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Abstract—Provision of Regulation Service (RS) reserves to
Power Markets by smart building demand response has at-
tracted attention in recent literature. This paper develops
tractable dynamic optimal pricing algorithms for distributed
RS reserve provision. It shows monotonicity and convexity
properties of the optimal pricing policies and the associated
differential cost function. Then, it uses them to propose and
implement a modified Least Squares Temporal Differences
(LSTD) Actor-Critic algorithm with a bounded and continuous
action space. This algorithm solves for the best policy within
a pre-specified broad family. In addition, the paper develops a
novel Approximate Policy Iteration (API) algorithm and uses
it successfully to optimize the parameters of an analytic policy
function. Numerical results are obtained to demonstrate and
compare the Actor-Critic and Approximate Policy Iteration
algorithms, demonstrating that the novel API algorithm out-
performs the Bounded LSTD Actor-Critic algorithm in both
computational effort and policy minimum cost.

Index Terms—Regulation Service Provision, Distributed De-
mand Management, Actor-Critic Algorithms, Approximate Pol-
icy Iteration

I. INTRODUCTION

Regulation Service (RS) Reserves, a particular type of
bi-directional Capacity Reserves, are secured routinely in
the Hour Ahead Market by Independent System Operators
(ISOs) to enable themselves to use them in real time for the
purpose of maintaining the supply-demand energy balance.
ISOs utilize RS reserves in real time by broadcasting a signal
that is updated every few seconds and that specifies the
utilization of the RS reserve that providers need to track
by modulating their generation/demand ([1]). Conventional
centralized generators have been so far the main providers of
RS reserves. Nevertheless, participation of the demand side
in the RS market is emerging and broad participation will
most probably be essential with the increasing penetration
of renewable energy resources into power systems whose
volatility and intermittency have a commensurate impact on
the required RS reserves ( [2], [3]). Several models have
been proposed for managing real time demand response in
Smart Buildings for responding to RS signals in [4], [5],
[6], including our past work in [7]. A main issue with these
models is that they become intractable as the problem size
increases. This prevents the implementation of tractable real
size models, including for example multiple class appliances.
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The contribution of this paper is a more thorough investi-
gation of the characteristics of our model proposed in [7],
which enables the use of near-optimal approximate methods
that render the realistic size models tractable.

In [7], we proposed a Dynamic Programming (DP) for-
mulation where the Smart Building Operator (SBO) uses
a pricing mechanism to modulate the rate of electricity
consumption by building appliances. The resulting DP prob-
lem price control variable was discretized and the optimal
policy solved by Linear Programming (LP) as described
in [8]. We observed that the DP differential cost function
appeared to be convex in the state variable that represents
the RS signal value, and the optimal control policy exhibited
monotonicity that appeared to fit an appropriately param-
eterized sigmoid function. This paper actually proves the
aforementioned convexity and monotonicity characteristics
for a simplified version of the problem. Based on the intuition
provided by these properties, this paper proposes an “Actor-
Critic” algorithm adapted to our problem, as well as a
novel Approximate Policy Iteration (API) algorithm. The
monotonicity and convexity properties are relied upon in
selecting parameterized functional approximations that are
used to solve the problem with the proposed algorithms.

In actor-critic algorithms, the parameters of a Randomized
Stationary Policy (RSP) are optimized using policy gradient
estimation. The critic uses a parameterized approximation
of a value function and evaluates the policy based on the
observations of the state and the cost along the simulation.
The actor obtains a direction of improvement from the critic
and updates the RSP parameters. Eventually, these parameters
are optimized so that “good” actions are chosen with high
probability. On the other hand, randomness is required for
better exploration of the state and action spaces. In [9],
Konda et al. use Temporal Differences (TD) in the critic to
update the parameters of the value function approximation.
In [10], Estanjini et al. adapt Least Squares TD (LSTD) in
the critic and obtain a better rate of convergence. In this form
of the actor-critic algorithm, RSPs need to be differentiable
probability/distribution mass functions (p.m.f./p.d.f.). When
the action space is discrete, Boltzmann-like distributions can
be used to obtain a differentiable p.m.f. However, when the
action space is bounded and continuous, which is the case in
our problem, there is no p.d.f. that is differentiable over the
whole action space. Discretization of the action space while
using an actor-critic algorithm is a poor option since the state
of the system does not tell very much about why to prefer
one discrete action over another.



