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Abstract—We develop a market-based mechanism that enables
a building Smart Microgrid Operator (SMO) to offer regulation
service reserves and meet the associated obligation of fast re-
sponse to commands issued by the wholesale market Independent
System Operator (ISO) who provides energy and purchases
reserves. The proposed market-based mechanism allows the SMO
to control the behavior of internal loads through price signals
and to provide feedback to the ISO. A regulation service reserves
quantity is transacted between the SMO and the ISO for a
relatively long period of time (e.g., a one hour long time-scale).
During this period the ISO follows shorter time-scale stochastic
dynamics to repeatedly request from the SMO to decrease or
increase its consumption. We model the operational task of
selecting an optimal short time-scale dynamic pricing policy as
a stochastic dynamic program that maximizes average SMO
and ISO utility. We then formulate an associated non-linear
programming static problem that provides an upper bound on
the optimal utility. We study an asymptotic regime in which
this upper bound is shown to be tight and the static policy
provides an efficient approximation of the dynamic pricing policy.
Equally importantly, this framework allows us to optimize the
long time-scale decision of determining the optimal regulation
service reserve quantity. We demonstrate, verify and validate the
proposed approach through a series of Monte Carlo simulations
of the controlled system time trajectories.

Index Terms—Electricity demand response, electricity regu-
lation service, smart-grid, pricing, electricity markets, welfare
maximization, dynamic programming.

I. I NTRODUCTION

We address advanced demand control in next generation
intelligent buildings or neighborhoods that are (i) equipped
with a sub-metering and actuation capablesmart-microgrid
accessible by occupants as well as by aSmart Microgrid
Operator (SMO), and (ii) connected to a cyber infrastructure
enhancedsmart-gridthat can support close-to-real-time power
market transactions including participants connected at the
distribution level. In particular, we consider demand control for
offering capacity reserve ancillary services to theIndependent
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System Operator (ISO)who clears short-term power markets.
In this respect we note that five minute up and down capacity
reserves, known asRegulation Service (RS)reserves, are im-
portant to meeting the required energy balance and preserving
power system stability.

As clean, but alas intermittent and volatile, renewable
generation is increasingly integrated into the grid, RS reserve
requirements increase as well [1]. Considering that today’s RS
reserves procured simultaneously with energy correspond to
1% of load, and command market clearing prices comparable
to the price of energy, an increase in RS requirements without a
commensurate increase in supply may well be a show stopper
for wind generation expansion. Since centralized generating
units are today the only contributor of RS, enabling buildings
to offer RS and compete in the power markets promises a
major contribution in terms of affordable RS reserve cost and
lower CO2 emissions due to the associated adoption of clean
generation.

Whole sale power markets were introduced in the US in the
mid 1990’s [2]. These markets clear simultaneously energy
and several types of reserve requirements. For simplicity in
exposition we consider here only bidirectional RS reserves.
Most markets have not yet allowed the demand side to
participate in RS reserves. One of the ISO’s, PJM, has allowed
loads to participate in energy and reserve transactions since
2006 [3], while other ISO’s are contemplating to follow suit.
Of the existing short-term markets we point out briefly ([4],
[5], [6], [7], [8], [9]) the: (i) day-aheadmarkets that close at
noon of the previous day and clear energy and reserve bids for
each of the 24 hours of the next day, (ii) hour-aheadadjustment
markets that close an hour in advance and reveal energy and
reserve prices, and (iii) 5-minutereal-timeeconomic dispatch
markets that determine actual ex post variable marginal cost
of energy at each bus or node of the transmission system.

We assume that with the advent of thesmart grid([10], [11],
[12], [13]) a Load Aggregator (LA)will be able to participate
in power markets on a par basis with centralized generators.
In particular we assume that an LA will be able to buy energy
on an hourly basis at the corresponding clearing price and
sell RS reserves for which it will be credited at the system
RS clearing price. An ISO who procuresRh KW of RS is
entitled to consider it as a stand-by increment or decrementof
consumption that it can utilize at will in total or in part. The
ISO may send commands to the RS provider to request that
it modulates its consumption either up or down by an amount
that does not exceedRh. These requests may arrive at inter-
arrival times of 5 seconds or longer [6], [14]. To observe RS
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reserve contractual obligations, the RS provider must deliver
the requested increase or decrease in its load with a ramp rate
of Rh/5 KW per minute. The ISO typically re-dispatches the
power system in 5 minute intervals. At each 5-minute system
dispatch, the ISO economically schedules slower response
tertiary reserves so as to reset the utilized RS reserves to
their nominal level. As a result, although not guaranteed, the
RS reserve provider’s tracking of ISO commands is for all
practical purposes energy neutral over the long time-scaleof
an hour and beyond. To meet the aforementioned contractual
requirements, the SMO must be capable of controlling loads
through the collaboration of acyber-physical event scheduling
layer, the smart microgrid, and a higherdecision support and
communicationlayer that interacts with users of energy in
order to adapt their demand behaviors to ISO’s requests for RS
reserve usage. The lower SMO layer consists of sensing and
actuation components that collect building state information
and actuate so as to safely implement goals determined at the
higher level and authorized by building occupants.

