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ABSTRACT

The increasing integration of renewable generation presents power systems with

economic and reliability challenges, mostly due to renewables’ volatility, which can-

not be effectively addressed with business-as-usual practices. Fortunately, this is

concurrent with rising levels of Distributed Energy Resources (DERs), including pho-

tovoltaics, microgeneration and flexible loads like HVAC loads and electric vehicles.

DERs are capable of attractive time-shiftable behavior and of transacting reactive

power and reserves in addition to real power. If DER capacity is optimally allocated

among these three products, distribution network and economic benefits can be real-

ized and renewable-related challenges can be mitigated, enabling increased renewable

integration safety limits.

In order to achieve optimal DER scheduling, this thesis proposes the formulation

of a spatiotemporal marginal-cost based distribution power market and develops and

implements tractable clearing algorithms. First, we formulate a centralized market

clearing algorithm whose result is the optimal DER real power, reactive power and

reserves schedules and the optimal nodal marginal costs. Our market formulation
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develops for the first time detailed and realistic models of the salient distribution net-

work variable costs (transformer degradation, voltage sensitive loads) together with

distribution network constraints (voltage bound constraints, that reflect distribution

network congestion and AC load flow), and intertemporal DER dynamics and ca-

pabilities. However, the centralized algorithm does not scale, motivating the use of

distributed algorithms.

We propose two distributed algorithms:

1. A fully distributed algorithm that relies on massively parallel DER and distribu-

tion line specific sub-problem solutions, iteratively coordinated by nodal price

estimates which promote and eventually enforce nodal balances. Upon con-

vergence, nodal balances hold and optimal marginal costs are discovered. We

further existing practices by using local penalty updates and stopping criteria

that significantly reduce communication requirements.

2. A novel, partially distributed formulation in which DERs self-schedule in par-

allel based on centrally calculated price estimates, resulting from a load flow

calculation. Nodal balances hold during all iterations.

Finally, we are, to the best of our knowledge, the first to study voltage-constrained

distribution market instances cleared with distributed methods. We decrease the

deviation of marginal costs from their optimal values using first order optimality

conditions and use voltage barrier functions for speedier convergence.
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Nomenclature

The sign convention is positive for consumption (withdrawal from a bus) and negative

for generation (injection into a bus). Similarly, for real power flows, a positive value

of Pb,b′ means the flow is from bus b to b′, while negative Pb,b′ means the flow is from

bus b′ to b.

xix



Nomenclature

Subscripts and Sets

∞ Subscript denoting the substation bus

(b, b′) Subscript denoting a line or transformer connecting bus

b to b′.

(n, n′) Subscripts denoting a transmission line connecting n to

n′

b, b′, β Subscripts denoting a typical distribution bus

n, n′ Subscripts denoting a typical transmission bus

α Subscript denoting a specific device that connects to

some network bus b. For example, the notation α ∈ G

means that device α is a generator and that α /∈ D,E, F

G, D, E, F Set of all network generators, loads, distributed energy

resources and capacitors respectively

Gb, Db, Eb, Fb Set of generators, loads, DERs and capacitors respec-

tively connected to bus b

Gn, Dn Set of generators and loads respectively connected to

transmission bus n.

Ab = Gb ∪Db ∪ Eb ∪ Fb Set of all devices connected to bus b

xx



up,dn Superscripts referring to different values of the regula-

tion signal y. We use the subscript up for y = 1 and dn

for y = −1.

General Parameters

→ A symbol used to associate a shadow price to an equality

or inequality constraint.

Cα Capacity of device α ∈ G ∪D ∪ E ∪ F

cα Marginal cost of device α for real power production

h Hour in the DA market, h = 1..24

H• Heaviside function whose value is H(• ≥ 0) = ∞ and

H(• ≤ 0) = 0

k Constant

T out(h) Outside Temperature during hour h

Transmission Parameters

H(Q∞(h)) Fuel cost of substation generator associated with pro-

ducing reactive power Q∞(h). It is considered to be

negligibly small.

πP∞(h) Locational Marginal Price of Real Power at the substa-

tion bus during hour h.

πR∞(h) Locational Marginal Price of Reserves at the substation

bus during hour h.

xxi



πOC∞ (h) Opportunity cost per kW of substation bus auxiliary

generator disabled from producing real power or reserves

in order to compensate for reactive power Q∞(h)

Distribution Parameters

v̆ Voltage level at which device α ∈ D is optimized to

work

|Ab| Number of devices connected to bus b

|Hb| Number of lines/ transformers connected to bus b

θα Voltage and current angle difference of device α ∈ D

cv∞ Coefficient denoting the cost of the square of the differ-

ence of the substation voltage from the nominal voltage

level

cos(θα) Power factor of device α ∈ D

rb,b′ , xb,b′ Resistance and reactance, respectively, of line or trans-

former connecting buses b and b′

uα(Pα) Convex cost function of device α ∈ D consuming real

power Pα

w Weight parameter showing the efficiency of transforming

real power to useful energy service when α ∈ D operates

at a voltage deviating from v̆

Electric Vehicles

harr Hour of the day that the EV plugs in

xxii



hdep Hour of the day that the EV departs

rα Maximum hourly charging rate capacity of EVs

xα(h) State of discharge (SoD) of EV at beginning of hour h

u(xα(hdep)) Loss of utility (cost) of EV wishing to depart at hdep

with SoD xα. It is zero when xα(hdep) = 0 and positive

otherwise.

