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Abstract—We develop a market-based mechanism that enables System Operator (ISQyho clears short-term power markets.
a building Smart Microgrid Operator (SMO) to offer regulation |n this respect we note that five minute up and down capacity

service reserves and_meet the associated obligation of fast re-reserves, known aBegulation Service (RSpserves, are im-
sponse to commands issued by the wholesale market Independent

System Operator (ISO) who provides energy and purchases portant to meeting the required energy balance and preggrvi

reserves. The proposed market-based mechanism allows the SMOPOWer system stability.

to control the behavior of internal loads through price signals As clean, but alas intermittent and volatile, renewable
and to provide feedback to the ISO. A regulation service reserves generation is increasingly integrated into the grid, RS res
quantity is transacted between the SMO and the ISO for a raqyirements increase as well [1]. Considering that tcziRB
relatively long period of time (e.g., a one hour long time-scale). . .

During this period the 1SO follows shorter time-scale stochastic reserves procured simultaneously with .energ.y correspond t
dynamics to repeatedly request from the SMO to decrease or 1% of load, and command market clearing prices comparable
increase its consumption. We model the operational task of to the price of energy, an increase in RS requirements witaou
selecting an optimal short time-scale dynamic pricing policy as commensurate increase in supply may well be a show stopper
a stochastic dynamic program that maximizes average SMO 4 \vind generation expansion. Since centralized gemegati
and ISO utility. We then formulate an associated non-linear . . . o
programming static problem that provides an upper bound on units are today the only cor_1tr|butor of RS, enabling bug.‘hn
the optimal utility. We study an asymptotic regime in which t0 offer RS and compete in the power markets promises a
this upper bound is shown to be tight and the static policy major contribution in terms of affordable RS reserve cost an
provides an efficient approximation of the dynamic pricing policy. Jower CO, emissions due to the associated adoption of clean
Equally importantly, this framework allows us to optimize the generation.

long time-scale decision of determining the optimal regulation . . .
service reserve quantity. We demonstrate, verify and validate ta Whole sale power markets were introduced in the US in the

proposed approach through a series of Monte Carlo simulations Mid 1990's [2]. These markets clear simultaneously energy
of the controlled system time trajectories. and several types of reserve requirements. For simplicity i

Index Terms—Electricity demand response, electricity regu- ©XPOsition we consider here only bidirectional RS reserves
lation service, smart-grid, pricing, electricity markets, welfare Most markets have not yet allowed the demand side to
maximization, dynamic programming. participate in RS reserves. One of the ISO’s, PIJM, has atlowe
loads to participate in energy and reserve transactionsesin
2006 [3], while other ISO’s are contemplating to follow suit
. Of the existing short-term markets we point out briefly ([4],

. Wg addres_s .advanced _demand control in ne>$t gen_eratﬁlﬂ [6], [7], [8], [9]) the: (i) day-aheadmarkets that close at
mFeIhgent b“"d'”gs or nelghborhoods that are ('), equapp noon of the previous day and clear energy and reserve bids for
with a sub-metering and actuation capamart-microgrid o of the 24 hours of the next day, (i) hour-ahadjiistment
accessible by occupants as well as bySmart Microgrid 5 ets that close an hour in advance and reveal energy and
Operator (SMO) and (ii) connected to a cyber infrastructurgese e prices, and (iii) 5-minuteal-time economic dispatch