In literature, there are several approaches developed for
the bounded and continuous action space case. One approach
is to use a continuous distribution (such as Gaussian) as in
[11] and [12], and, whenever the RSP generates an action
outside of the action space, peg the action to the closest
boundary. In [13], Kimura et al. point out that the algorithm
easily fails with this approach when the action space is
bounded, because randomness is lost when the mean value
of the distribution moves out of the action space. Instead,
they offer an alternative where the action generated by the
RSP is rejected if it does not fall into the action space.
This approach increases the computational burden in two
ways: (i) the RSP is asked to continue to generate actions
until an acceptable one is obtained, and (ii) one needs to
calculate the probability that the RSP generates an action that
falls into the action space, for which the authors provide an
approximated numerical calculation. The approach proposed
in this paper eliminates the aforementioned disadvantages. It
employs a Gaussian distribution, with a parameterized mean,
to generate an action related value that lies in (−∞,+∞).
This action related value is then transformed through a
sigmoid function projection onto a feasible control, which
is then used to simulate the next state. In order to keep the
Gaussian mean within desired limits, we bound the values
that the actor parameters can take. With a proper selection
of the variance, randomness in the actions is preserved. We
henceforth refer to this modified algorithm as the “Bounded
LSTD Actor-Critic”, and present results from its successful
implementation.

Turning next to the alternative Approximate Policy Itera-
tion (API) algorithm, we note that the challenge with solving
the DP problem via the Linear Programming (LP) approach
in [8] is that the number of the constraints in the LP is multi-
plied by the size of the discretized action space. To overcome
the need to solve large LPs resulting from the discretization
of the action space, we (i) approximate the policy function by
a parameterized sigmoid analytic function, and (ii) adopt a
policy iteration approach whose basic step, that evaluates the
differential cost function associated with a tentative policy,
requires the solution of an LP with constraints that are
equal to the number of states, since now there is a single
policy for a given tentative value of the sigmoid function
parameters. The proposed API algorithm uses an efficient
policy improvement step by overcoming a significant chal-
lenge. In the standard policy iteration algorithm, the policy
improvement step requires a value iteration operation for each
state of the system which guarantees an improvement in the
average cost ([8]). However, when the action is generated by
a parameterized policy function, updating these parameters
may decrease the cost for some states while increasing it
for others, and if the overall impact on the average cost is
positive, the algorithm does not converge. The proposed API
algorithm overcomes this problem by updating the parameters
in a fashion that guarantees a decrease in the average cost.
This allows it to converge, and usually it does so to a lower
average cost than the average cost to which the actor-critic
algorithm converges after a practical number of iterations.

The rest of the paper is organized as follows. In Section
II, we revisit the Dynamic Programming (DP) problem
formulation in [7] for completeness of this paper. In Section
III, we prove convexity of the differential cost function and
monotonicity of the optimal control policy. The sigmoid
approximation of the optimal control policy proposed in [7]
is also revisited in Section III. The structure implied by these
properties motivates and inspires the Bounded LSTD Actor-
Critic algorithm of Section IV and our novel Approximate
Policy Iteration (API) algorithm of Section V. Section VI
describes structural similarities and differences of the two
algorithms, numerical results are provided and discussed in
Section VII, and Section VIII concludes.

II. PROBLEM FORMULATION
The price based management of smart building flexi-

ble load consumption control problem proposed in [7] is
summarized next, while the reader is referred to [7] for
details. We consider a smart building operator (SBO) who has
committed in the Hour Ahead Market to consume electricity
at an average rate of A kW during a specific hour, and
has promised to offer R kW of Regulation Service during
the same hour. The SBO is thus obliged to track the RS
signal y ∈ [−1, 1], which is updated by the ISO every ∆t
seconds, by modulating the consumption in the building. The
rate of total consumption in the building at time t is n(t)r,
where n(t) is the number of active appliances at time t, i.e.,
the ones that are consuming electricity, and r denotes the
consumption rate in kW per appliance. We assume that the
idle appliances “connect”, i.e., start to consume electricity,
according to a Poisson process with rate λ ∈ [0, λM ], where
λM is the parameter that denotes the maximum connection
rate. The SBO controls the connection rate λ by broadcasting
a control signal u ∈ [0, UM ] to the appliances, which we will
call “price”, where UM is the maximum price that can be
broadcasted. The price u is updated just after the RS signal
is updated, and it stays constant in between. Suppose the
price at time t is u(t); then the connection rate is given by
λ(t) = λM

(
1− u(t)/UM

)
. The apliance that has connected

stays active for an exponentially distributed amount of time
with rate µ. Moreover, we assume that the number of active
appliances satisfies nm ≤ n(t) ≤ nM . As a result, n(t)
corresponds to the length of a truncated M/M/∞ queue.

The dynamics of the RS signal y are independent of
the actions of SBO and modeled as follows: We assume
that y can only take discrete values in its range such that
y(t) ∈ {−1,−1 + ∆ȳ, . . . , 0, . . . , 1 − ∆ȳ, 1}, where ∆ȳ is
the discretization constant and ∆ȳ ≥ 0. The update of the RS
signal is similar to a random walk, i.e., y(t+∆t) = y(t)+∆y,
where ∆y is a random variable and ∆y ∈ {−∆ȳ, 0,∆ȳ}. We
also say that y has a direction “up” or “down” at time t, which
is denoted by d(t) ∈ {+1,−1}, respectively. The probability
distribution of the random variable ∆y is a function of y(t)
and d(t).