This paper focuses expressly on providing the higher de-
cision support layer with a virtual market that operates on
the building side of the meter for the purpose of eliciting a
collaborative response of building occupants. Our objective
is to derive an optimal SMOpricing or incentive policy
towards building occupants so that they consent to the sale
of RS reserves to the ISO and collaborate in meeting the
ISO’s RS operational requirements. This objective is in sync
with recent calls to develop better mechanisms for reserve
management [15]. To the best of our knowledge, little relevant
work has been published, and we are the first to propose such
a market-based policy for demand control aiming at the provi-
sion of RS reserves. Methodologically, related techniqueshave
been used in pricing Internet services [16], [17]. In Sec. II,
we detail our internal market-based model and formulate a
related welfare maximization problem. In Sec. III we cast
the problem into aDynamic Programming (DP)framework to
obtain the optimal dynamic policy conditions. We then proceed
to develop performance bounds and approximations. In Sec. IV
we develop a static policy and in Sec. V we derive an easily
computable upper bound on the optimal performance. Based
on this bound, we establish in Sec. VI the asymptotic optimal-
ity of the static policy as the load class specific consumption
level becomes smaller with a commensurate increase in the
number of active loads. Further, we extend the asymptotic
optimality results to account for constraints that model energy
neutrality over the long time-scale and the upper limit in the
RS delivery requested by the ISO . We present numerical
results in Sec. VII, and conclude in Sec. VIII.

II. PROBLEM FORMULATION

This section models the short time-scale interaction of the
SMO with microgrid occupants/loads and the ISO.

The SMO can sellRh KW of regulation service for the
duration of the long time-scale (e.g., one hour), provided
that its microgrid’s average consumption,R, exceedsRh and
its consumption capacity is at leastR + Rh. We envision
microgrid load classes that can be potentially active during the

relevant long time period and include, among others, lights,
HVAC zones, computers, electrical appliances and the like.We
denote the event of a load unit becoming active as aninternal
arrival (i.e., internal to the building) and associate a class-
specific electricity demand increment with each arrival. We
similarly denote the event of a load unit becoming inactive
as an internal departure. An actively consuming load unit
derives a positive utility. With the sale ofRh KW of RS
the SMO agrees to be on standby and respond to short
time-scale (e.g., seconds to minutes) ISO requests for an
increment or decrement of the building’s consumption. We
denote the event of an ISO request as anexternal arrival(i.e.,
external to the building). The termination of an ISO request
is modeled as anexternal departure. Note that the cumulative
ISO increment or decrement requests can not exceedRh or
−Rh respectively. As mentioned, the SMO’s response does
not have to be instantaneous. Most ISOs today, require for
regulation service reserves traded in power markets a response
rate of roughlyRh/5 KW per minute. When the ISO request
is accommodated by the SMO, the ISO realizes a positive
utility whose magnitude depends on system-wide needs and
the ISO’s obligation to not exceed the maximum amount of
RS it has contracted from the SMO. In addition, in its periodic
5-minute system re-dispatch, the ISO typically attempts to
reset its cumulative increment or decrement requests to zero in
order to enable RS providers to respond to new requests during
future inter-dispatch 5-minute periods. This suggests that the
long time-scale average deviation of building consumption
from its R level equals zero. Hence, the sale of RS reserves
has an energy neutral impact on long time-scale building
consumption.

The primary objective is to maximize the sum of SMO
and ISO welfare associated with internal and external arrivals.
Hard and soft constraints are added to model adherence to the
contractual requirements and long time-scale energy neutrality
described above. To achieve these goals, the SMO controls the
active internal loads and external requests by communicating
external and internal-class-specificprices that may be inter-
preted as dynamic demand control and RS activation feedback
signals as much as a monetary exchange.

We assumeM classes of internal loadsi = 1, . . . ,M ,
that arrive according to a Poisson process and requireri

KW for an exponentially distributed period with rateµi. Let
µ = (µ1, . . . , µM ) and r = (r1, . . . , rM ). Each internal
arrival of classi pays an SMO determined priceui; we define
u = (u1, . . . , uM ). We assume that the arrival rate of classi
loads is a known demand functionλi(ui) which depends onui

and satisfies Assumption A below. We denote the number of
activeclassi internal loads at timet by ni(t), i = 1, . . . ,M ,
and defineN(t) =

(

n1(t), . . . , nM (t)
)

.

Assumption A
For everyi, there exists a priceui,max beyond which the de-
mandλi(ui) becomes zero. Furthermore, the functionλi(ui)
is continuous and strictly decreasing in the rangeui ∈
[0, ui,max].

ISO requests for the dynamic activation of RS reserves are
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modeled as a special external class. External RS activation
requests occur at a ratea(y) where y is an SMO set price
anda(y) satisfies Assumption B below. While they are active,
external arrivals requirere KW each. They become inactive
upon their departure which follows an exponential distribution
with rated. Denoting the number of active external class loads
at time t by m(t), the building is being requested by the ISO
to consumeR + Rh − m(t)re KW. We impose the following
two constraints:

N(t)
′

r + m(t)re =
M
∑

i=1

ni(t)ri + m(t)re ≤ R + Rh, (1)

m(t)re ≤ 2Rh, (2)

where prime denotes transpose. Inequality (1) ensures thatat
any timet the total capacity usage of all active loads does not
exceed the maximal building consumption capacityR + Rh

even whenm(t) = 0. Inequality (2) ensures that the ISO
can not request that the building consumption at timet be
decreased belowR − Rh. Fig. 1 depicts the SMO operation
and helps consolidate some of our notation.