enhince$mart—gr|dthgt clzag_support. qlose—to—real—nmed;?]owanarketS that determine actual ex post variable marginal cos
mar.et .transactlons Including par'uupants connectedhat 1 energy at each bus or node of the transmission system.
distribution level. In particular, we consider demand cohfior We assume that with the advent of tsreart grid ([10], [11]
offering capacity reserve ancillary services to thdependent [12], [13]) aLoad Aggregator (LAwill be able to participate
* Research partially supported by the NSF under grants EFR8E974 and in power markets on a par basis With centralized generators.
EFRI-1038230, by the DOE under grant DE-FG52-06NA27490tHeyARO  In particular we assume that an LA will be able to buy energy
32g2: ggrr:tht ’\\I’g%éﬁi'gll'%‘gszzﬂ and by the ODDR&E MURI10 proyra on an hourly basis at the corresponding clearing price and
t I. Ch. Paschalidis is with the Department of Electrical andnpater S€ll RS reserves for which it will be credited at the system
Engineering and the Division of Systems Engineering, Bostoiversity, 8 RS clearing price. An ISO who procurd’, KW of RS is
ﬁ:_'”ﬁt'\t"gr_yl’sl Isgﬁ?‘a Bbojt(;':j'u’)"A 02215, USA, e-majanni sp@u. edu,  entitled to consider it as a stand-by increment or decrergnt
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versity, 15 Saint Mary's Street, Brookline, MA 02446, USAmail: 1SO may send commands to the RS provider to request that
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reserve contractual obligations, the RS provider mustveeli relevant long time period and include, among others, lights
the requested increase or decrease in its load with a rarap d/AC zones, computers, electrical appliances and the We.
of Ry, /5 KW per minute. The ISO typically re-dispatches thelenote the event of a load unit becoming active agternal
power system in 5 minute intervals. At each 5-minute systeanrival (i.e., internal to the building) and associate a class-
dispatch, the 1SO economically schedules slower resporsecific electricity demand increment with each arrival. We
tertiary reserves so as to reset the utilized RS reservesstmilarly denote the event of a load unit becoming inactive
their nominal level. As a result, although not guarantebd, tas aninternal departure An actively consuming load unit
RS reserve provider’s tracking of ISO commands is for atlerives a positive utility. With the sale ok, KW of RS
practical purposes energy neutral over the long time-schlethe SMO agrees to be on standby and respond to short
an hour and beyond. To meet the aforementioned contracttiale-scale (e.g., seconds to minutes) ISO requests for an
requirements, the SMO must be capable of controlling loadsrement or decrement of the building’s consumption. We
through the collaboration of eyber-physical event schedulingdenote the event of an ISO request asaternal arrival(i.e.,
layer, the smart microgrid, and a highdecision support and external to the building). The termination of an ISO request
communicationlayer that interacts with users of energy ins modeled as aexternal departureNote that the cumulative
order to adapt their demand behaviors to ISO’s requests$or RSO increment or decrement requests can not exdggdr
reserve usage. The lower SMO layer consists of sensing an®;, respectively. As mentioned, the SMO’s response does
actuation components that collect building state inforomat not have to be instantaneous. Most ISOs today, require for
and actuate so as to safely implement goals determined at tbgulation service reserves traded in power markets a ns&po
higher level and authorized by building occupants. rate of roughlyR, /5 KW per minute. When the ISO request
This paper focuses expressly on providing the higher dis- accommodated by the SMO, the ISO realizes a positive
cision support layer with a virtual market that operates outility whose magnitude depends on system-wide needs and
the building side of the meter for the purpose of eliciting ¢he 1SO’s obligation to not exceed the maximum amount of
collaborative response of building occupants. Our objecti RS it has contracted from the SMO. In addition, in its pergodi
is to derive an optimal SMQpricing or incentive policy 5-minute system re-dispatch, the ISO typically attempts to
towards building occupants so that they consent to the saéset its cumulative increment or decrement requests winer
of RS reserves to the 1SO and collaborate in meeting tlaeder to enable RS providers to respond to new requestsglurin
ISO's RS operational requirements. This objective is incsyduture inter-dispatch 5-minute periods. This suggests tife
with recent calls to develop better mechanisms for reser@ng time-scale average deviation of building consumption
management [15]. To the best of our knowledge, little ratevafrom its R level equals zero. Hence, the sale of RS reserves
work has been published, and we are the first to propose si@s an energy neutral impact on long time-scale building
a market-based policy for demand control aiming at the provdonsumption.
sion of RS reserves. Methodologically, related technidweas The primary objective is to maximize the sum of SMO
been used in pricing Internet services [16], [17]. In Se¢. land ISO welfare associated with internal and external @siv
we detail our internal market-based model and formulate Hard and soft constraints are added to model adherence to the
related welfare maximization problem. In Sec. Ill we castontractual requirements and long time-scale energy akdytr
the problem into @ynamic Programming (DPframework to described above. To achieve these goals, the SMO contels th
obtain the optimal dynamic policy conditions. We then peate active internal loads and external requests by communigati
to develop performance bounds and approximations. In Sec.éxternal and internal-class-specificices that may be inter-
we develop a static policy and in Sec. V we derive an easifyeted as dynamic demand control and RS activation feedback
computable upper bound on the optimal performance. Basgdnals as much as a monetary exchange.
on this bound, we establish in Sec. VI the asymptotic optimal We assumeM classes of internal loads = 1,..., M,
ity of the static policy as the load class specific consunmptiahat arrive according to a Poisson process and require
level becomes smaller with a commensurate increase in &/ for an exponentially distributed period with ratg. Let
number of active loads. Further, we extend the asymptofic = (ui,...,un) andr = (ry,...,75). Each internal
optimality results to account for constraints that modedrgg  arrival of classi pays an SMO determined pricg; we define
neutrality over the long time-scale and the upper limit ie thu = (uy,...,us ). We assume that the arrival rate of class
RS delivery requested by the ISO . We present numeridahds is a known demand function(u;) which depends on;
results in Sec. VII, and conclude in Sec. VIII. and satisfies Assumption A below. We denote the number of
activeclassi internal loads at time by n;(¢),i=1,..., M,
Il. PROBLEM FORMULATION and defineN(t) = (na(t)...., nar(t)).

This section models the short time-scale interaction of th@sumption A

SMO with microgrid occupants/loads and the 1SO. For everyi, there exists a price; ., beyond which the de-
The SMO can sellk;, KW of regulation service for the mand\;(u;) becomes zero. Furthermore, the functidrfu;)

duration of the long time-scale (e.g., one hour), provided continuous and strictly decreasing in the range <
that its microgrid’s average consumptioR, exceedsR;, and [0, s max]-

its consumption capacity is at lea& + R;. We envision
microgrid load classes that can be potentially active dutire ISO requests for the dynamic activation of RS reserves are



modeled as a special external class. External RS activatisecomes aactualarrival if and only if the random utility real-
requests occur at a rately) wherey is an SMO set price ization,U;, exceeds the SMO set prieg. This implies that in-
anda(y) satisfies Assumption B below. While they are activeernal class arrivals occur according to a randomly modulated
external arrivals require. KW each. They become inactivePoisson process with ratg;(u;(t)) = A\ maxP[U; > u;i(t)].
upon their departure which follows an exponential distiitmu  Furthermore, the expected utility conditioned on the faet &
with rated. Denoting the number of active external class loadgsotential arrival has decided to “connect” under a curreitep