When the SBO observes the RS signal update at time t,
it needs to modulate the consumption in the building in ∆t
seconds, in such a way that the consumption rate becomes



A+Ry(t) at time t+ ∆t. Otherwise, the following tracking
cost is assessed

[(n(t+ ∆t)) r − (A+Ry(t))]
2
κ∆t (1)

where κ ≥ 0 is the cost coefficient. We also say that an
appliance that connects at time t realizes a utility φ(t) that
is seen as a contribution to the social welfare. φ(t) is a
random variable and assumed to be uniformly distributed in
[u(t), UM ]. Then, the rate of utility at time t is given by(

1− u(t)/UM
) (
u(t) + UM

)
/2. (2)

The problem of which a concise summary is provided here
is modeled as an Average Cost Infinite Horizon Dynamic
Programming problem with the following Bellman Equation.

h(n, y, d) + J̄ =

min
u∈[0,UM ]

{
E

∆n,∆y|u,n,y,d

[
∆tκ ((n+ ∆n)r − (A+Ry))

2

−∆tλM
(
1− u/UM

) (
u+ UM

)
/2

+ h(n+ ∆n, y + ∆y, d′)

]}
(3)

where d′ is the new direction, ∆n is a random variable
that is a function of the price u(t), and represents the
change n(t + ∆t) − n(t) that is the number of connections
minus the number of disconnections in [t, t + ∆t]. In the
Bellman equation, J̄ represents the cost per ∆t time interval,
and h(n, y, d) is the differential cost function, which can
be interpreted as the “disadvantage” of being in the state
(n, y, d).

III. IMPORTANT PROPERTIES OF THE OPTIMAL
POLICY

This section proves properties of both the Differential
Cost Function and the associated optimal control policy
for the purpose of understanding the problem’s structure
and receiving intuition and guidance in the formulation of
tractable near-optimal solution approaches. In [7], numerical
results suggested the existence of two important properties:
(i) The differential cost function appeared to be convex in
the number of active appliances n for fixed values of the RS
signal variables y and d, and (ii) the optimal control policy
appeared to be non-decreasing in n for fixed y and d. Before
we attempt to implement the approximate DP algorithms
presented in Section IV and V, we prove these properties
formally. The proof is derived for a simplified version of the
problem with more streamlined transition probabilities.

A. Convexity of Differential Cost Functions in a Simplified
Problem

Consider the problem defined in Section II with the fol-
lowing modifications: The RS signal y ∈ [−1, 1] is fixed,
so the SBO is obliged to keep the consumption at A + Ry
kW all the time. Moreover, since the arrival rate is a linear
function of the price, we change the control from price to the

arrival rate λ ∈ [0, λM ]. In addition, the control is updated
every ∆τ time unit, which is very short so that at most one
event (connection/disconnection) can take place. Particularly,
∆τ = 1/ν and ν = nMµ+ λM . Without loss of generality,
we assume that ν = 1. The cost function is defined as a
convex function g(n). This simplified problem can be again
formulated as an Average Cost Infinite Horizon DP problem
with the following Bellman Equation:

h(n) + J̄ = g(n) + nµh(n− 1) + (nM − n)µh(n)

+ min
λ∈[0,λM ]

{λh(n+ 1) + (λM − λ)h(n)}

(4)

Note that this problem, and therefore the following proposi-
tions, correspond to the case of a truncated M/M/∞ queue
where the goal is to keep the queue length constant at a
desired level. Before providing our propositions, we define
the difference operator D as follows:

Dv(n) := v(n+ 1)− v(n) (5)

for any function v. Then, the second difference operator is
defined as D(2)v(n) := D (Dv(n)) = v(n + 2) + v(n) −
2v(n+ 1).

Lemma 1. At least one of the two extremes of the control
range [0, λM ] is an optimal solution to the Bellman equation
for the simple problem defined in Equation (4).

Proof: If we rewrite the expression where the optimiza-
tion takes place in (4) as follows:

min
λ∈[0,λM ]

{λh(n+ 1) + (λM − λ)h(n)}

= λMh(n) + min
λ∈[0,λM ]

{λDh(n)} (6)

then it is clear that the optimal solution λ∗ = 0 when
Dh(n) > 0 and λ∗ = λM when Dh(n) < 0. For the cases
where Dh(n) = 0, both λM and 0 are optimal solutions.

From now on, we replace the expression min
λ∈[0,λM ]

{λh(n+

1) + (λM − λ)h(n)} in Equation (4) by λMmin{h(n +
1), h(n)}.

Proposition 1. The differential cost function h(n) that sat-
isfies the Bellman equation of the simple problem defined in
Equation (4) is convex if the cost function g(n) is convex
and bounded.