(n1(t), . . . , nM(t))

R − Rh ≤
M

∑

i=1

rini(t) = R + Rh − m(t)re ≤ R + Rh

SMO

Internal Loads

λ(ui), ri, µi

ISO requests

m(t)a(y), re, d

Fig. 1. Schematic representation of controlled internal load and ISO
request dynamics. The arrows represent internal (the loads)and external (ISO
requests) arrivals characterized by the triplet (arrival rate, load, departure rate).

Assumption B
There exists a priceymax beyond which the demanda(y)
becomes zero. Furthermore, the functiona(y) is continuous
and strictly decreasing in the rangey ∈ [0, ymax].

To render the proposed constrained welfare maximization
problem more meaningful, we first detail the arrival models
and the underlying demand functions. Electricity consumption
by an internal load of classi generates utilityUi, whereUi

is a non-negative random variable taking values in the range
[0, ui,max] with a continuous probability density function (pdf)
fi(ui). Arrivals of internal classi loads are seen as being a
fraction of potential classi arrivals generated according to a
Poisson process with constant rateλi,max. A potential arrival

becomes anactualarrival if and only if the random utility real-
ization,Ui, exceeds the SMO set priceui. This implies that in-
ternal classi arrivals occur according to a randomly modulated
Poisson process with rateλi(ui(t)) = λi,maxP[Ui ≥ ui(t)].
Furthermore, the expected utility conditioned on the fact that a
potential arrival has decided to “connect” under a current price
of ui, is equal toE[Ui|Ui ≥ ui]. We therefore conclude that the
expected long-term average rate at which utility accumulates
due to internal loads is:

lim
T→∞

1

T

M
∑

i=1

E

[
∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

]

.

Following a similar argument, the welfare generated from
external RS class arrivals can be expressed as:

lim
T→∞

1

T
E

[
∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

]

,

where Y stands for the welfare from the admission of a
potential external RS arrival, anda(y(t)) = amaxP[Y ≥ y(t)]
whereamax is the maximal arrival rate of the external RS class.
An interesting interpretation of the long-term average utility
generated by external RS class arrivals is that it represents the
reservation reward level that the ISO might be willing to pay
the SMO for standby RS reserves.

Finally, recall that building response to active ISO RS
requests implies that the modified building load must become
equal toR + Rh − m(t)re with an allowed adjustment ramp
rate ofRh/5 KW per minute. Although inequality (1) does not
allow the building load to ever exceedR+Rh−m(t)re, impos-
ing an approximation that is crucial to our asymptotic results,
it allows the building load to fall short ofR + Rh − m(t)re.
To impose a reasonable adjustment ramp, and in fact keep it
close to the allowedRh/5 KW per minute, we impose the
following penalty:

lim
T→∞

1

T
E

[

∫ T

0

P

(

R + Rh−
(

M
∑

i=1

ni(t)ri+m(t)re

)

)

dt

]

,

where P (·) denotes the penalty function. We make specific
assumptions on the structure ofP (·) later.

The optimal pricing policy can now be described as the
arg max of:

lim
T→∞

1

T
E

[ M
∑

i=1

∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

+

∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

−

∫ T

0

P

(

R + Rh −
(

M
∑

i=1

ni(t)ri + m(t)re

)

)

dt

]

. (3)

Due to Assumptions A and B, functionsλi(ui) and a(y)
have inverse functions which we denote byui(λi) and y(a),
respectively. The inverse functions are defined on[0, λi,max]
and [0, amax], respectively, and are continuous and strictly
decreasing. This allows us to use the arrival ratesλi and a
as the SMO’s decision variables and write the instantaneous
reward rates asλiE[Ui|Ui ≥ ui(λi)] andaE[Y |Y ≥ y(a)].



4

We close this section by recalling that the internal and
external (RS) arrivals follow a stochastic process and the
utilities associated with these arrivals are random as well. The
system responds to these random arrivals by modulating the
broadcasted prices in order to maximize the long-term average
utility minus the penalty for under-consuming, and thus, not
satisfying ISO regulation service requests.

III. D YNAMIC PROGRAMMING FORMULATION

The problem introduced in Sec. II is in fact a finite-state,
continuous-time, average reward DP problem. Note that the
set {U ,Y } = {(u, y)|0 ≤ ui ≤ ui,max,∀i; 0 ≤ y ≤ ymax}
of possible price vectors is compact and that all states commu-
nicate assuring that there exists a policy that is associated with
finite first passage time from any arbitrarily selected stateto
another state. Standard DP theory results assert that an optimal
stationary policy exists.