at timet by m(t), the building is being requested by the IS®f u;, is equal tdE[U;|U; > u;]. We therefore conclude that the
to consumeR + R, — m(t)r. KW. We impose the following expected long-term average rate at which utility accuneslat

two constraints: due to internal loads is:
M
N(t)'r+m(t)re =Y ni(t)ri + m(t)re < R+ Ry, (1) Tlﬂnoo_ZE[/ i (i (0)E[U; |Us > uq(t )]dt]-
=1
m(t)re < 2Ry, (2) Following a similar argument, the welfare generated from

external RS class arrivals can be expressed as:
where prime denotes transpose. Inequality (1) ensuresathat

T
any timet the total capacity usage of all active loads does not I 1 E /
. - ) — NE[Y|Y > y(t)|dt],
exceed the maximal building consumption capadity- Rj, 7o T 0 ayO)EYTY 2 y(®)]
even whenm(t) = 0. Inequght_y (2) ensures that the ISC)WhereY stands for the welfare from the admission of a
can not request that the building consumption at tiimiee

. . - potential external RS arrival, ant(y(t)) = amaxP[Y > y(t)]
decreased beIovR_ — Ry Fig. 1 depicts the SMO Operat'onwhereamx is the maximal arrival rate of the external RS class.
and helps consolidate some of our notation.

An interesting interpretation of the long-term averagdityiti
generated by external RS class arrivals is that it repregbet
T reservation reward level that the 1ISO might be willing to pay
the SMO for standby RS reserves.
_Aw) i pi | () man(h) Finally, recall that building response to active 1SO RS
Internal Loads requests implies that the modified building load must become
/ equal toR + R, — m(t)r. with an allowed adjustment ramp
rate of Ry, /5 KW per minute. Although inequality (1) does not

SMO allow the building load to ever excedth- Ry, —m(t)r., impos-

R-R < E“”f — R+ Ry—m(t)re < R+ R ?ng an approxima‘;ion that is crucial to our asymptotic resul
it allows the building load to fall short ok + Ry, — m(t)r..

To impose a reasonable adjustment ramp, and in fact keep it
close to the allowedr, /5 KW per minute, we impose the
following penalty:

/OTP (R + Rh_( i ni(t)r; +m(t)7"e>> dt] ,

where P(-) denotes the penalty function. We make specific

Fig. 1. Schematic representation of controlled internaldlaand SO assumptions on the structure Bf() later.
request dynamics. The arrows represent internal (the lcaut$external (ISO Th timal prici l be d ibed th
requests) arrivals characterized by the triplet (arrieér load, departure rate). € opumal pricing policy can now be described as the

arg max Of:

lim — E[U;|U; > w;(t)]dt
Assumption B S e {Z/ | u;(t)]

There exists a pric@ma.x beyond which the demand(y) T
becomes zero. Furthermore, the functiefy) is continuous +/ aty@))EY|Y > y(t)]dt
and strictly decreasing in the rangge< [0, Ymax]- 0

T M

To render the proposed constrained welfare maximization */0 P<R+Rh - (Z”i(t)” +m(t)r€)>dt} ©)
problem more meaningful, we first detail the arrival models =1
and the underlying demand functions. Electricity consuampt  Due to Assumptions A and B, functions (u;) anda(y)
by an internal load of class generates utilityl;, whereU;  have inverse functions which we denote &y ;) and y(a),
is a non-negative random variable taking values in the rangespectively. The inverse functions are defined[@mM\; ax]
[0, u; max] With a continuous probability density function (pdf)and [0, amax], respectively, and are continuous and strictly
fi(u;). Arrivals of internal class loads are seen as being alecreasing. This allows us to use the arrival ratesand a
fraction of potential class: arrivals generated according to aas the SMO’s decision variables and write the instantaneous
Poisson process with constant ratg,.x. A potential arrival reward rates as;E[U;|U; > w;(\;)] andaE[Y|Y > y(a)].

a(y),re,|d m(t)

ISO requests

1
lim —FE

T—o0




We close this section by recalling that the internal and V. STATIC PRICING POLICY

external (RS) arrivals follow a stochastic process and the\we consider astatic pricing policy, namely a fixed price
utilities associated with these arrivals are random as. Wl vector (u, y) independent of the system state, for two reasons:
system responds to these random arrivals by modulating (1§ the computational effort for obtaining optimal dynamic
broadcasted prices in order to maximize the long-term &eergyices increases exponentially in the number of classes and
utility minus the penalty for under-consuming, and thus N@.tive loads, and2) good static prices can be constructed

satisfying I1SO regulation service requests. tractably and under reasonable conditions lead to reagpnab
behaved provisioning of RS. Indeed, under a static pricing
I11. DYNAMIC PROGRAMMING FORMULATION policy (u,y), the system evolves as a continuous-time Markov