Proof: In [15], Porteus shows that if the structure that
is identified for some value function v is preserved under
the optimal operator T , then the same structure can be
established for the value function h of the corresponding
Bellman equation. This approach is also used in [16] to
show certain properties of some other queuing applications.
Now, let V be the set of functions such that if v ∈ V , then
D(2)v ≥ 0, i.e., convex. Therefore, we need to show that
D(2)Tv(n) > 0 for v ∈ V , where the T operator is defined
according to Equation (4) as

Tv(n) = g(n) + nµv(n− 1) + (nM − n)µv(n)

+λMmin{v(n+ 1), v(n)}. (7)



Now, define n̄ = nM − n. Then,

D(2)Tv(n) = Tv(n+ 2) + Tv(n)− 2Tv(n+ 1)

= [g(n+ 2) + g(n)− 2g(n+ 1)]

+nµ [v(n+ 1) + v(n− 1)− 2v(n)]

+n̄µ [v(n+ 2) + v(n)− 2v(n+ 1)]

+λM
[
min{v(n+ 3), v(n+ 2)}

+min{v(n+ 1), v(n)}
−2min{v(n+ 2), v(n+ 1)}

]
≥ 0 (8)

where the first equality is due to the definition of the second
difference operator, and the second equality is obtained
using Equation (7). Given that g(n) and v are convex, the
related parts become nonnegative. For the expression with the
minimization operators, four of the eight possible outcomes
(where v(n + 2) > v(n + 1), v(n + 2) > v(n + 3); or
v(n+ 1) > v(n), v(n+ 1) > v(n+ 2)) are inconsitent with
the convexity of v, hence will not occur. In the other two
possibilities, the expression in square brackets is reduced to
v(n+ 1)− v(n+ 2), when v(n+ 1) ≥ v(n+ 2) is assumed;
and to v(n + 2) − v(n + 1), when v(n + 1) ≤ v(n + 2) is
assumed. For the remaining two possibilities, non-negativity
is guaranteed through convexity of v. Moreover, g(n) is
bounded and the limit of every Cauchy sequence of functions
in V will be again in V . Hence, “Assumption IH” of [15] is
satisfied and the result follows.

B. Monotonicity of the Optimal Policies

Next, we generalize the simplified model used in Section
III-A by making ∆τ sufficiently large so that many arrivals
and departures are possible between control updates. Again,
the RS signal variables, y and d, are fixed. On the other hand,
we use the price to represent the control. Moreover, we make
additional assumptions and use an approximation to state the
next proposition. Given these modifications, the problem can
be described by the following Bellman Equation:

h(n) + J̄ = g(n) + min
u∈[0,uM ]

{
E

∆n|u,n
[h(n+ ∆n)]

}
(9)

Proposition 2. Assume that n(t+∆t) is normally distributed
with mean

Mn(t+∆τ) =
λ

µ

(
1− e−µ∆τ

)
+ ne−µ∆τ (10)

and variance

σ2
n(t+∆τ) = ne−µ∆τ − (ne−µ∆τ − λ/µ(e−µ∆τ − 1))2

+n(n− 1)e−2µ∆τ + λ2(e−µ∆τ − 1)2/µ2

−λ(e−µ∆τ − 1)/µ

−2λn(e−µ∆τ − 1)e−µ∆τ/µ (11)

given n := n(t) and λ = λM (1 − u/UM ). Also assume
that the differential cost function of the problem defined
in Equation (9), h(n), is convex and symmetric around its
minimum. Then the optimal price u is nondecreasing in n.

Proof: As the normal distribution is symmetric around
its mean, the optimal price u ∈ [0, UM ] would be the one
that gives Mn(t+∆τ) = n∗, where n∗ = arg minh(n), or the
closest boundary value of the control space when that is not
feasible. Clearly, for n′ > n, the mean shifts to the right. The
shift needs to be balanced by a λ′ ≤ λ, which is equivalent
to have a new optimal price that satisfies u′ ≥ u.

In this proof, the convexity assumption is reasonable given
that it provenly holds for the simpler problem considered
in Proposition 1. The symmetry of h(n) is only needed
to prevent pathological cases that may be caused by non-
monotonic behavior that the variance of the normal distribu-
tion exhibits. In practice, the nondecreasing behavior of the
optimal price is very unlikely to be violated. Nevertheless,
symmetry of h(n) is still a reasonable assumption, especially
when a quadratic cost function is used and n � 0 where
the departure rates do not differ significantly across different
values of n. Moreover, the normal distribution is a reasonable
assumption for n(t+ ∆t) as we have shown in [17].

C. Sigmoid Structure of the Optimal Control Policy

The numerical results that we obtained in [7] exhibit a
sigmoid function relationship of the optimal price to the
tracking error, nr − (A + Ry), for constant values of the
regulation signal y. We also observed that the sigmoid
shifts along the axis of n for different values of y and
d, which means that y and d can also enter linearly in
the argument of the sigmoid function and provide a good
approximation of the optimal policy. Specifically, in [7],
u ≈ UM/

(
1 + eθ1(nr−(A+Ry))+θ2y+θ3d

)
was used to de-

scribe the optimal policy. In Equation (19) of Section VI,
this approximation will be updated based on the discussions
provided in Section III-A and III-B.

