesim Streamcluster Blackscholes + Canneal
P̄ R Cost P̄ R Cos P̄ R Cost P̄ R Cost P̄ R Cost P̄ R Cost

117.65 0 117.65 103.63 0 103.63 113 0 113.00 115.04 0 115.04 117.65 0 117.65 115.33 0 115.33
117.65 10 N/A 103.63 10 94.36 113 10 104.36 115.04 10 N/A 117.65 10 N/A 115.33 10 N/A
117.65 20 98.45 103.63 20 83.83 113 20 93.35 115.04 20 95.48 117.65 20 N/A 115.33 20 96.12
117.65 30 88.03 103.63 30 73.73 113 30 83.17 115.04 30 85.24 117.65 30 87.91 115.33 30 85.70
117.65 35 82.94 103.63 31 72.72 113 33 80.14 115.04 34 81.20 117.65 35 82.84 115.33 34 81.63
117.65 40 N/A 103.63 40 N/A 113 40 N/A 115.04 40 N/A 117.65 40 N/A 115.33 40 N/A
152.95 0 152.95 134.72 0 134.72 146.9 0 146.90 149.55 0 149.55 152.94 0 152.94 149.92 0 149.92

TABLE II
COMPARISON OF OPTIMAL REGULATION PROVISION AND PROVISION

WITHOUT REGULATION

d̄H σdH d̄L σdL Cost($/h)
Blackscholes Optimal: 3.01 1.40 11.58 9.60 82.94

(117.65, 35/0) Non-Reg: 2.73 0.99 10.92 9.31 117.65
Bodytrack Optimal: 3.27 1.27 13.65 7.22 72.72

(103.63, 31/0) Non-Reg: 2.97 0.83 12.37 7.01 103.63
Canneal Optimal: 3.06 1.35 13.17 7.35 80.14

(113, 33/0) Non-Reg: 2.64 0.76 12.30 6.97 113.00
Facesim Optimal: 2.53 0.70 7.00 3.53 81.20

(115.04, 34/0) Non-Reg: 2.71 0.63 7.11 3.44 115.04
Streamcluster Optimal: 2.33 0.62 6.43 3.27 82.84
(117.65, 35/0) Non-Reg: 2.46 0.55 6.52 3.18 117.65
Blackscholes Optimal, Bls: 3.73 2.20 16.94 11.70 81.63
+ Canneal Optimal, Can: 2.72 1.05 8.44 5.79

(115.33, 34/0) Non-Reg, Bls: 3.18 1.16 17.17 12.09 115.33
Non-Reg, Can: 2.42 0.57 8.59 5.92

Blackscholes is a CPU-intensive job while Canneal is a
memory-intensive job; i.e., they differ in the way they use the
processor resources. However, they achieve similar results
in both tracking and QoS performances, which implies that
providing RS is not constrained by the job type.

2) The Heterogeneous Job System: We next investigate
a heterogeneous case; i.e, jobs arriving at the server are of
different types. Without loss of generality, we assume all the
jobs are either Blackscholes or Canneal. Figure 6 shows the
power tracking and the system time degradations of each job
type separately at P̄ = 115.33W and R = 30W . The result
has limited difference compared to the homogeneous case,
which implies that power RS can be provided for a set of
heterogeneous jobs arriving at the system.

D. The Optimal Solution and the Monetary Savings

Providing RS helps the data center reduce energy costs.
The objective function in Eq. (1) is based on the monetary
cost for a single server per hour, when the server consumes
power at an average level P̄ W and provides RS of R W. A
data center generally contains thousands of servers. Table I
shows the monetary costs ($/h) for a data center which has
104 servers of the same type running both homogeneous and
heterogeneous job cases at various (P̄ , R) values. The yellow
highlighted line is the optimal solution of the Eq. (1) solved
by brute force method at a sufficiently fine granularity. In
solving Eq. (1), the following parameters are used: ΠR =
ΠE = 0.1$/kWh, c = 1, Pconf = 0.85, εtol = 0.2, Pidle =
66W . dH,tol = 5anddL,tol = 25 for all types of jobs. Pmax
changes between 130W and 170W depending on the job
type.