Transformers

Γb,b′(h) Loss of life of transformer (b, b′) ∈ tr measured in hours

of economic life per hour of clock time

θHSb,b′ (h) Hottest spot temperature in transformer (b, b′) during

hour h

ctrb,b′ Cost of transformer (b, b′) ∈ tr per hour of economic life

SNb,b′ Rating of transformer (b, b′)

Smart thermostats

T inα (h) Inside temperature of building with heat pump α during

hour h

Variables

Pα(h), Qα(h), Rα(h) Real power, reactive power and reserves respectively of

device α during hour h. Negative values denote gener-

ation, while positive values denote consumption.

Pn,n′ , Rn,n′ Real Power flow and reserves flow respectively on trans-

mission line n, n′
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real power Pα(h) and reactive power Qα(h).

fb,b′(Pb,b′(h), Qb,b′(h),
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πPb (h) Real Power Locational Marginal Price at distribution

bus b during hour h, referred to as Distribution Loca-

tional Marginal Price of Real Power. It is the shadow
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πQb (h) Reactive Power Locational Marginal Price at distribu-

tion bus b during hour h, referred to as Distribution
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Locational Marginal Price of Reactive Power. It is the

shadow price of the reactive power balance constraint.

πRb (h) Reserves Locational Marginal Price at distribution bus

b, referred to as Distribution Locational Marginal Price

of Reserves.

µ
b
, µ̄b Dual variable of lower and upper voltage magnitude
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γ
n,n′
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i Iteration Count
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P̂ i
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Q̂i
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iteration i
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h at iteration i

π̂P,ib (h) Real power price estimate at distribution bus b during

hour h at iteration i. Since it may not satisfy real power

balance constraints, it is distinct from πP,ib (h).However,

it also holds that limi→∞ π̂
P,i
b (h) = πPb (h).

π̂Q,ib (h) Reactive power price estimate at distribution bus b dur-
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πQ,ib (h) Ex-post marginal cost of reactive power at distribution

bus b during hour h at iteration i. It is the shadow

price of the reactive power balance constraint at the
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intermediate, but feasible, DER dispatch of iteration

i.It holds that limi→∞ π
Q,i
b (h) = πQb (h).

π̂P,ib (h) Real power price estimate at distribution bus b during

hour h at iteration i. Since it is a convex combination

of π̂P,i−1
b (h) and πP,ib (h), it may not satisfy real power

balance constraints, therefore it is distinct from πP,ib (h).

However, it also holds that limi→∞ π̂
P,i
b (h) = πPb (h).

π̂Q,ib (h) Reactive power price estimate at distribution bus b dur-

ing hour h at iteration i. Since it is a convex combi-

nation of π̂Q,i−1
b (h) and πQ,ib (h), it may not satisfy real

power balance constraints, therefore it is distinct from

πQ,ib (h). However, it also holds that limi→∞ π̂
Q,i
b (h) =

πQb (h).
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Chapter 1

Introduction

Marginal-cost based wholesale power markets were introduced in England in 1990 and

in the United States in 1997, making power systems’ operational planning the result

of competitive bidding. Operational planning consists of the solution of a sequence of

constrained minimization problems, addressing cascaded adjustments to uncertainty

realizations. These problems allocate the capacity of resources amongst three key

electric products: real power, reactive power and various types of reserves. Reactive

power as well as some types of reserves are sometimes scheduled outside the market,

based on long-term (e.g., annual) contracts or rules. They are of course provided

dynamically to meet the relevant requirements.

Modern power markets co-optimize real power and the remaining types of reserves

by adapting resources’ schedules to price-quantity bids (”uniform” bids) from gen-

eration and demand to offer or receive service respectively. Specifically, a market

operator matches these bids to maximize consumers’ and generators’ surplus, while

ensuring that demand equals generation at all times.1 The adoption of wholesale

power markets has resulted in significant benefits including lower cost operation and

decreased congestion and reserve needs.

Wholesale power markets are mature and well established in the literature and in

practice alike. Across all different works in the area of power markets, that are too

1There are more constraints taken into account for transmission power market clearing. This is
just a high level description with as little detail as is needed to proceed in introducing the approaches
and contributions of the thesis. See Section 4 for more details on wholesale power market clearing.
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vast to explore for the scope of this thesis, the main premise of power markets remains

that electricity prices are driven by competition to reflect marginal costs. In other

words, electricity prices are driven to reflect the value of a service as a function of

both the time that it is provided/ consumed as well as the location that is provided/

consumed at, i.e. optimal electricity prices that yield optimal resource utilization will

exhibit time and locational variability.

Nowadays, power systems’ operational planning and power market clearing prac-

tices are on the verge of transformation due to concurrent changes in both the gen-

eration and the demand side.

On the generation side, the adoption of renewable resources is rapidly increas-

ing. Albeit environmentally desirable, renewables present power systems with eco-

nomic and reliability challenges, mostly because of their volatility and lack of inertia.