. . L - chain and the corresponding average welfare is given by:
The problem introduced in Sec. Il is in fact a finite-state, P 9 9 g y

continuous-time, average reward DP problem. Note that the M ;

set{%.,%} = {(w,y)|0 < u; < Ujmax, ;0 <Y < Ymax} J(u,y) = Z)‘i(ui)E[Ui‘Ui z u1]<1 - Ioss[u’y])

of possible price vectors is compact and that all states agmm =1

nicate assuring that there exists a policy that is assatisith +a(EY]Y > y](1 — Qosu, y])

finite first passage time from any arbitrarily selected state B ( B . )

another state. Standard DP theory results assert that amabpt E|P((R+ B <zl: niri +mre) )| )

stationary policy exists. ‘

Since the procesdN(¢), m(t)) is a continuous-time Markov WherePj . Ju, ] denotes the steady-state probabilfN'r +
chain and the total transition rate out of any state is bodiye 7 +7re > R+ Rp] that an internal classarrival is rejected,
v = E?i1(/\i,max+ﬂi [(R+Rp)/7:])+ (amax +d[2Ry, /7)), and Quosslu, y] denotes the steady-state probabilRyN'r +
we can uniformize this Markov chain and derive the following™ + 1)re > R + Ry or (m + 1)re > 2R,] that an external

Bellman equation: RS class arrival is rejected. Moreover, the expected pgnalt
cost is also given by the steady-state probability assediat
J* = max { Z i (u)E[U;|U; > uy) with the same static policyu, y).
LTI O Nom) The optimalstatic welfare is defined by
+1pmNm)a(WEY]Y > y|-P((R+ Ry)~(N'r + mre)) Js= max J(uy), (6)
(wy)e{7 .2}
+ > Xiw) (AN + ei,m) — h(N,m)) . o
ieC(Nm) and the following proposition trivially holds.
M
+ me (h(N —e;,m) — h(N,m)) Proposition V.1 J, < J*.
i=1
+ 1pn,mya(y) (R(N,m + 1) — h(N, m)) V. OPTIMAL PERFORMANCE UPPER BOUND
n md(h(N m—1) — h(N m))] (4) In this section we develop an upper bound .6hand use
’ ’ it to quantify the suboptimality of the static policy.

Here, the scalaw/* stands for the optimal expected social Using the inverse demand functions(;), and internal
welfare per unit of time anch(N,m) denotes the relative Classi arrival rate);, the instantaneous reward ratefig\; ) =

reward in state(N,m). Furthermore,C(N,m) = {i|(N + AE[UilUi = u;i(A;)]. Similarly, G(y) = aE[Y]Y" > y(a)].

ei)’r +mr. < R+ Ry} is the set of internal class arrivalsAssume that the functions; and G are concave Let J,, be

that can be admitted in stat®&, m), andD(N,m) = {N'r+ the optimal value of the followingNon-Linear Programming
(m + 1)r. < R+ Ry, while (m + 1)r, < 2R;} describe (NLP) problem:

the conditions under which external RS class arrivals can

be admitted to the system. We use () to denote the max ;F’()‘ )+ Gla) (7)

indicator function of C(IN,m), i.e., the function equal td

if (N,m) e C(N,m) and0 otherwise. Similarly,1 ) - P(RJF Ry — (an + ””'e))
denotes the indicator function dp(N, m). o
The above Bellman equation has a unique solutibrand s.t. Ai = pini, Vi,
h(-) for an arbitrarily selected special state, sayt which a = dm,
we specify the value of the differential cost function, for an 4 mr. < R+ Ry,

example (0) = 0. Solving Bellman’s equation yields an
optimal policy that maps any statdN,m) to the optimal
price vector(u, y) that maximizes the right-hand side of Equa-
tion (4). Unfortunately, theurse of dimensionalitgtipulates ~ Remark:The non-negativity constraints; > 0 andm > 0
that Bellman’s equation is only solvable for a small statecgp are ignored here. Notice that the departure rateandd are
We therefore seek a near-optimal solution that is appleédl positive, and the arrival ratey; anda are also non-negative
SMO’s managing relatively large buildings or neighborheodby definition. Thus,n; and m are also non-negative under
with a large population of internal loads. well-defineddemand functions.

K3
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Proposition V.1 If the functionsF;(\;) andG(a) are concave  In this case, consider the NLP problem (7). The upper bound
and P(-) is convex, then™ < Jyp. J¢, is obtained by maximizing

Proof: Consider an optimal dynamic pricing policy. With- Z i (w)E[U:|U; > wi] + ca(y)BIY|Y > ]
out loss of generality, we can assume that the pticenay
become large enough to drive the arrival ratgu;) to zero, eXi(ug) ca
whenever the state is such that an internal clagsival cannot - P((CR + CRh) - (Z 11 i + gre))
be accepted. This amounts to price-directed arrival cantro i '

Similarly for the external RS clasg, may be driven to zero subject to the constraint
for sufficiently largey. Here, we view);, n;, anda, m as

i

e (u; ca
random variables, and ugg[-], to indicate expectation with > l(_ Z)m + c(ly) Te < cR+ cRp,
respect to the steady-state distribution under this paeic i Hi
policy. At any time we have_, n;r; +mr. < R+ Ry, Which ca(y)r < 2R,

implies that) ", E[n;]r; + E[m]r. < R+ Ry. Similarly, we
have E[m|r. < 2Rj,. Furthermore, Little’s law implies that |t can be seen that, if the penalty functié-) is linear (cf.