IV. BOUNDED LSTD ACTOR-CRITIC ALGORITHM

As already noted, solving the Dynamic Programming
problem defined in Section II by discretizing the action space
and applying the LP approach becomes intractable for large
problems. Moreover, the reasonable functional approxima-
tion of the optimal policy described above enables solution
approaches that do not require action space discretization.
We proceed to formulate an actor-critic algorithm adapted to
the case where the action space is continuous and bounded.
Actor-critic algorithms optimize the parameters of a Ran-
domized Stationary Policy (RSP), denoted by the vector
θ ∈ Rm, along a sample path {xk, uk}, where xk ∈ X
represents the state and uk ∈ U represents the control for
the kth step ( [9], [10]). The RSP is denoted by pθ(u|x),
and is a mapping that assigns a probability distribution to
each state x over the action space U. When the action space
is continuous, pθ(u|x) corresponds to a probability density
function (p.d.f.). References [9] and [10] contain all of the
technical conditions. We note, however, that a key condition
is that pθ(u|x) must be twice differentiable with respect to
θ.



The critic uses a linearly parameterized approximation of
the Q function, defined as

Qθ(x, u) = E [gθ(x, u) +Qθ(x
′, u′)]− Jθ (12)

where gθ is the cost function, Jθ is the average cost, x′ is the
new state given the current state x and the current control
u, and u′ is the new control that will be generated by the
RSP pθ(u|x′). In [9], Konda et al. use the following linear
approximation structure for the Q-value function

Qsθ(x, u) = ψ′θ(x, u)s (13)

where ψθ(x, u) is the m-dimensional feature vector given
(x, u) and s ∈ Rm is the vector of the approximation
parameters. Moreover, the feature vector is selected such that

ψiθ(x, u) =
∂

∂θi
ln pθ(u|x), i = 1, . . . ,m (14)

and then the policy gradient at kth step is given by
−ψ′θk(xk+1, uk+1)skψθk(xk+1, uk+1).

In [10], Estanjini et al. show that the actor-critic algo-
rithm’s performance is superior when a Least Squares Tem-
poral Differences (LSTD) approach, rather than a temporal
differences (TD) algorithm, is used by the critic to learn s.
We adopt the same approach and note that the details of the
LSTD algorithm can be found in [8] and [10].

As mentioned earlier, the main challenge with using an
actor-critic algorithm in our context is that the action space
is continuous and bounded, for which we do not have a twice
differentiable p.d.f. to use as RSP. One of the approaches
would be to use the Gaussian distribution with a parame-
terized mean for the actor’s choice as in [11] and [12], and
peg the action to the boundary when the RSP produces an
action outside the action space. However, in our problem’s
context, the learning algorithm easily fails when the mean of
the distribution moves out of the action space. Kimura et al.
[13] propose the remedy of rejecting actions until the RSP
produces one that is in the action space. The disadvantages
of this remedy are significant, however, as mentioned already
in Section I. This paper proposes an alternative remedy that
eliminates these disadvantages.

In Section II, the action space is defined as u ∈ U =
[Um, UM ], where Um = 0. Moreover, in Section III-C,
we argued relying on previous numerical experience that
the optimal control policy can be approximated well by a
sigmoid function. Using the fact that a sigmoid function
is a mapping such that R 7→ (0, 1), we consider first a
related control ur ∈ (−∞,+∞) which allows us to use a
Gaussian distribution with a parameterized mean Mθ and a
fixed variance σ2 to generate ur. We then simulate the next
state as required by the actor-critic algorithm by converting
ur ∈ (−∞,+∞) to u ∈ (0, 1) through a sigmoid function.
It is important to emphasize that the control u never appears
in the algorithm explicitly, since the actor-critic observes the
next state after a simulation step that is a black-box to it. The
control is transformed in this simulation black-box whose
input is the current state and the control ur. We also note that
although the sigmoid function turns out to be an excellent

approximation of the optimal control policy, it has a good
potential to work well in any problem with a bounded action
space as long as the p.d.f selection and the corresponding
mean parameterization are carried out appropriately.

Even with a sigmoid function transformation, the learning
process may fail when the mean of the Gaussian p.d.f., Mθ,
gets away from the neighborhood of 0. This is because
the RSP will persistently produce a control ur that will
lead to a control u very close to Um or UM , when Mθ

is very negative or positive, respectively. To prevent this
from happening, we impose bounds on θ in the actor, i.e.
θ
`

i ≤ θi ≤ θui , i = 1, . . . ,m. This is equivalent to choosing
the step-size in the actor step to keep the parameters in
the desired interval. Unlike the case described in [13], this
does not increase the algorithm’s computational complexity.
Following the overview and motivation of this section, the
next section proceeds with the detailed description of the
Bounded LSTD Actor-Critic Algorithm.

Bounded LSTD Actor-Critic Algorithm

Following [10], the parameters for the kth step of the
algorithm are defined next. Ĵk stands for the estimate of the
average cost, sk ∈ Rm is the iterate for the parameter set
introduced in (13), zk ∈ Rm is called Sutton’s eligibility
trace ([14]), bk ∈ Rm is the eligibility trace scaled by the
difference between the observed cost and the average cost
estimate, Bk ∈ Rm×m is the sample estimate of the matrix
formed by zk

(
ψθk(xk+1, u

r
k+1)− ψθk(xk, u

r
k)
)
.