Since the process(N(t),m(t)) is a continuous-time Markov
chain and the total transition rate out of any state is bounded by
ν =

∑M

i=1(λi,max +µi⌈(R+Rh)/ri⌉)+(amax +d⌈2Rh/re⌉),
we can uniformize this Markov chain and derive the following
Bellman equation:

J∗ = max
(u,y)∈{U ,Y }

[

∑

i∈C(N,m)

λi(ui)E[Ui|Ui ≥ ui]

+1D(N,m)a(y)E[Y |Y ≥ y]−P
(

(R + Rh)−(N
′

r + mre)
)

+
∑

i∈C(N,m)

λi(ui)
(

h(N + ei,m) − h(N,m)
)

+

M
∑

i=1

niµi

(

h(N − ei,m) − h(N,m)
)

+ 1D(N,m)a(y)
(

h(N,m + 1) − h(N,m)
)

+ md
(

h(N,m − 1) − h(N,m)
)

]

. (4)

Here, the scalarJ∗ stands for the optimal expected social
welfare per unit of time andh(N,m) denotes the relative
reward in state(N,m). Furthermore,C(N,m) = {i|(N +
ei)

′

r + mre ≤ R + Rh} is the set of internal class arrivals
that can be admitted in state(N,m), andD(N,m) = {N

′

r+
(m + 1)re ≤ R + Rh while (m + 1)re ≤ 2Rh} describe
the conditions under which external RS class arrivals can
be admitted to the system. We use1C(N,m) to denote the
indicator function ofC(N,m), i.e., the function equal to1
if (N,m) ∈ C(N,m) and 0 otherwise. Similarly,1D(N,m)

denotes the indicator function ofD(N,m).
The above Bellman equation has a unique solutionJ∗ and

h(·) for an arbitrarily selected special state, say0 at which
we specify the value of the differential cost function, for
exampleh(0) = 0. Solving Bellman’s equation yields an
optimal policy that maps any state(N,m) to the optimal
price vector(u, y) that maximizes the right-hand side of Equa-
tion (4). Unfortunately, thecurse of dimensionalitystipulates
that Bellman’s equation is only solvable for a small state space.
We therefore seek a near-optimal solution that is applicable to
SMO’s managing relatively large buildings or neighborhoods
with a large population of internal loads.

IV. STATIC PRICING POLICY

We consider astatic pricing policy, namely a fixed price
vector(u, y) independent of the system state, for two reasons:
(1) the computational effort for obtaining optimal dynamic
prices increases exponentially in the number of classes and
active loads, and(2) good static prices can be constructed
tractably and under reasonable conditions lead to reasonably
behaved provisioning of RS. Indeed, under a static pricing
policy (u, y), the system evolves as a continuous-time Markov
chain and the corresponding average welfare is given by:

J(u, y) =

M
∑

i=1

λi(ui)E[Ui|Ui ≥ ui]
(

1 − Pi
loss[u, y]

)

+ a(y)E[Y |Y ≥ y]
(

1 − Qloss[u, y]
)

− E

[

P
(

(R + Rh) −
(

∑

i

niri + mre

)

)

]

, (5)

wherePi
loss[u, y] denotes the steady-state probabilityP[N′

r+
ri +mre > R+Rh] that an internal classi arrival is rejected,
and Qloss[u, y] denotes the steady-state probabilityP[N′

r +
(m + 1)re > R + Rh or (m + 1)re > 2Rh] that an external
RS class arrival is rejected. Moreover, the expected penalty
cost is also given by the steady-state probability associated
with the same static policy(u, y).

The optimalstatic welfare is defined by

Js = max
(u,y)∈{U ,Y }

J(u, y), (6)

and the following proposition trivially holds.

Proposition IV.1 Js ≤ J∗.

V. OPTIMAL PERFORMANCE UPPER BOUND

In this section we develop an upper bound onJ∗ and use
it to quantify the suboptimality of the static policy.

Using the inverse demand functionsui(λi), and internal
classi arrival rateλi, the instantaneous reward rate isFi(λi) =
λiE[Ui|Ui ≥ ui(λi)]. Similarly, G(y) = aE[Y |Y ≥ y(a)].
Assume that the functionsFi andG are concave. Let Jub be
the optimal value of the followingNon-Linear Programming
(NLP) problem:

max
∑

i

Fi(λi) + G(a) (7)

− P
(

R + Rh −
(

∑

i

niri + mre

)

)

s.t. λi = µini, ∀i,

a = dm,
∑

i

niri + mre ≤ R + Rh,

mre ≤ 2Rh.

Remark:The non-negativity constraintsni ≥ 0 andm ≥ 0
are ignored here. Notice that the departure ratesµi andd are
positive, and the arrival ratesλi and a are also non-negative
by definition. Thus,ni and m are also non-negative under
well-defineddemand functions.
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Proposition V.1 If the functionsFi(λi) andG(a) are concave
and P (·) is convex, thenJ∗ ≤ Jub.

Proof: Consider an optimal dynamic pricing policy. With-
out loss of generality, we can assume that the priceui may
become large enough to drive the arrival rateλi(ui) to zero,
whenever the state is such that an internal classi arrival cannot
be accepted. This amounts to price-directed arrival control.
Similarly for the external RS class,a may be driven to zero
for sufficiently largey. Here, we viewλi, ni, and a, m as
random variables, and useE[·], to indicate expectation with
respect to the steady-state distribution under this particular
policy. At any time we have

∑

i niri +mre ≤ R+Rh, which
implies that

∑

i E[ni]ri + E[m]re ≤ R + Rh. Similarly, we
have E[m]re ≤ 2Rh. Furthermore, Little’s law implies that
E[λi] = µiE[ni], and E[a] = dE[m]. This shows that the
E[ni], E[λi], i = 1, . . . ,M , and E[m], E[a], form a feasible
solution to problem (7). Using the concavity ofFi andG, the
convexity ofP and Jensen’s inequality

Jub ≥
∑

i

Fi(E[λi]) + G(E[a])

− P

(

E

[

R + Rh −
(

∑

i

niri + mre

)

]

)

≥ E

[

∑

i

Fi(λi)

]

+ E

[

G(a)

]

− E

[

P
(

R + Rh −
(

∑

i

niri + mre

)

)

]

= J∗. (8)

where the last equality is due to the optimality of the policy
under consideration.