Addressing these issues with business-as-usual practices, like adding more flexible

centralized generation and/ or enhancing the existing transmission and distribution

infrastructure, will soon fall short of economic and sustainability goals and may pro-

hibit the rapid integration of renewable generation that state and federal regulations

mandate.

On the demand side, Distributed Energy Resources’ (DERs) levels are also rising.

DERs include photovoltaics, microgeneration and flexible loads like HVAC loads and

electric vehicles. DERs possess various degrees of freedom. First, their capabilities

allow them to exhibit attractive time-shiftable behavior. Second, non-volatile DERs

(like electric vehicles and microgenerators) are able to provide reserves. Third, DERs

are commonly equipped with power electronics and as such are able to transact reac-

tive power in addition to real power and (possibly) reserves. These DER transactions

are capable of transforming the distribution network by making it an active part of

the grid.
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Drawing experience from scheduling of traditional generating resources in whole-

sale power markets, we argue that time and locational price incentives can be used

to optimally allocate DER capacity among real power, reactive power and reserves.

This optimal DER scheduling will result in distribution network efficiencies and also

provide useful synergies that can mitigate many challenges related to renewables.

This thesis is motivated by the desire to eliminate the huge inefficiencies resulting

from the exclusion of distribution- network connected customers, providers and DERs

from competitive power markets. Distribution markets are currently regulated and

distribution pricing is rate-based. We argue that this does not allow for DERs to

receive the aforementioned spatiotemporal price incentives, thereby hindering their

efficient integration.

However, a simple extension of power markets allowing distribution- network con-

nected entities to participate in the wholesale market under the current protocol is

unsufficient. The existing market practice, relying on centralized market clearing and

information gathering, as well as on uniform bids and on simplified assumptions only

fit to transmission networks, would be unable to capture the different nature of the

distribution network (line characteristics, voltage considerations) and the intertem-

poral DER dynamics.

Therefore, this thesis proposes the formulation of a spatiotemporal marginal-cost

based distribution power market in order to achieve optimal DER scheduling and

develops and implements tractable market clearing algorithms. We concentrate on

the day-ahead cycle of operational planning, that aims at scheduling resources for

the next day, so as to yield the most benefits of the intertemporal nature of DERs.

First, we identify the relevant costs and constraints and formulate a centralized day-

ahead distribution power market that minimizes operational costs over the 24 hour

daily cycle, constrained by power balance constraints, power flow constraints, voltage
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magnitude constraints and constraints expressing intertemporal DER dynamics and

capabilities.

The primal solution of the centralized market clearing algorithm is the DER real

power, reactive power and reserves schedules and the dual solution is the dynamic

marginal costs of each product. The primal solution also includes dependent variables,

like real and reactive power flows and voltage magnitudes. At optimality, the primal

solution provides us with the optimal DER dispatch and the dual solution provides

us with the optimal marginal prices.

To put the significance of this market to perspective, we mention that explicit

costs that are minimized in the distribution power market account for about 35% of

total electricity costs, including generation, transmission, distribution and reliability

costs. These costs include transformer degradation-related costs, that nowadays are

about $1 billion per year as well as costs due to losses over distribution network lines

that are in the order of $10 billion annually in the US.

We apply first order optimality conditions to the centralized market clearing algo-

rithm to derive valuable relationships between the nodal prices of real power, reactive

power and reserves at distribution buses with (i) other dual variables as well as (ii)

sensitivities of dependent variables (voltages and power flows) and (iii) marginal

prices at the substation bus, where distribution and transmission interface. Since

these relationships reveal the building blocks of the marginal-cost based prices, we

call them marginal price (or cost) unbundling equations. We also relate binding

voltage bound constraints to distribution network congestion.

The large number of DERs participating in a real-size distribution power mar-

ket, each of them introducing complex intertemporal constraints, combined with the

non- convexity of AC power flow constraints render the centralized market clearing

algorithm intractable. This motivates the use of distributed algorithms.
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The literature is abundant with applications of distributed algorithms to power

systems’ and power markets’ problems. For most of these problems, while the ob-

jective function is separable, the constraints are coupling. Therefore, dual decom-

position was the first method to be applied. However, dual decomposition requires

strict technical conditions to be met. Most recently, the method of alternating direc-

tion method of multipliers (ADMM) has gained popularity in many areas of active

research reported in the literature because of its ability to bridge decomposability

with much more relaxed technical conditions for convergence than those required by

classic dual decomposition approaches.

The first distributed market clearing algorithm proposed in this thesis, called Fully

Distributed Algorithm (FDA), is also based on ADMM, similar to (Kraning et al.,

2014) and (Peng and Low, 2015). Nodal equality constraints are relaxed to allow for

the division of the market clearing problem into smaller, DER and distribution line

specific sub-problems. These subproblems are solved in parallel and are coordinated

through nodal price estimates which promote and eventually enforce nodal balances.

Upon convergence, nodal equality constraints hold and marginal prices are discovered.

Also, we propose and implement a second distributed market clearing algorithm,

called Partially Distributed Algorithm (PDA). At each iteration of PDA, DERs self-

schedule in parallel conditional upon nodal price estimates at their connection bus.