Initialization: All of the entries in Ĵ0,s0, z0,b0 and B0

are set to zero, and θ0 takes some initial value.
Critic:

Ĵk+1 = Ĵk + γk

[
g(xk, u

r
k)− Ĵk

]
,

zk+1 = Λzk + ψθk(xk, u
r
k),

bk+1 = bk + γk

[(
g(xk, u

r
k)− Ĵk

)
− bk

]
,

Bk+1 =

Bk + γk
[
zk
(
ψθk(xk+1, u

r
k+1)− ψθk(xk, u

r
k)
)
−Bk

]
,

sk+1 = −B−1
k bk,

where Λ ∈ [0, 1) and γk := 1/k. In addition, we use the
pseudo inverse of B when it is singular.

Actor:

θrk+1 = θk − βkΓ(sk)ψθk(xk+1, u
r
k+1)skψθk(xk+1, u

r
k+1),

θk+1 = med
{
θ`, θrk+1, θ

u
}
,

where med is the element-wise median operator and
(
θ`
)
i
<

(θu)i for i = 1, . . . ,m. Moreover, {βk} is a deterministic
and non-increasing sequence that satisfies

∑
k βk = ∞,∑

k β
2
k < ∞ and limk→∞ βk/γk = 0. An example would

be βk = c/(k ln k), for k > 1, where c > 0 is a constant
parameter. The parameter Γ(sk) is used to keep the actor
updates bounded and it has the following form

Γ(sk) =

{
D
||s|| , if ||s|| > D,

1, otherwise .



Simulation of action and the next state: Suppose that the
action space is given as u ∈ U = [Um, UM ]. Given the state
xk, the control urk is generated by using the p.d.f. pθk(urk|xk),
i.e., urk ∼ N(Mθ, σ

2). Then, uk is obtained as

uk = Um +
1

1 + e−u
r
k

(UM − Um),

and then employed to simulate the next state xk+1 using the
problem-specific state transition dynamics.

V. A NOVEL APPROXIMATE POLICY ITERATION
ALGORITHM

Actor-critic algorithms are especially advantageous when
the state space is very large and/or there is little knowledge
about the dynamics of the system. However, in our case, the
state transition dynamics are known and we would like to
make the problem more scalable by using a parameterized
function that approximates the optimal control policy given
the state of the system, rather than discretizing the action
space that makes large problems intractable. In order to
optimize the policy function parameter vector, denoted by
θ ∈ Rm, we develop an Approximate Policy Iteration (API)
algorithm, which iteratively (i) estimates the average and
differential costs of the Bellman Equation in (3) under policy
θ, J̄θ and hθ(x), ∀x ∈ X , (ii) improves the policy θ. Al-
though analogous to actor-critic and standard policy iteration
schemes, the API is designed to overcome the challenges
specific to the optimization of parameterized policies when
the system dynamics are known.

Step (i): Policy Evaluation step. A tentative policy θ
(similar to the role of the critic of B-LSTD AC) is associated
to the corresponding average cost and differential cost vector
by solving a linear system. Denoting the discrete state space
by X and its size by |X|, this is equivalent to solving
the following LP with |X| + 1 decision variables and |X|
constraints:

max
J̄θk ,hθk (x) ∀x∈X

J̄θk

s.t. J̄θk + hθk(x) ≤ E
y∈X

[g(x, y, θk)]

+
∑
y∈X

Pxy(θk)hθk(y) ∀x ∈ X

where k denotes the iteration, g is the one step cost function
of the DP problem as given in (3) and Pxy is the probability
of transitioning from state x to y. Note that the LP solution
to a DP with discrete states and actions reduces here to a
problem with a single action for each state. The advantage
of translating the linear system to an LP is that the dual
variables of the LP, πθk(x), ∀x ∈ X , give the proportion of
the time that the system spends in state x (or equivalently
the steady state probability) when controlled by the policy
θk ( [8]). These probabilities provide the foundation of the
algorithm’s next step.

Step (ii): The tentative policy used in the previous step
is improved. This is equivalent to the actor of the B-LSTD
AC algorithm. However, unlike the actor-critic algorithm,

convergence of the API algorithm requires the average cost
to decrease in each iteration, i.e., J̄θk+1

≤ J̄θk . The improve-
ment in the cost is expressed as follows ([8]):

J̄θk − J̄θk+1
=
∑
x∈X

πθk+1
(x)δ(θk,θk+1)(x) (15)

where we define

δ(θk,θk+1)(x) = E
y∈X

[g(x, y, θk)] +
∑
y∈X

Pxy(θk)hθk(y)


−

 E
y∈X

[g(x, y, θk+1)] +
∑
y∈X

Pxy(θk+1)hθk(y)

 . (16)

In vector notation, it is required that π′θk+1
δ(θk,θk+1) ≥ 0.