The optimal solution of NLP (7) provides an upper bound
for the optimal social welfare. Moreover, if the objective
function of (7) is concave, the NLP is easy to solve.

VI. A SYMPTOTIC BEHAVIOR

In this section, we consider an asymptotic regime and
discuss how to derive the optimal policy while satisfying
additional system behavior requirements.

A. Many small loads

If R and Rh are large relative to the required power of
a typical arrival, we expect that the laws of large numbers
will dominate, attenuate statistical fluctuations, and allow us
to carry out an essentially deterministic analysis. To capture a
situation of this nature, we start with a base system character-
ized by finite capacityR andRh and finite demand functions
λi(ui). We then scale the system through a proportional
increase of capacity and demand.

More specifically, letc ≥ 1 be a scaling factor. The scaled
system has resourcesRc+Rc

h, with Rc+Rc
h = cR+cRh, and

demand functionsλc
i (ui), ac

j(yj) given by λc
i (ui) = cλi(ui)

andac(y) = ca(y). Note that the other parametersri, µi, and
re, d are held fixed. We will use a superscriptc to denote
various quantities of interest in the scaled system.

In this case, consider the NLP problem (7). The upper bound
Jc

ub is obtained by maximizing

∑

i

cλi(ui)E[Ui|Ui ≥ ui] + ca(y)E[Y |Y ≥ y]

− P
(

(

cR + cRh

)

−
(

∑

i

cλi(ui)

µi

ri +
ca

d
re

)

)

,

subject to the constraint

∑

i

cλi(ui)

µi

ri +
ca(y)

d
re ≤ cR + cRh,

ca(y)

d
re ≤ 2cRh.

It can be seen that, if the penalty functionP (·) is linear (cf.
Assumption C), then the optimal solution for (7), denoted by
u
∗
ub = (u∗

ub,1, . . . , u
∗
ub,M ) and y∗

ub, is independent ofc, and
Jc

ub = cJ1
ub. This is stated in Prop. VI.1.

Assumption C
P (x) = Kx for someK > 0.

Proposition VI.1 Under Assumption C, the optimal objective
value of (7) in the scaled system increases linearly withc, i.e.,
Jc

ub = cJ1
ub.

We are interested in determining the gap between the two
bounds derived in Sec. IV and Sec. V. We show that in the
regime of many small loads, the following result holds.

Theorem VI.2 Assume that functionsFi(λi) and G(a) are
concave, and Assumptions A, B, and C hold. Then,

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
J∗,c = lim

c→c

1

c
Jc

ub. (9)

Proof: It holds from Prop. VI.1 thatJc
ub = cJ1

ub.
Fix some ǫ > 0 and let us consider new static prices

uǫ
i given by uǫ

i = u∗
ub,i + ǫ. Let Jc(uǫ) be the resulting

average welfare. For everyi such thatλi(u
∗
ub,i) > 0, we

have λi(u
ǫ
i) < λi(u

∗
ub,i). Similarly, we setyǫ = y∗

ub + ǫ,
and we havea(yǫ) < a(y∗

ub). Let nc
i (respectively,nc

i,∞) be
the random variable which is equal to the number of active
loads of classi, in steady-state, in the scaled system, under
pricesuǫ

i , with capacityc(R +Rh) (respectively, with infinite
capacity). Similarly, definemc andmc

∞. We obtain

P

[

∑

i

rin
c
i,∞ + rem

c
∞ > cR + cRh − rmax

]

≤P

[

∑

i

rin
c
i,∞+ rem

c
∞>

∑

i

cλi(u
∗
ub,i)ri

µi

+
ca(y∗

ub)

d
−rmax

]

=P

[

∑

i

ri

nc
i,∞

c
+ re

mc
∞

c
>

∑

i

λi(u
∗
ub,i)ri

µi

+
a(y∗

ub)

d
−

rmax

c

]

,

(10)

where rmax = max(maxi ri, re) and the 2nd inequality
follows from the feasibility ofu∗

ub.
Note thatnc

i,∞ is equal to the number of customers in an
M/M/∞ queue with arrival ratecλi(u

ǫ
i) and service rate
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µi. As c → ∞, the random variablenc
i,∞/c converges in

probability to λi(u
ǫ
i)/µi, 1 which is less thanλi(u

∗
ub,i)/µi.

Similarly, asc → ∞, the random variablemc
∞/c converges in

probability toa(yǫ)/d. Therefore, the probability in the right
hand side of (10) converges to zero.