E[Ai] = piE[ni], andEla] = dE[m]. This shows that the assumption C), then the optimal solution for (7), denoted by

Eln], E[Ai], i =1,..., M, andE[m], Ela], form a feasible y: — (yux, ... u%, ) andy?,, is independent of, and
solution to problem (7) Using the concavity 6f andG, the JS, = cJi, This is stated in Prop. VI.1.

convexity of P and Jensen’s inequality
Assumption C

Jub > Y F(EIN]) + G(Ela]) P(z) = Ka for someK > 0.
_ P(E [R + Ry — (Z n;ri + mre)]> Proposition VI.1 Under Assumption C, the optimal objective
i value of (7) in the scaled system increases linearly wijtke.,
c __ 1
]E[Z FZ-(Ai)] +E {G(a)] up = ¢y
i We are interested in determining the gap between the two
bounds derived in Sec. IV and Sec. V. We show that in the
—E|{P(R+ R, — i e : )
[ ( + A (Zn ri+mr ))] regime of many small loads, the following result holds.

= J*. 8
®) Theorem VI.2 Assume that functiong;(\;) and G(a) are

where the last equality is due to the optimality of the policgoncave, and Assumptions A, B, and C hold. Then,

under consideration. ]

The optimal solution of NLP (7) provides an upper bound Jim CJC = lim CJ* = lim CJ 9)
for the optimal social welfare. Moreover, if the objective
function of (7) is concave, the NLP is easy to solve. Proof: It holds from Prop. VI.1 thavy, = cJ,,

Fix somee > 0 and let us consider new static prices
u§ given by uf = u’, . + €. Let J°(u) be the resulting

ub,i

) ) i _ ) average welfare. For every such that); (v}, ,) > 0, we
In this section, we consider an asymptotic regime anghve \;(u¢) < A;(u? »..)- Similarly, we sety = i+ €
u i ' u 1

(2

discuss how to derive the optimal policy while satisfyingind we haves(y©) < a(y:,). Let n¢ (respectivelyn¢__) be

VI. ASYMPTOTIC BEHAVIOR

additional system behavior requirements. the random variable which is equal to the number of active
loads of clasg, in steady-state, in the scaled system, under
A. Many small loads pricesug, with capacityc(R + Rj,) (respectively, with infinite

If R and R;, are large relative to the required power O]papacny). Similarly, definen® andmz,. We obtain

a typical arrival, we expect that the laws of large numbers

Willygominate, attenuatepstatistical fluctuations, agn«bvalIUs F Zn Moo TeMoo > cR A+ cRi - Tma"]

to carry out an essentially deterministic analysis. To gapt .

situation of this nature, we start with a base system charact <p Z ring oot rems >Z )i | calyy,) 7»max}

ized by finite capacity®? and R;, and finite demand functions d

Ai(u;). We then scale the system through a proportional T, né me i * —

mérez)ise of capacity and demand. =P|> ri 7;004' Te= >y = G ;l,”) + (Zub) - : }
More specifically, letc > 1 be a scaling factor. The scaled = ? g ’ (10)

system has resourcé®’ + Ry, with R°+ R§ = cR+cRy,, and

demand functions\{(u;), a$(y;) given by Af(u;) = cAi(u;) Where rp.x = max(max;r;,r.) and the 2nd inequality

anda‘(y) = ca(y). Note that the other parameters u,;, and follows from the feasibility ofu;,.
re, d are held fixed. We will use a superscriptto denote Note thatn$ __ is equal to the number of customers in an

7,00

various quantities of interest in the scaled system. M/M /oo queue with arrival ratech;(u$) and service rate

K2



. As ¢ — oo, the random variable{ /¢ converges in _ P<R+Rh _ (Z EE[HE]H + EE[mC]%))
probab|I|ty to A;(uf)/ui, * which is less tham,(u* b.i)/ M- 7 © ¢
Similarly, asc — oo, the random variable:S_/c converges in — Z NUOE[U|U; > uf] + a(y)E[Y]Y > yf]
probability to a(y¢)/d. Therefore, the probability in the right

hand side of (10) converges to zero. A (us) a(y©)
Next we consider the RS capacity constraint (2). Similarly, - P<R +Ry— (> it Tre))-
P|remS, > 2¢Ry — re} <P [remgo > Mre — 7«6} This is true for any positive. We now lete go to zero, in
) *d which caseus; tends touy, ; andy“ tends toy,,. Continuity
:]P)|:méo a(yu) l} (11) of the demand function anﬂ’( ), imply
c d c
As ¢ — oo, by following the same argument as above, the (lfgo cJ
right hand side of (11) converges to zero. > Z)‘ o U U > uly, ] Fa(yi)E[Y]Y > y5,]
Now comparens andm¢ with n¢ . andm¢,, respectively. api) b “ -
Comparing the number of active loads in the two correspond- Ai(u®y ) a(y®,)
ing systems (one with capacitfR + R;,) and the other with - P(R + Ry — (Z it d‘”’ Te))
infinite capacity), and by defining the arrival processes on a i Hi
common probability space, we conclude that for all sample = J,;- (12)

pathSnf is smaller tham; ... Similarly, for all sample paths,
m¢ is smaller thanmg,.
Hence,

Meanwhile, based on Prop. IV.1 and Prop. \{§,< J*¢ <
J¢, = eJk,, and the result follows. |

In the next subsections, while staying in the regime of many
small loads, we explore the structure of the asymptotically
optimal policy and consider additional operational cosisiis
and special cases.