In the standard policy iteration algorithm, non-negativity
of J̄θk − J̄θk+1

is trivially achieved as the policy is improved
for each state x, so that δ(θk,θk+1)(x) ≥ 0,∀x ∈ X . In API,
however, changing θ of the parameterized policy may result
in negative values of δ(θk,θk+1)(x) as well as positive ones
for different x. Therefore, we seek θ values that will make
the whole summation in (15) positive. Namely, we aim to
solve

θk+1 = arg maxπ′θk+1
δ(θk,θk+1). (17)

The issue with the optimization problem in (17) is that
there is generally no closed form expression of πθk+1

as
a function of θk+1, or in fact, it is an intractable highly
nonlinear complex relationship. Therefore, we propose to
approximate πθk+1

by πθk that we have readily available from
Step (i). However, we need θk+1 to be close to θk for the
approximation to work, which leads us to solve the following
optimization to obtain the new policy:

max
θk+1∈[θk−∆θ,θk+∆θ]

π′θkδ(θk,θk+1) (18)

where ∆θ ∈ Rm with all non-negative entries. Note that this
optimization involves only hθk(x) and not hθk+1

(x), which
is also provided by the LP in Step (i).

In the iterative solution of (18), the ∆θ vector is updated
adaptively as follows: When the condition J̄θk+1

≤ J̄θk+1
is

violated, ∆θ is multiplied by ρ, 0 < ρ < 1 and the policy
improvement step repeated, otherwise ∆θ is multiplied by
1/ρ. Numerical experience shows that, most of the time,
∆θ does not have to be very small for the non-negativity
condition to be satisfied and the API algorithm to converge.

VI. USE OF ANALYTIC FUNCTIONAL
REPRESENTATIONS IN B-LSTD ACTOR-CRITIC

AND API ALGORITHMS

As described so far, the B-LSTD AC and API algorithms
iteratively optimize the parameters of an analytic function,
fθ shown in Equation (19), which, however, is employed in
similar but different ways by the two algorithms to determine
the value of the price control for a given point in the state
space: In the API algorithm, for a given set of parameter



values, θ, the price control is given as the output of a sigmoid
transformation of fθ. In the B-LSTD AC, fθ represents the
mean of the Gaussian distribution shown in Equation (21);
a random sample is generated from this distribution and
the same sigmoid transformation of this sample, shown in
Equation (20), provides the randomized price control. Noting
in addition that fθ is also used to approximate the Q-value
function in B-LSTD AC described in Equations (13) and (14),
it follows that fθ should be consistent with the structural
properties of the Q-value function, which are analogous to
those of the differential cost function. Therefore, fθ should be
consistent to the properties of the optimal policy, as described
in (i) Section III-C, namely be a function of the tracking
error, (ii) Section III-B, namely be monotonic in n, and (iii)
Proposition 1, which indicates convexity of the differential
cost function w.r.t. n for fixed y. Interpreting fθ as a linear
function of features of the system state, we are then justified
in defining nr − (A + Ry) as the first feature of fθ. More
importantly, we can restrict the corresponding parameter,
θ1, to take only positive values by using the monotonicity
property, which turns out to be extremely helpful for the
performance of the B-LSTD AC algorithm. Other reasonable
feature selections are y and d, while convexity suggests the
last feature as (nr − (A+Ry))

2.
Thus, we define fθ as

fθ = θ1 (nr − (A+Ry)) + θ2y

+θ3d+ θ4 (nr − (A+Ry))
2
. (19)

The price is given in the B-LSTD AC algorithm by the
sigmoid transformation of ur

u = Um +
1

1 + e−ur
(UM − Um), (20)

where ur is a random sample drawn from the normal
distribution

ur ∼ N(fθ, σ
2). (21)

Finally, in the API algorithm, the price is obtained as the
sigmoid transformation of fθ:

u = Um +
1

1 + e−fθ
(UM − Um). (22)

VII. NUMERICAL EXPERIENCE

In this section, unless stated otherwise, we use the follow-
ing problem input: The average consumption rate is A = 100
kW, the amount RS provision is R = 30 kW, the maximum
appliance connection rate is λM = 150/min, the appliance
departure rate is µ = 1/min, RS signal discretization constant
is ∆ȳ = 1/30, RS signal update interval is ∆t = 4/60 min,
consumption rate per appliance is r = 1 kW, the allowed
change in the number of active appliances in ∆t min is
−10 ≤ ∆n ≤ 10 and the allowed range of the number of
the active appliances is 50 ≤ n ≤ 150. The cost function
includes only the tracking error since we decided to neglect
the utility component for simplicity, which is in fact more
compatible with the propositions introduce in this paper,
and more appropriate for comparing the performance across

Fig. 1: Numerical Comparison of B-LSTD AC and API
Algorithms

algorithms since the selection of the feature vectors is more
streamlined. Therefore, g = (n(t+ ∆t)r − (A+Ry(t)))

2.
Figure 1 compares the performance of the two algorithms,

where both are tested for different initial conditions and
choice of algorithm step size. We note two important points
regarding this comparison: (i) The B-LSTD AC algorithm is
run several times with exactly the same parameter and step
size levels but with different simulation seeds. Each trajectory
of this algorithm in Figure 1 corresponds to the run that
exhibited the best performances with that parameter/bound
level. (ii) In order to make a fair comparison, we did not
plot the average cost estimate of the B-LSTD AC algorithm,
J̄k, which carries some portion of the high costs due to
previous bad policies. Instead, with certain intervals, we used
the tentative policy θk that the algorithm selects in the kth

iteration and calculated the associated average cost function
by solving a linear system.