Next we consider the RS capacity constraint (2). Similarly,

P

[

rem
c
∞ > 2cRh − re

]

≤P

[

rem
c
∞ >

ca(y∗
ub)

d
re − re

]

=P

[

mc
∞

c
>

a(y∗
ub)

d
−

1

c

]

, (11)

As c → ∞, by following the same argument as above, the
right hand side of (11) converges to zero.

Now comparenc
i andmc with nc

i,∞ andmc
∞, respectively.

Comparing the number of active loads in the two correspond-
ing systems (one with capacityc(R + Rh) and the other with
infinite capacity), and by defining the arrival processes on a
common probability space, we conclude that for all sample
pathsnc

i is smaller thannc
i,∞. Similarly, for all sample paths,

mc is smaller thanmc
∞.

Hence,

Pi
loss[u

ǫ, yǫ] = P

[

∑

j

rjn
c
j > cR + cRh − rem

c − ri

]

≤P

[

∑

j

rjn
c
j > cR + cRh − rem

c − rmax

]

≤P

[

∑

j

rjn
c
j,∞ > cR + cRh − rem

c
∞ − rmax

]

,

and the arrival rejection probabilitiesP i
loss[u

ǫ, yǫ] converge to
zero as well.

Qloss[u
ǫ, yǫ] ≤P

[

rem
c > cR + cRh −

∑

j

rjn
c
j − re

]

+ P

[

rem
c > 2cRh − re

]

≤P

[

rem
c
∞ > cR + cRh−

∑

j

rjn
c
j,∞ − rmax

]

+ P

[

rem
c
∞ > 2cRh − re

]

,

and the RS class rejection probabilitiesQloss[u
ǫ, yǫ] also

converge to zero.
By (5) and (6), it follows that

lim
c→∞

1

c
Jc

s ≥ lim
c→∞

1

c
Jc(uǫ, yǫ)

=
∑

i

λi(u
ǫ
i)E

[

Ui|Ui ≥ uǫ
i

]

+ a(yǫ)E[Y |Y ≥ yǫ]

−
1

c
E

[

P
(

cR + cRh −
(

∑

i

nc
iri + mcre

)

)

]

=
∑

i

λi(u
ǫ
i)E

[

Ui|Ui ≥ uǫ
i

]

+ a(yǫ)E[Y |Y ≥ yǫ]

1Note that for any c, nc
i,∞

has a Poisson distribution with mean
cλi(u

ǫ
i
)/µi and an equal variance. Hence, asc → ∞, nc

i,∞
/c has a mean

equal toλi(u
ǫ
i
)/µi and a variance that converges to zero.

− P
(

R + Rh −
(

∑

i

1

c
E

[

nc
i

]

ri +
1

c
E

[

mc
]

re

)

)

=
∑

i

λi(u
ǫ
i)E

[

Ui|Ui ≥ uǫ
i

]

+ a(yǫ)E[Y |Y ≥ yǫ]

− P
(

R + Rh −
(

∑

i

λi(u
ǫ
i)

µi

ri +
a(yǫ)

d
re

)

)

.

This is true for any positiveǫ. We now letǫ go to zero, in
which caseuǫ

i tends tou∗
ub,i and yǫ tends toy∗

ub. Continuity
of the demand function andP (x), imply

lim
c→∞

1

c
Jc

s

≥
∑

i

λi(u
∗
ub,i)E

[

Ui|Ui ≥ u∗
ub,i

]

+ a(y∗
ub)E[Y |Y ≥ y∗

ub]

− P
(

R + Rh −
(

∑

i

λi(u
∗
ub,i)

µi

ri +
a(y∗

ub)

d
re

)

)

= J1
ub. (12)

Meanwhile, based on Prop. IV.1 and Prop. V.1,Jc
s ≤ J∗,c ≤

Jc
ub = cJ1

ub, and the result follows.
In the next subsections, while staying in the regime of many

small loads, we explore the structure of the asymptotically
optimal policy and consider additional operational constraints
and special cases.

B. Energy neutrality

As discussed in the Introduction, the ISO usually issues RS
requests that are related to its balancing area control error and
are therefore energy neutral over a longer time-scale (e.g., an
hour and beyond) than the one over which the SMO responds
to these RS requests.

Mathematically, this means

a
re

d
= Rh. (13)

This constraint can be added to the NLP in (7) and by solving
the resulting problem one obtains a policy that guarantees
long-term energy neutrality. Note that (13) implies that the
2nd inequality constraint of problem (7) is inactive. Further,
(13) completely specifies the arrival rate of ISO requests (i.e.,
a = Rhd/re) and the corresponding pricey(a). What is left
is to determine the arrival rates of the internal loadsλi and
the corresponding pricesui(λi), i = 1, . . . ,M , which can be
done by solving the modified NLP.

C. Structure of the asymptotically optimal policy

Let us assume that the energy neutrality constraint (13) is
being enforced; the analysis can be extended beyond this case
but it is more tedious. Eliminating the two equality constraints
of (7), ignoring the 2nd inequality constraint which is inactive
due to (13), and dualizing the 1st inequality – capacity –
constraint, it follows that we need to solve:

min −
∑

i

Fi(λi) − G(a) + K
(

R + Rh −
∑

i

λi

µi

ri −
a

d
re

)

+ q1

(

∑

i

λi

µi

ri +
a

d
re − R − Rh

)

,
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where q1 is the Lagrange multiplier (shadow price) for the
capacity constraint.