Iioss[ ay I:ZTH >cR+cRy —rem _7“1‘:|
J

<P [ Z rjnj > cR+ cRy — rem® — rmax]
J B. Energy neutrality

SP{ZTW? > cR+cRp — remS, — Tmax}’ As discussed in the Introduction, th_e ISO usually issues RS
' requests that are related to its balancing area controt end

_ are therefore energy neutral over a longer time-scale, (arg.

and the arrival rejection probabilitieS,sJu, y°| converge to hour and beyond) than the one over which the SMO responds

zero as well. to these RS requests.

J

[ Mathematically, this means
Quosdu’, y¢] <P|r.m® > cR+ cRj, — Z Ting — re} ,
L J ag‘i = Ry,. (13)
+ ]P’[remc > 2cRy, — re} This constraint can be added to the NLP in (7) and by solving
_ the resulting problem one obtains a policy that guarantees
<P|remS, > CRJrth,Z ring o — rmax] long-term energy neutrality. Note that (13) implies thag¢ th
' 2nd inequality constraint of problem (7) is inactive. Fenth

- J

(13) completely specifies the arrival rate of ISO requests,(i
+ ]P’{?“emio > 2cRp — Te} a = Rpd/r.) and the corresponding prigga). What is left
is to determine the arrival rates of the internal loadsand
and the RS class rejection probabiliti€@essu®,y°|] also the corresponding prices;()\;), i = 1,..., M, which can be
converge to zero. done by solving the modified NLP.

By (5) and (6), it follows that

lim J > lim Jc (u, y) C. Structure of the asymptotically optimal policy

oo ¢ €—00 Let us assume that the energy neutrality constraint (13) is
= Z Ai(u§)E[U; |U > uf| +a(y)EY]Y >y being enforced; the analysis can be extended beyond thes cas
but it is more tedious. Eliminating the two equality conbtts.
. . of (7), ignoring the 2nd inequality constraint which is itiae
B EE{P(CR+CR}‘ B (an tm Te))} due to (13), and dualizing the 1st inequality — capacity —
constraint, it follows that we need to solve:
= Z)\ E[Ui|U; > uf] + a(y)EY]Y > y] A a
min ZF +K<R+Rh ;mn dre>
INote that for anyec, ng has a Poisson distribution with mean s a
cAi(us)/p; and an equal variance. Hence, @s»> oo, nf __/c has a mean +q1 ( Z Jri + =re — R — Rh)7
equal toA; (u$)/u; and a variance that converges to zero. — M d



where ¢; is the Lagrange multiplier (shadow price) for the G(a) =Yrmax (a a? ) )

capacity constraint. 2amax
Therefore,u; should minimize: In this case the NLP (7) becomes a conv@xadratic
i (us) Programming (QP)problem for which excellent solvers exist
—Fi(Xi(w)) + (¢ — K) A (14)  allowing one to solve large instances extremely fast.
where we note that . .
» E. Optimal selection oR and R},
Ai(u;) :Ai,max/ fi(v)dv, We have so far considerdd and Ry, values as given market
vi transactions determined at the long time-scale and focosed
Fy(Mi(us) :)\i,max/ ). the operational decisions of the SMO that affect short time-
us scale behavior. We now focus on the SMO’s optimal selection

Setting the derivative of (14) with respect 4 equal to zero ©f the long time-scale market transactions setting avel@age
and assuming that the utility pdf satisfiggu;) > 0 for all 12 and RS reserves;,. We assume that the SMO is a price
u; € (0, u; max) it follows that the optimal price:? for internal taker with market conditions reflected in the known ISO tili
load i is provided by the following Proposition. parameters. _ o
Assuming further that the market energy clearing price is
known in advance to the SMO making its RS offer, we let
'Ry be an estimate of the desired building consumption in the
event that no RS is offered. Given a feasible set(iRg R;)
) (n — K)ri]™" with R > R, and R, > 0, we incur two penalty costs(1)
Ui = {T} ) 1k1||R — Ro||? with ; > 0 to penalize deviation from the
o desired consumption, ar{d) %anh with ko > 0 to model the
where[]* denotes projection ont{), u; max]. intangible (inconvenience) and tangible (control and aibtun)
costs of conforming to the short-term response obligations
associated with offering regulation service.
Modifying (7) we formulate the following problem:

Proposition VI.3 Under the energy neutrality constraint (13)
the optimal priceu; for internal load: is given by

7

We distinguish three cases.
Case 1 If the capacity constraint is inactive, thep = 0
by complementary slackness and it follows thét= 0 for

all 7. In this case, the building is consuming less than the max ZFi()‘i) + G(a) (15)
ISO requested level and all prices are set to zero to enceurag i
internal arrivals that can increase consumption. _ K(R + R, — Z()\i//lz’)ri _ (a/d)re)