These price estimates along with power flow variables are calculated centrally. This

is done by solving an AC load flow and calculating its associated ex-post marginal

costs through the marginal cost unbundling equations. Equivalently, we can solve a

mock centralized market clearing problem, with fixed DER schedules. The primal

solution of the mock centralized market clearing algorithm will provide, as discussed

above, the network flows and voltages, while the dual solution will provide the ex-post

marginal costs. In other words, coupling constraints are not relaxed but hold during
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all iterations of PDA.

The ability to massively parallelize the subproblems means that both distributed

market clearing algorithms scale to real size distribution networks deploying numerous

DERs.

This work contributes to the areas of power systems modeling, power markets as

well as the distributed algorithms domain. Major advancements include:

• Not only is the concept of a distribution power market pioneering, but in ad-

dition, our market formulation develops for the first time comprehensive and

realistic models of the salient distribution network variable costs (e.g., trans-

former degradation, voltage sensitive loads) together with distribution network

constraints (nodal voltage bound constraints and AC load flow), and intertem-

poral DER dynamics and capabilities.

• The identification of distribution network congestion as a nodal problem that

occurs when voltage bound constraints are binding.

• Detailed comparison of the operational and economic benefits of the proposed

granular marginal-cost based distribution prices relative to today’s flat prices.

• The fully distributed ADMM-based algorithm, FDA, is applied to a much higher

complexity problem than existing work in the literature, with complex intertem-

poral DER preferences and network constraints.

• Within FDA, we introduce and implement adaptive penalties that are updated

with local information only. In addition, we use local criteria to verify con-

vergence and terminate ADMM. The use of local penalties and local stopping

criteria in our fully distributed algorithm formulation results in significantly

reduced communication requirements and associated communication time bot-
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tlenecks and delays as well as in decreased number of iterations required for

convergence.

• The partially distributed algorithm (PDA), where DERs respond to centrally

calculated price estimates and coupling constraints are not relaxed, is a novel

formulation that does not fall within the traditionally explored areas of either

dual decomposition or augmented-Lagrangian based methods.

• Finally, we are, to the best of our knowledge, the first to study voltage- con-

strained distribution market instances cleared with distributed algorithm meth-

ods. Using the aforementioned marginal price unbundling equations, we are

able to decrease the deviation of nodal price estimates, obtained after a limited

number of iterations, from their optimal values. Further, we model hard volt-

age bound constraints through appropriately designed voltage barrier functions.

These result in significant convergence speed up.

Through the discovery of distribution network spatiotemporal marginal prices

and the subsequent efficient integration of DERs, this thesis promises a broad soci-

etal impact. First, it promises major distribution network efficiency gains, including

lower losses and increased resilience of grid infrastructure to load growth. Second, it

promises to realize the much needed synergies between DERs and renewables. These

synergies will, in turn, allow for speedier adoption of renewables and increased renew-

able integration limits from the point of view of grid safety and economic efficiency.

If the renewable integration safety limits increase from today’s 15% to the envisioned

45%, then emissions can be lowered by 0.5 billion to 1 billion metric tons. Further,

this new market will promote investments in new technologies, products and services.
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Chapter 2

Power System Fundamentals

2.1 Electricity Network And Power Fundamentals

The electricity network consists of circuits that transfer electricity from generation

points to consumption points. The transportation of electricity from generation to

demand is achieved through the flow of current. Current that alternates directions is

referred to as Alternating Current (AC). Direct current (DC) refers to unidirectional

current.

In the early days of the electric power industry, generation had to be located close

to the load, so that there would be minimal losses. The invention of the transformer

for stepping up and down AC voltages was instrumental in the widespread adoption

of AC electric networks. With the advent of transformers, power systems can operate

at high voltages to efficiently transfer electricity over great distances with low losses

and then step voltages down to ensure the safe operation of electrical equipment by

consumers.

While much of the AC electric system has three phases, all of our analysis and

explanation will be in single- phase terms. This is because in this work, as is common,

we assume that the three phases are balanced, and as such we can model them with

an equivalent single phase for simplicity of exposition. Multi- phase modeling is

discussed in Chapter 8.



9

2.1.1 Voltage and Current

AC voltages and currents have a sinusoidal behavior over time as Figure 2·1 below

suggests (MIT Energy Initiative, 2015). Therefore, voltages in AC power systems are

characterized by their magnitude (or amplitude), frequency and phase. Voltage is

expressed by:

V (t) = Vmax · cos(ω · t+ θV ) (2.1)

while current is expressed by:

I(t) = Imax · cos(ω · t+ θI) (2.2)

Figure 2·1: Alternating Current and Voltage over time

When voltage and current cross the vertical zero axis at the same time, i.e. their

phase angle difference is zero, θV = θI ⇒ θ = θV − θI = 0 they are called ”in phase”.

Else, they are called ”out of phase”.

While the sinusoidal expression is more intuitive, in power systems analyses the

frequency domain is preferred over the time domain. In the frequency domain, si-

nusoidal functions’ amplitude and phase angle are represented by phasors (or phase
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vectors), i.e. complex numbers. Therefore, we may write that:

~V = V exp(jθV ) (2.3)

for voltage and

~I = Iexp(jθI) (2.4)

for current.