The results show that in all cases, the solution is optimal
when the regulation power R is around 30% of its corre-

sponding P̄ , and 23% of the Pmax (Pmax of each job type
is shown in the bottom row of the table). Such a result also
implies that the optimal percentage of RS power provision
does not change much among different types of jobs. In
addition, comparing the monetary cost under the optimal
solution (P̄ , R) to the one in the first row of the table,
which does not have any RS provision (R=0), we can see
that the monetary saving is approximately 30%, which is
highly promising. Note that ‘N/A’ in the table means that
there is no feasible solution for the corresponding (P̄ , R)
pair according to Eq. (1).

Table II shows the comparison in system time degradation
statistics (QoS performance) and monetary costs between the
case of optimal regulation provision and the case of provision
without regulation (Non-reg.) for different job types. We see
that the QoS values in these two cases are very close. Thus,
we do not sacrifice much QoS, while we are able to save
30% monetary costs by providing RS.

E. Sensitivity Analysis

In real-life data centers, the QoS performance require-
ments and the utilization (job arrival rates) of the system
frequently change. As a result, the optimal operating point
(P̄ , R) needs to be adjusted. Sensitivity analysis studies how
tracking error and system time degradations vary if (P̄ , R)
changes, and provides information on which direction to
search for the new optimal point. Thus, sensitivity analysis
can highly improve the efficiency of the brute force method.
Many approaches have been proposed for performing sen-
sitivity analysis. In this experiment, we focus on the Finite
Difference [11] method.

Figure 7 shows the changes of tracking error, HPQ and
LPQ degradation statistics while either P̄ or R is increased
by 1% for the homogeneous case with Blackscholes. The
results show that while increasing P̄ by 1%, first, tracking
error increases. This is because higher P̄ increases the idle
time of the system. Secondly, the LPQ system time degrada-
tion highly decreases, but the HPQ system time degradation
has no notable change. As expected, increasing P̄ leads to
performance improvements, especially for LPQ which has
a higher number of jobs. However, HPQ jobs are always
given priority for execution. Hence, the improvement in HPQ
performance when we increase P̄ is limited. On the other
hand, while increasing R by 1%, neither tracking nor QoS
performance have obvious changes. Such results show that
both tracking and QoS performance are much more sensitive
to P̄ rather than R. Therefore, when designing a policy to



Fig. 7. Sensitivity analysis for Blackscholes jobs. Plots in the left column
are results for increasing P̄ by 1% and plots in the right column are results
for increasing R by 1%. From top to bottom each pair of plots shows the
changes in tracking error statistics Γ−1(kε, θε, Pconf ), changes in HPQ
system time degradation statistics Γ−1(kdH

Bls
, θdH

Bls
, Pconf ), and changes

in LPQ system time degradation statistics Γ−1(kdL
Bls

, θdL
Bls

, Pconf ).

search for the new optimal (P̄ , R), determining P̄ based on
new system restrictions and requirements is necessary before
selecting R.

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated the ability of data centers to
provide power RS reserves and has quantified associated
market participation benefits. It has proposed both a data
center-wide optimization framework and a solution to the
single-server sub-problem. The proposed RS dynamic track-
ing policy sub-problem has been simulated over a broad
range of policy parameters, namely RS reserves and average
power consumption. The optimal values of these parameters
have been identified under the objective of maximizing
energy cost savings subject to probabilistic QoS guarantees
and ISO RS signal tracking error constraints. Numerical
evidence indicates that power regulation provision is not
constrained by the type of server workload. We conclude
that a single server is capable of providing RS and achieving
energy cost savings by up to 30%. Finally, the paper has
presented a sensitivity analysis, which can be leveraged for
designing an efficient real-time multiple server coordination
policy.

Our future work will focus on explicitly addressing the
data center-wide RS problem and investigating the interac-
tion of computing power consumption with the slower time
scale cooling power consumption dynamics.
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