Therefore,ui should minimize:

−Fi(λi(ui)) + (q1 − K)
λi(ui)

µi

ri, (14)

where we note that

λi(ui) =λi,max

∫ ui,max

ui

fi(v)dv,

Fi(λi(ui)) =λi,max

∫ ui,max

ui

vfi(v)dv.

Setting the derivative of (14) with respect toui equal to zero
and assuming that the utility pdf satisfiesf(ui) > 0 for all
ui ∈ (0, ui,max) it follows that the optimal priceu∗

i for internal
load i is provided by the following Proposition.

Proposition VI.3 Under the energy neutrality constraint (13),
the optimal priceui for internal load i is given by

u∗
i =

[

(q1 − K)ri

µi

]+

,

where[·]+ denotes projection onto[0, ui,max].

We distinguish three cases.
Case 1. If the capacity constraint is inactive, thenq1 = 0

by complementary slackness and it follows thatu∗
i = 0 for

all i. In this case, the building is consuming less than the
ISO requested level and all prices are set to zero to encourage
internal arrivals that can increase consumption.

Case 2. Suppose now that the capacity constraint is active
but q1 − K < 0, which again yieldsu∗

i = 0 for all i. In this
case, the cost of poor ISO request tracking, represented by
the penalty parameterK, is greater than the cost of violating
the capacity constraint, which is represented by the Lagrange
multiplier q1, and prices are again set to zero to encourage
internal arrivals and prevent under-consumption.

Case 3. Finally, suppose that the capacity constraint is active
but q1 − K > 0. Now the cost of violating the capacity
constraint is greater than the cost of under-consuming. It
follows that u∗

i = (q1 − K)ri/µi, which represents a charge
(q1−K) per unit of “energy” for each internal loadi. “Energy”
here equals the KW power consumed by loadi times the
expected amount of time that load remains switched on. We
note that if (q1 − K)ri/µi ≥ ui,max then u∗

i is capped at
ui,max since there is no reason to increase prices further (the
arrival rate drops to zero aboveui,max).

D. Linear demand

Suppose that the internal load utilityUi is uniformly dis-
tributed in [0, ui,max] and the ISO utilityY is also uniformly
distributed in[0, ymax]. Then,

λi(ui) =λi,max

(

1 −
ui

ui,max

)

, a(y) = amax

(

1 −
y

ymax

)

,

Fi(λi) =ui,max

(

λi −
λ2

i

2λi,max

)

,

G(a) =ymax

(

a −
a2

2amax

)

.

In this case the NLP (7) becomes a convexQuadratic
Programming (QP)problem for which excellent solvers exist
allowing one to solve large instances extremely fast.

E. Optimal selection ofR and Rh

We have so far consideredR andRh values as given market
transactions determined at the long time-scale and focusedon
the operational decisions of the SMO that affect short time-
scale behavior. We now focus on the SMO’s optimal selection
of the long time-scale market transactions setting averageload
R and RS reservesRh. We assume that the SMO is a price
taker with market conditions reflected in the known ISO utility
parameters.

Assuming further that the market energy clearing price is
known in advance to the SMO making its RS offer, we let
R0 be an estimate of the desired building consumption in the
event that no RS is offered. Given a feasible setting(R,Rh)
with R ≥ R0 and Rh ≥ 0, we incur two penalty costs:(1)
1
2κ1‖R − R0‖

2 with κ1 > 0 to penalize deviation from the
desired consumption, and(2) 1

2κ2Rh with κ2 > 0 to model the
intangible (inconvenience) and tangible (control and actuation)
costs of conforming to the short-term response obligations
associated with offering regulation service.

Modifying (7) we formulate the following problem:

max
∑

i

Fi(λi) + G(a) (15)

− K
(

R + Rh −
∑

i

(λi/µi)ri − (a/d)re

)

−
1

2
κ1‖R − R0‖

2 −
1

2
κ2Rh

s.t.
∑

i

(λi/µi)ri + (a/d)re ≤ R + Rh,

(a/d)re ≤ 2Rh,

R ≥ R0, Rh ≥ 0,

with decision variablesR,Rh and the arrival ratesλi and
a. Note that the constraints remain linear and the objective
concave, hence, this is a tractable problem. It can be viewed
as joint optimization of internal and RS arrival rates (or
correspondingly prices) with the building capacityR and the
amount of RS quantity offeredRh.

VII. N UMERICAL EXPERIMENTS

In this section, we report numerical experiments that verify
and validate our results.

Assume that the SMO can support a maximum consumption
of 1200 KW with R = 1000 KW and Rh = 200 KW. This
consumption is consistent with the Boston University (BU)
Photonics building housing the office of the first author. Con-
sider two internal classes characterized by (all arrival rates are
in arrivals/minute and departure rates in departures/minute):
λ1(u1) = 1600 − 80u1, λ2(u2) = 800 − 80u2, u1,max = 20,
u2,max = 10, λ1,max = 1600, λ2,max = 800, r1 = 2 KW,
r2 = 1 KW, µ1 = 1, µ2 = 2. The RS class arrival rate is:
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a(y) = 1000(1 − y/ymax) with ymax to be determined later,
amax = 1000, re = 1 KW, d = 2. The penalty function
has a slope ofK = 1000. Assume that the social welfare
Ui is uniformly distributed in[0, ui,max] and Y is uniformly
distributed in[0, yi,max]. With these values we can solve the
NLP problem (7) (a QP problem) to obtain asymptotically
optimal static prices.2