V and I in equations 2.3 and 2.4 refer to the root mean square values of Figure

2·1. It holds that V = Vmax√
2

and I = Imax√
2

. Root mean square or effective voltage

corresponds to the equivalent DC voltage that can produce the same amount of work

as the AC voltage.

2.3 and 2.4 are in polar form. In rectangular form, they can be written as:

~V = V cos(θV ) + jV sin(θV ) (2.5)

and

~I = Icos(θI) + jIsin(θI) (2.6)

2.1.2 Real, Reactive, Apparent and Complex Power

Instantaneous power is defined as the product of voltage and current. Bearing in

mind Figure 2·1 and equations 2.1 and 2.2 above, the phase difference of voltage and

current is equal to θ = θV − θI . For simplicity and without loss of generality, we will

assume that the voltage is at zero phase angle, θV = 0 and the current phase angle is

θI = −θ. Therefore we have:

V (t) = Vmax · cos(ω · t) (2.7)

I(t) = Imax · cos(ω · t− θ) (2.8)
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Instantaneous power is equal to: V (t) ·I(t) = Vmax ·Imax ·cos(ω · t) ·cos(ω · t−θ) =

Vmax·Imax
2

· cos(θ) · (1 + cos(2ωt)) + Vmax·Imax
2

· sin(θ) · sin(2ωt).

The first component, namely Vmax·Imax
2

· cos(θ) · (1 + cos(2ωt)), has a time average

of Vmax·Imax
2

· cos(θ).

We call this time average real (or active) power

P =
Vmax · Imax

2
· cos(θ) = V · I · cos(θ) (2.9)

The second component,Vmax·Imax
2

· sin(θ) · sin(2ωt), is due to the reactive part of

the load. It has a time average of zero and its amplitude is equal to Vmax·Imax
2

· sin(θ).

We call this magnitude reactive power:

Q =
Vmax · Imax

2
· sin(θ) = V · I · sin(θ) (2.10)

Because the time average of the reactive component of power is zero, we say that

reactive power produces no useful work. Reactive power is responsible for a significant

part of the system’s losses. Reactive power is also strongly related to voltage control

and can support voltages as needed for system reliability. Major blackouts in Europe

and North America in recent years have been linked to insufficient reactive power

supply, leading to voltage collapse. Also notable is the cost of committing inefficient

generators close to urban load centers for the purpose of providing reactive power

compensation.

From equations 2.9 and 2.10 it is obvious that if the phase angle difference of

voltage and current is zero, θ = 0, then real power is positive and reactive power is

zero.

If θ ≥ 0, then we say that voltage leads the current, in which case reactive power is

consumed Q ≥ 0 and the load is called inductive. θ = 90 makes for a purely inductive

load with P = 0 and Q ≥ 0.
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If θ ≤ 0, then we say that voltage lags the current, in which case reactive power

is produced Q ≤ 0 and the load is called capacitative. θ = −90 makes for a purely

capacitative load with P = 0 and Q ≤ 0.

As will be seen in the next Chapter, distribution lines produce or consume reactive

power depending on their electrical characteristics and surroundings (underground or

overhead). Generators and power electronics can also produce or consume reactive

power.

We can also derive 2.9 and 2.10 starting from the phasors of voltage and current

2.3 and 2.4 and keeping the same assumptions of θV = 0 and θI = −θ. We define

complex power as:

~S = ~V ∗ ~I∗ = V · I · exp(jθ) = V Icos(θ) + jV Isin(θ) (2.11)

Real (or active) power P is the real part of the complex power.

P = <(S) = V Icos(θ) (2.12)

Reactive power Q is the imaginary part of complex power.

Q = =(S) = V Isin(θ) (2.13)

Apparent power S is the absolute value of complex power or:

S = |~S| =
√
P 2 +Q2 = V · I (2.14)

The power factor φ is defined as the ratio of real power to apparent power, namely:

φ =
P

S
=
V · I · cos(θ)

V · I
= cos(θ) (2.15)
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2.1.3 Reserves

The most important goal of power systems operation is reliability: matching demand

and generation at all times despite unexpected system events, while keeping voltages

and frequency within bounds.

Ancillary services are defined as services other than energy that ensure the reliable

operation of the grid (Shahidehpour et al., 2002). (Operating) reserves are a type of

ancillary services, defined by NERC as ”the capability above firm demand required to

provide for load forecasting error, equipment forced and scheduled outages and local

area protection” (North American Electric Reliability Corporation, 2008).

The North American Electric Reliability Corporation (NERC) distinguishes dif-

ferent types of reserves based on whether they are employed during normal system

conditions or contingencies. In the category of non-event reserves, regulation (service)

reserves respond within seconds to imbalances of generation and demand caused by

the random nature of demand. Load following reserves also belong in the non-event

reserves category and serve the same purpose as regulation reserves, but are slower to

respond and can do so in the time scale of minutes. On the other hand, contingency

reserves are responsible for system frequency control in the case of sudden and rare

system events. Several sub-categories of reserves are defined within the contingency

reserves category.

The Union for the Coordination of the Transmission of Electricity (UCTE) sepa-

rates reserves into different categories:

1. Primary reserves: Local automatic control that stabilizes system frequency

within seconds.