Case 2 Suppose now that the capacity constraint is active

i

but ¢; — K < 0, which again yields:; = 0 for all 4. In this 1 , 1
case, the cost of poor ISO request tracking, represented by - 5“1||R* Rol|” - 5“2Rh
the penalty parametdk’, is greater than the cost of violating

b . - . s.t. i/ i)Ts d)re < R+ Ry,
the capacity constraint, which is represented by the Lagran ;( Jmi)ri+ (afd)r i
multiplier ¢;, and prices are again set to zero to encourage (a/d)r. < 2Rj

internal arrivals and prevent under-consumption.
Case 3Finally, suppose that the capacity constraint is active R > Ry, Ry >0,

but ¢ — K > 0. Now the cost of violating the capacitywijth decision variablesi, R, and the arrival rates\; and
constraint is greater than the cost of under-consuming. Jt Note that the constraints remain linear and the objective
follows thatu; = (¢1 — K)ri/u;, which represents a chargeconcave, hence, this is a tractable problem. It can be viewed
(¢1—K) per unit of “energy” for each internal load“Energy” a5 joint optimization of internal and RS arrival rates (or

here equals the KW power consumed by loadimes the correspondingly prices) with the building capacifyand the
expected amount of time that load remains switched on. Wehount of RS quantity offered;,.

note that if (g1 — K)ri/pi > uimax thenu] is capped at
u; max SiNCe there is no reason to increase prices further (the VI
arrival rate drops to zero abovg ,ax).

. NUMERICAL EXPERIMENTS

In this section, we report numerical experiments that yerif
and validate our results.

D. Linear demand Assume that the SMO can support a maximum consumption
Suppose that the internal load utility; is uniformly dis- 0f 1200 KW with R = 1000 KW and R;, = 200 KW. This
tributed in [0, u; max] @nd the ISO utilityY” is also uniformly consumption is consistent with the Boston University (BU)
distributed in[0, ymax). Then, Photonics building housing the office of the first author. Con

sider two internal classes characterized by (all arrivedsare
Ai(Ui) =i max (1 W ) . a(y) = amax (1 __Y ) . In arrivals/minute and departure rates in departures/tejnu

A1(uq) = 1600 — 80uq, A2(u2) = 800 — 80u2, U1 max = 20,
M Ugmax = 10, M max = 1600, Agmax = 800, 11 = 2 KW,
2/\i7max) ’ ro = 1 KW, uy = 1, uo = 2. The RS class arrival rate is:

Ui, max Ymax

F;(A\i) =t max <)\i -



a(y) = 1000(1 — y/ymax) With ymax t0 be determined later,
amax = 1000, 7. = 1 KW, d = 2. The penalty function
has a slope of = 1000. Assume that the social welfare
U; is uniformly distributed in[0, u; max] and Y is uniformly
distributed in[0, y; max]. With these values we can solve the
NLP problem (7) (a QP problem) to obtain asymptoticall
optimal static prices? !

We simulate the system for the long time-scale of or L ;mm i
hour consisting of 12 periods of 5 minutes each. We consic : ——myr,
a scenario according to which one major disturbance a 400
multiple minor disturbances to the system energy balan KW RS Req. M M /WV
take place during each 5-minute period. We model the ma; zoom W
disturbance by altering the structure ofy) (changing the
value of ynax). The minor disturbances are modeled by th o ‘ ‘ ‘
random RS class arrivals generated from the Poisson proc ° * ® ufﬁe “ & ¥
with ratea(y). We make the reasonable assumption that thesc
disturbances are eventually eliminated over a 15-minUt#eCy rig > Energy consumption (in KW) by internal classes andvacRS
through the 5-minute economic dispatch actions of the 1S@juests during the 60 minutes simulated.
who schedules the 15-minute tertiary reserves at its deépos
in each 5-minute real-time market clearing.

More specifically in our simulation, a regulation service
cycle consists of three 5-minute periods and starts withlla fi

1000 -

oLl KW Int. Loads

usage

500

RS standby state, namely, with all RS active loads totalitpg A0 qu

As we mentioned above, this is the result of the ISO 5-minu w00] W\ i,@x:“'“be’ of Gfassit Loa X

economic dispatch, which we model by tuning the value ol fﬂw\w‘ ';(&%M“w*M&/yW»\‘ | ‘W Hiody Wﬁw\
| ' ! i

Ymax- IN the following two periods within the cycle, 1SO
requests — in response to major disturbances — are mode
as random samples from a uniform distribution o\@&rR2Ry,]
instantiated by re-setting the corresponding valug.qf;. This
random cycle is statistically neutral over the long timedsc
In our experimenty,,,..,. changes every 5 minutes and the SM(
must control internal class loads to meet ISO requests mitt ~ op T [—
the 5-minute requirement of RS reserves. By formulating ar
solving the NLP problem (7) at the beginning of every perioc . ‘ ‘ ‘ ‘ ‘
the SMO is able to appropriately set the prices that result ¢ 10 2° e “ % %
the required arrivals of internal classes.

The steady-state arrival rates for the two internal CIaSSE Number of active internal loads and active RS requestsg the
and the RS class in these periods are shown in Tab. I. Tétﬁmmutes simulated.

o

=3

=3
T

number of loads or requests
NN
g B
g 38
T

@
=)
T

=)
=]

o
=)

TABLE |
THE ARRIVAL RATES OF INTERNAL CLASSES AND THERS CLASS.

by applying static pricing policies that are piece-wise stant

Period Internal class 1 Internal class 2 RS class  over each 5-minute period, internal loads converge to ti@ IS
1 376 494 400 request. Recalling that RS reserves are required to respond
2 409 502 258 with a ramp ofR;, /5 KW per minute, the response of internal
3 346 486 527 .