Under these circumstances, the numerical experience re-
vealed two main results. (i) After many experiments, the
adaptation that we have made on the existing actor-critic
algorithms for the bounded and continuous action spaces,
that is our proposed B-LSTD AC algorithm, has successfully
optimized the policy parameters and returned good objective
values in the vast majority of the cases. In very few cases, the
mean of the RSP diverged to very positive/negative values.
However, one may find better bounds on θ and make these
failures less likely. In our experiments, we intentionally used
looser bounds for some θi to test the algorithm. (ii) In all
of the cases, the API algorithm has converged to a better
objective value than the B-LSTD AC algorithm. Moreover,
API has deviated by less than 9% from the objective value
that we were able to obtain solving a computationally much
more demanding discretized action space DP. Moreover,
given that API optimizes the parameters of an analytic
functional representation of the optimal policy, we can say
with confidence supported also by current work that API’s
sub-optimality gap may decrease further with better choice
of the functional form of the parameterized analytic policy
representation. We close by comparing the two algorithms on



the basis of structural and information available to the SBO
rather than numerical performance differences. First, we note
that the two algorithms have different working principles.
Actor-critic algorithms evaluate and optimize the policy pa-
rameters along a simulation sample path with the actor being
unaware of the exact system dynamics, whereas API is more
of an exact method in terms of evaluating and optimizing the
control policy. Both approaches have their own advantages
and drawbacks. B-LSTD AC algorithm is superior over API
in the following areas: (i) B-LSTD AC algorithm is still able
to return “good” policies even when the state space is huge
and/or the θ parameter vector consists of many entries due
to a large number of features. (ii) When the state transition
dynamics are not exactly known or when the transition prob-
abilities are hard to calculate, API algorithm cannot be used
while B-LSTD AC is still applicable. On the other hand, API
algorithm has the following important advantages over the
actor-critic type of algorithms in general: (i) When the state
space has a size that can be handled by an LP, and the number
of features is compatible with the optimization problem in
the policy improvement step, API will most likely return a
better policy, which was always the case in our experiments.
Moreover, the computation time is comparable or better than
in the actor-critic algorithm. Given that API solves an LP
that is equivalent to solving a linear system of equations
with one degree of freedom, and the nonlinear optimization
is applied on a limited set of parameters, problem size is
generally not very restrictive. (ii) The B-LSTD AC algorithm
suffers from poor convergence when the parameter range
is not bounded well around the optimal, a condition that
requires some prior intuition. For example, restricting θ1 to
the positive real numbers using the monotonicity property
proven in this paper improved the performance dramatically.
On the other hand, the parameter bounds are updated in the
API algorithm with progressing iterations. (iii) The actor-
critic algorithms are very sensitive to selection of initial
parameters and one may need to go through many trials
until a good choice is found. For example, the algorithm
may easily converge to a local optimum that is far from the
global optimum, if the step size is not chosen appropriately.
In contrast, API updates the step size based on improvements
in the cost function. Therefore, convergence is less sensitive
to parameter initialization. In all of our experiments, API has
converged to the same point regardless of the initial parameter
choice. (iv) Even if one finds a parameter set that is known
to have performed well in a previous run of the actor-critic
algorithm, there is no guarantee that the same results will be
obtained in a subsequent run, for the same problem and with
the same parameters. This is because the algorithm is based
on Monte Carlo simulation and may thus follow different
sample paths in each run, whereas the API algorithm relies
on a deterministic solution process.

VIII. CONCLUSION
This paper advanced the state of the art in decision support

algorithms that allow Smart Building Operators to provide
almost real time Regulation Service to the control center

responsible for the operation of the Balancing Area where
an advanced building is located. The associated stochastic
DP problem was investigated in terms of the structural
properties of its optimal solution and tractable algorithms
were developed by exploiting these properties. The two
algorithms represent improvements of existing Actor Critic
and Policy Iteration algorithms and can address a wide range
of situations ranging over perfect to imperfect knowledge
of the system dynamics. Numerical experience with both
algorithms is reported indicating that they are both tractable.
Although the actor critic algorithm is slower when the system
dynamics are known, it is still applicable when they are
not. Our future research agenda includes to implement both
algorithms in cases where there are multiple appliance types
and the control is multi-dimensional.
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