2. Secondary reserves: Central automatic control that brings frequency back to its

nominal value within minutes.
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3. Tertiary reserves: Manual changes to ensure system reliability in the case that

more reserves are required after primary and secondary reserves have been used.

It allows resources able to provide fast primary reserves to go back to being

available for reserve provision.

Primary, secondary and tertiary reserves alike are responsible for frequency control

during normal system operation as well as during system contingencies. (Ela et al.,

2011) analyzed how the different reserve classifications defined by UCTE and FERC

correspond to each other.

The mismatch of demand and generation (plus net imports) could be in either

direction. As a result, reserves are bi-directional:

• Up, meaning that generation should be increased to serve additional load (caused

either by unaccounted for, but normal, demand fluctuations or by contingen-

cies), or

• Down, meaning that generation should be decreased because demand needs are

less (again, caused either by unaccounted for, but normal, demand fluctuations

or by contingencies)

Reserves can be symmetric, i.e. the amount of up reserves promised is equal to the

amount of down reserves promised or up and down reserves can be separate services,

meaning that the quantities of up and down reserves need not be equal.

Power systems are required to secure certain amounts of reserves. Regulation

service reserves minimum requirements are at about 1% of the peak load. The com-

posite amount of all reserves is calculated based on network metrics (e.g., the amount

of reserves required for the system to survive the worst outage) or based on cost

measures. Sometimes, reserves as well as other ancillary services are provided by

generators though contracts.
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On the reserves front there have been the following recent changes: first, regula-

tion reserves are recently being provided competitively, through the wholesale power

market clearing process and second, reserves can also be provided by entities on the

demand side of the grid. Chapter 4 describes the former while Chapter 7 describes

the latter.

2.1.4 Transmission and Distribution Networks

AC electric power systems are categorized based on their voltage magnitude levels: 1

• High Voltage networks, also referred to as Transmission Networks, and

• Medium and Low Voltage networks, also referred to as Distribution Networks.

Voltage levels above 60kV are categorized as transmission voltages. Transmission

voltages are steadily rising with the highest voltage in commercial use being 765kV

in the US. A transmission line of 1000kV is used in China.2

Lower voltages belong to distribution networks. Primary distribution lines range

from 4 to 34.5kV. Secondary distribution lines, i.e. lines that connect loads directly

to the secondary (low voltage) side of distribution transformers are 120V or 240V in

the US.

Transmission and distribution networks differ also in terms of their topology.

Distribution networks, while constructed with some meshed capabilities through line

switching options that enable alternative spanning tree configurations, are operated

radially by switching line connections so as to obtain a radial spanning tree that

serves all loads. This is done for ease of protection as well as cost efficiency. However,

in large cities, distribution networks are designed and operated as meshed networks

1In this work, we do not mention the sub-transmission network and assume it is part of the
transmission network, for clarity of exposition in what follows.

2Similar Ultra High Voltage lines have been constructed in Russia and Japan but currently
operate at lower voltages.
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(eg. New York City). Transmission networks are also designed and operated in a

meshed configuration.

Both transmission and distribution networks operate on the same frequency.

The AC system of the United States and Canada operates at a standard frequency

of 60Hz, while the standard frequency in Europe is 50Hz.

2.2 Calculation of Power Flow

In power systems studies, we are oftentimes interested in calculating real and reactive

power flows on the electricity network resources, like lines and transformers, as well

as line currents and voltages. This section presents exact and approximate models

commonly used to calculate these quantities. The models are systems of equations,

commonly referred to as power flow equations.

We will be presenting the basic and exact model, called Alternating Current

Power Flow equations, and proceed with approximations of that model, based on the

voltage level and topology of the electricity network that we are interested in: the

transmission network (meshed) or the distribution network (tree).

2.2.1 Slack (swing) Bus

A slack or swing bus is not a physical bus, i.e., it is not present in actual power net-

works, however every power system model has a slack bus. In a power flow problem,

flows and losses on each line are unknown. Therefore, nodal power balance equations

contain unknowns. As a result, the power injection in some bus needs to be left

unspecified otherwise, the power balance equations would be overspecified and the

power flow would not be solvable. In practice, this means that the slack bus makes

up for system losses.

When a small system is connected to a large system with a single line, the large

system can hold the voltage constant and generate/absorb as much power as is needed,
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i.e., act like a slack bus. For example, when a distribution network branches out of

a transmission bus, the latter acts like a slack bus with respect to the distribution

network (Dimitrovski and Tomsovic, 2004).

2.2.2 Power Flow Equations

Alternating Current (AC) Power Flow We base the derivation of the power

flow equations on the vector representation of voltages and currents shown in 2.8 and

2.7 above. We represent lines as a series resistance rn,n′ and a series reactance xn,n′

through the following model:

~Zn,n′ = rn,n′ + jxn,n′ (2.16)

More details on line modeling can be found in Chapter 3 below. Similarly, we define

for each line the conductance and susceptance, respectively, as:

Gn,n′ = <(
1

~Zn,n′
) =

rn,n′

r2
n,n′ + x2

n,n′
(2.17)

Bn,n′ = =(
1

~Zn,n′
) = − xn,n′

r2
n,n′ + x2

n,n′
(2.18)

As defined above, complex power ~Sn,n′ on a line connecting buses n and n′ is

defined as the product of ~Vn and ~I∗n,n′ , where ~I∗n,n′ is the conjugate of ~In,n′ .