We simulate the system for the long time-scale of one
hour consisting of 12 periods of 5 minutes each. We consider
a scenario according to which one major disturbance and
multiple minor disturbances to the system energy balance
take place during each 5-minute period. We model the major
disturbance by altering the structure ofa(y) (changing the
value of ymax). The minor disturbances are modeled by the
random RS class arrivals generated from the Poisson process
with ratea(y). We make the reasonable assumption that these
disturbances are eventually eliminated over a 15-minute cycle
through the 5-minute economic dispatch actions of the ISO
who schedules the 15-minute tertiary reserves at its disposal
in each 5-minute real-time market clearing.

More specifically in our simulation, a regulation service
cycle consists of three 5-minute periods and starts with a full
RS standby state, namely, with all RS active loads totallingRh.
As we mentioned above, this is the result of the ISO 5-minute
economic dispatch, which we model by tuning the value of
ymax. In the following two periods within the cycle, ISO
requests – in response to major disturbances – are modeled
as random samples from a uniform distribution over[0, 2Rh]
instantiated by re-setting the corresponding value ofymax. This
random cycle is statistically neutral over the long time-scale.
In our experiment,ymax changes every 5 minutes and the SMO
must control internal class loads to meet ISO requests within
the 5-minute requirement of RS reserves. By formulating and
solving the NLP problem (7) at the beginning of every period,
the SMO is able to appropriately set the prices that result in
the required arrivals of internal classes.

The steady-state arrival rates for the two internal classes
and the RS class in these periods are shown in Tab. I. The

TABLE I
THE ARRIVAL RATES OF INTERNAL CLASSES AND THERS CLASS.

Period Internal class 1 Internal class 2 RS class

1 376 494 400
2 409 502 258
3 346 486 527
4 376 494 400
5 309 477 683
6 409 502 257
7 376 494 400
8 322 480 630
9 445 511 106
10 376 494 400
11 403 500 286
12 321 480 635

evolution of the total consumption due to internal loads and
the total load of the RS class are shown in Fig. 2. Note that

2We solved the corresponding QP problem using Matlab.

Fig. 2. Energy consumption (in KW) by internal classes and active RS
requests during the 60 minutes simulated.

Fig. 3. Number of active internal loads and active RS requestsduring the
60 minutes simulated.

by applying static pricing policies that are piece-wise constant
over each 5-minute period, internal loads converge to the ISO
request. Recalling that RS reserves are required to respond
with a ramp ofRh/5 KW per minute, the response of internal
class loads conforms well to requirements. Indeed, sinceRh =
200 KW in this example, the rate at whichn1(t)r1+n2(t)r2+
m(t)re move away from and then approach the1200 KW level
should be close to40 KW per minute. Figure 2 demonstrates
this to be the case. The SMO’s decision to offer200 KW
of RS is consistent with its capability to perform accordingto
the associated contractual requirements. In Figure 3, where we
plot the number of internal loads and RS requests, we note that
there are on average350 active loads of class 1 with a2 KW
consumption rate – these might be HVAC heating zone loads
– and250 active loads of class2 with a 1 KW consumption
rate. These quantities are consistent with the BU Photonics
building which features several hundred heating zones.
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VIII. C ONCLUSIONS

The prospect of a paradigm shift in the capabilities of the
electric power grid as well as building side-of-the-meter mi-
crogrids through Cyber-Physical System (CPS) infrastructure
development is within sight. Such CPS infrastructure will
certainly enable loads to participate in power markets on a
par basis with generating units, not only in the provision
of electric energy, but also in the provision of fast reserves.
In this paper we develop and test a market-based approach
for a Smart Microgrid Operator (SMO) to control numerous
and diverse loads and provide such services. We start by
formulating a detailed dynamic optimal control problem and
then derive an associated tractable and yet near-optimal non-
linear optimization model that is capable of determining both
short-term (at the minutes time-scale) operational decision
support to the SMO as well as longer time-scale transaction
quantities (at the hourly time-scale). Our model is elaborated
and validated by numerical simulation results.

A useful insight from our analysis is that as the capacity
of the building increases, in conjunction with the number of
loads the building can support,staticprices (viewed as internal
feedback signals) become asymptotically optimal. Such prices
are easy to compute and implement. This result suggests that
load aggregators that can bundle many buildings have an
advantage since they can operate in the limiting regime we
analyzed and, as a result, offer static prices to internal loads.
We clarify that prices remain static as long as the statistics of
load and RS class arrivals, and their corresponding utilities,
remain stationary. In practice, we expect these statisticsto
exhibit time-of-day effects, implying that prices should also
change over this very long time-scale. It is remarkable though,
that prices need not need to change in the short time-scale of
SMO dynamics.

As a final comment, we note that the asymptotic analysis
allowed us to forgo the stochastic dynamics and capture the
internal market problem in a nonlinear optimization formula-
tion. This enabled the incorporation of a longer-term energy
neutrality constraint, as well as, formulating the joint problem
of selecting prices together with setting building capacity and
the amount of regulation service the building should offer.
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