4 376 494 400 class loads conforms well to requirements. Indeed, sityce=

5 309 477 683 200 KW in this example, the rate at whieh (¢)r1 +na(t)ra+

6 409 502 257 m(t)r. move away from and then approach 0 KW level

7 376 494 400 hould be cl 40 KW . Fi 5 d

8 322 480 630 should be close td0 per minute. Figure 2 demonstrates
9 445 511 106 this to be the case. The SMO’s decision to off®0 KW

10 376 494 400 of RS is consistent with its capability to perform according
11 403 500 286 : ; .

12 391 480 635 the associated contractual requirements. In Figure 3, awver

plot the number of internal loads and RS requests, we note tha
there are on averag¥0 active loads of class 1 with 2KW
evolution of the total consumption due to internal loads arg@nsumption rate — these might be HVAC heating zone loads
the total load of the RS class are shown in Fig. 2. Note thatand250 active loads of clasg with a 1 KW consumption
rate. These quantities are consistent with the BU Photonics
2We solved the corresponding QP problem using Matlab. building which features several hundred heating zones.



VIIl. CONCLUSIONS [10] The House of Representatives, “Facilitating the titiors to a smart
. ey - - electric grid, May 3, 2007,” 2007.
The prospect of a paradigm shift in the capabilities of the1; saic, “San Diego smart grid study final report,” Sciencepiications

electric power grid as well as building side-of-the-meter m International Corporation Smart Grid Team, Tech. Rep. 1G:9atober

; . i i 2006.
crogrids through C.yb.er P_hy3|cal System (C.:PS) infrastmect .hlZ] R. D. Tabors, G. Parker, and M. C. Caramanis, “Developnudrthe
development is within sight. Such CPS infrastructure will ™ smart grid: Missing elements in the policy process48rd Hawail
certainly enable loads to participate in power markets on a International Conference on System Sciences (HIC$S)uary 2010,
par bas[s with generating l.JnItS, not (.)r.”y in the prOVISIOH_3] NIST, NIST Framework and Roadmap for Smart Grid Interoperability
of elgctrlc energy, but also in the provision of fast reserve™ ™ giandards, Release 1.0anuary 2010.
In this paper we develop and test a market-based approdefi “NYISO ancillary services manual,” available at httpivw.nyiso.com/

; ; public/webdocs/documents/manuals/operations/ancsérivay 2011.

for a S.mart Microgrid Operatpr (SMO) to C.OntrOI numerou%?/] M. Negrete-Pincetic and S. Meyn, “Intelligence by dgsifor the
and d|V(_9rse Ioads. and prov@e SLfCh services. We start entropic grid,” in Power and Energy Society General Meeting, 2011
formulating a detailed dynamic optimal control problem and IEEE 2011, pp. 1-8.

; i _Onti 6] I. C. Paschalidis and J. N. Tsitsiklis, “Congestionpeledent pricing
t.hen dem./e .an .aSSOCIated tragtable and yet near 0.pt.|m&| ng of network services,IJEEE/ACM Trans. Networkingvol. 8, no. 2, pp.
linear optimization model that is capable of determininghbo 171-184, 2000.
short-term (at the minutes time-scale) operational degisi[17] I. Paschalidis and Y. Liu, “Pricing in multiservice lossetworks:

iAo ; Static pricing, asymptotic optimality, and demand substtuteffects,”
suppo_r_t to the SMO as V\.Ie” as longer time Scal.e transaction IEEE/ACM Trans. Networkingvol. 10, no. 3, pp. 425-438, 2002.
guantities (at the hourly time-scale). Our model is elatemta
and validated by numerical simulation results.

A useful insight from our analysis is that as the capacity
of the building increases, in conjunction with the number of
loads the building can suppostaticprices (viewed as internal
feedback signals) become asymptotically optimal. Suotepri
are easy to compute and implement. This result suggests th
load aggregators that can bundle many buildings have a
advantage since they can operate in the limiting regime wi
analyzed and, as a result, offer static prices to internadiso
We clarify that prices remain static as long as the statistic 4 i 2 | Mo (190%) and a PhD

. . . ogy receiving an M.S. and a Ph.D.
load _and R_S class arnvals! and their corresponding _m?Im = (1996), both in Electrical Engineering and Computer
remain stationary. In practice, we expect these statisics Science. In September 1996 he joined Boston University wierehas
exhibit time-of-day effects, implying that prices shoulsa been ever since. He has held visiting appointments with MI@ @olumbia

. . . University. His current research interests lie in the fieltfssystems and
changg over this very long tlme-scale.. Itis remarkgble gmou control, networking, applied probability, optimizatiomperations research and
that prices need not need to change in the short time-scalec@hputational biology.
SMO dynamics.

As a final comment, we note that the asymptotic analysis
allowed us to forgo the stochastic dynamics and capture the
internal market problem in a nonlinear optimization foraul
tion. This enabled the incorporation of a longer-term enerc
neutrality constraint, as well as, formulating the joinbiplem
of selecting prices together with setting building capaeind
the amount of regulation service the building should offer.
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