~Sn,n′ = ~Vn~I
∗
n,n′ (2.19)

It also holds that the complex voltage difference is equal to the product of the

impedance with the complex current, namely:

~Vn − ~Vn′ = ~In,n′ ~Zn,n′ ⇒ ~In,n′ =
~Vn − ~Vn′

~Zn,n′
(2.20)
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Therefore substituting 2.20 into 2.19 results in:

~Sn,n′ = ~Vn~I
∗
n,n′ = ~Vn

~V ∗n − ~V ∗n′
~Z∗n,n′

= ~Vn(~V ∗n − ~V ∗n′)(Gn,n′ − jBn,n′) =

Vnexp(jθn)(Vnexp(−jθn)− Vn′exp(−jθn′))(Gn,n′ − jBn,n′) (2.21)

Complex power ~Sn,n′ is also defined as:

~Sn,n′ = Pn,n′ + jQn,n′ (2.22)

where Pn,n′ is the real power flow and Qn,n′ is the reactive power flow. Separating the

real and imaginary parts of 2.21 above yields:

Pn,n′ = Gn,n′V
2
n −Gn,n′VnVn′cos(θn − θn′)−Bn,n′VnVn′sin(θn − θn′) (2.23)

and

Qn,n′ = −Bn,n′V
2
n +Bn,n′VnVn′cos(θn − θn′)−Gn,n′VnVn′sin(θn − θn′) (2.24)

Equations 2.23, 2.24 are the well-known AC power flow equations. Then, we need to

relate the power flow on each line, to injections (e.g., generation) and withdrawals

of power (e.g., loads) at each bus. These equations are called (nodal) power balance

equations and together with the AC power flow equations, are collectively used to

solve power flow problems, where all injections and withdrawals are known and we

are interested in calculating the real and reactive flows on the lines, the currents and

the voltages. ∑
α∈An

Pα +
∑
n′

Pn,n′ = 0 (2.25)

∑
α∈An

Qα +
∑
n′

Qn,n′ = 0 (2.26)
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Approximation for Transmission Networks: Direct Current (DC) Power

Flow

In transmission networks, nodal voltages remain almost constant. Therefore, voltage

magnitudes are considered to be approximately equal to the nominal voltage, i.e.

Vn ≈ 1 per unit. Also, the angle differences over a transmission line are considered

very small. Using that sin(θ) ≈ θ and cos(θ) ≈ 1 for very small θ in equation 2.23

yields the following approximation for real power flow:

Pn,n′ = −Bn,n′(θn − θn′) (2.27)

Also, the resistance of transmission lines is much smaller than their reactance,

therefore the conductance Gn,n′ is also small and can be ignored from equations 2.23

and 2.24 above. Combined with the above assumptions on constant voltage magnitude

and small angle differences, equation 2.24 becomes:

Qn,n′ = 0 (2.28)

In other words, reactive power flows on transmission lines are ignored.

Transmission network power flow problems can be alternatively written using

the shift factor formulation (Goldis, 2015), (Caramanis et al., 2016). The shift factor

formulation contains fewer although denser constraints based on line flow sensitivities

or shift factors.

Approximations for distribution networks: Relaxed Branch Flow Model

The equations that follow were first proposed by (Baran and Wu, 1989). They are

based on simplifications of the AC power flow equations for a tree network. As such,

these equations are appropriate for a distribution network.

While the AC power flow equations 2.23 and 2.24 are a result of substituting 2.20
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into 2.19, the equations of this approximation are obtained by taking the magnitude

squared of 2.20 and substituting 2.19. As a result, voltage and current are represented

by their square magnitude only. In other words, voltage and current now lie on a circle

of radius equal to the corresponding vector magnitude, rather than on a point on the

complex plane. This results in a decreased number of variables, since it does away

with voltage angles. The process is as follows:

|~Vb′|2 = |~Vb − ~Ib,b′ ~Zb,b′ |2

|~Vb′ |2 = (~Vb − ~Ib,b′ ~Zb,b′) · (~V ∗b − ~I∗b,b′ ~Z∗b,b′)

vb′ = vb + lb,b′(r
2
b,b′ + x2

b,b′)− ~Vb · ~I∗b,b′ · ~Z∗b,b′ − ~V ∗b · ~Ib,b′ · ~Zb,b′

We continue by substituting 2.19:

vb′ = vb + lb,b′(r
2
b,b′ + x2

b,b′)− ~Sb,b′ · ~Z∗b,b′ − ~S∗b,b′ · ~Zb,b′

vb′ = vb + lb,b′(r
2
b,b′ + x2

b,b′)− 2 · (rb,b′ · Pb,b′ + xb,b′ ·Qb,b′)

where vb = V 2
b and lb,b′ = I2

b,b′ . Notice the change of subscripts from n, n′, denoting

transmission network buses, to b, b′, that denote distribution network buses, since this

approximation is used for distribution networks.

The equality of two complex numbers means that their real parts and imaginary

parts are both equal, or if they are written in polar form, that their magnitude and

angle are equal. Taking the square of the magnitude of the voltage drop constraint,

means that we are equating the magnitudes only, a looser constraint than the equality

of the complex voltages. The angle equation can be thought of as superfluous because

of the following reasoning: Each solution of the equality of the squared magnitudes

will provide us with a unique value of the angle difference on a line, namely ∠~Vb−~Vb′ =

∠~Zb,b′~Ib,b′ ⇒ ∠~Vb − ~Vb′ = arctan(
=(~Zb,b′

~Ib,b′ )

<(~Zb,b′
~Ib,b′ )

). For tree networks where the substation

bus voltage angle is fixed to 0 and there is a unique ancestor to each bus, this phase
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difference is adequate to calculate unique voltage angles for all buses.

We adopt these equations and follow (Farivar and Low, 2013) in naming them

Relaxed Branch Flow model. The model consists of the aforementioned power flow

equations (that replace equations 2.23 and 2.24 for distribution power flow problems)

and power balance equations 2.25 and 2.26.

lb,b′ = I2
b,b′ =

P 2
b,b′ +Q2

b,b′

vb
(2.29)

vb′ = vb − 2 · (rb,b′Pb,b′ + xb,b′Qb,b′) + (r2
b,b′ + x2

b,b′) · lb,b′ (2.30)

Pb,b′ + Pb′,b = rb,b′ · lb,b′ (2.31)

Qb,b′ +Qb′,b = xb,b′ · lb,b′ (2.32)∑
α∈Ab

Pα +
∑
b′

Pb,b′ = 0 (2.33)

∑
α∈Ab

Qα +
∑
b′

Qb,b′ = 0 (2.34)

The first two equations were derived above, the third and fourth represent the

real and reactive power losses over a distribution line while the last two are the real

and reactive power balance equations.

(Li et al., 2012a) provides a second order cone relaxation of the relaxed branch

flow model, by substituting equality constraints 2.29 with inequalities and analytically

derives sufficient conditions for it to be exact. For most practical cases the relaxation

turns out to be exact even when sufficient conditions are not met.

We refer the reader to (Zimmerman, 1995), where a multitude of other power

flow methods, relevant to distribution networks are included.
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2.2.3 Optimal Power Flow

The power balance equations that together with power flow equations are used to solve

power flow problems include the injections and withdrawals of network devices (e.g.,

generators, loads). When we are only interested in calculating line flows, currents and

bus voltages and all injections and withdrawals are known, then call this problem a

power flow problem.

Another common power systems’ problem is the Optimal Power Flow or OPF for

short. In an OPF problem, the injections or withdrawals of devices may not be fixed.

Device injections and withdrawals are treated as decision variables and are selected

relative to a given objective function. In other words, that objective’s optimization is

performed subject to the power flow equations ((2.29)-(2.32) for a distribution OPF

problem, 2.27 for a transmission OPF problem) and power balance equations (2.25)

and (2.26) as well as additional unknown injection/ withdrawal related constraints

(eg. generator capacity constraints).
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Chapter 3

Power System Components

This section is dedicated to describing power system components later used in this

thesis. We mention traditional power systems elements, like generators, transformers,

loads and shunt capacitors, as well as new power systems elements, like solid state

transformers and elements that are referred to as Distributed Energy Resources. Dis-

tributed Energy Resources (DERs) are connected to the distribution network and

include most notably amongst others photovoltaics, distributed volt/var compensat-

ing devices, and flexible loads like electric vehicles, smart thermostats and storage.

We remind the reader of our sign convention: negative output values denote

generation (injection), while positive output values denote consumption (withdrawal).

Also, flow on a line out of a bus is positive, while flow on a line into a bus is negative.

3.1 Electricity Network Resources

3.1.1 Lines

Lines in the transmission network are called transmission lines, while lines in the

distribution network are called distribution lines. Transmission and distribution lines

are characterized by their capacity.

Transmission line capacity is almost always respected when system operators

decide how to allocate power amongst transmission lines. This is made possible by

the aforementioned meshed topology of transmission networks. On the other hand,

distribution lines are commonly overloaded above their capacity. This is allowed
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because due to the tree topology, there might be no other option to serve distribution-

network connected loads.

Transmission lines are mostly overhead, with only about 0.5% being under-

ground. Distribution lines are more evenly divided between underground and over-

head. Typically, large urban centers are served with underground distribution lines.

Lastly, with regard to modeling, transmission and distribution lines are repre-

sented by the π-model that consists of:

• A series resistance rb,b′

• A series reactance xb,b′

• Two shunt reactances, one at the line start point and one at the line end point.

Figure 3·1: Complete transmission/distribution line model.

For simplicity, in this thesis we will disregard shunt elements and represent lines

by a series resistance and reactance. As mentioned above, transmission lines have

higher reactance than resistance. Overhead lines have a positive reactance, meaning

that they behave like inductors and consume reactive power, while underground lines

have negative reactance, i.e. they behave like capacitors and provide reactive power.
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Distribution lines do not have costs for the flow through them, therefore we use

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h)) = 0.

3.1.2 Transformers

Transformers are, as mentioned above, crucial elements of AC power systems. Using

induction, they transform the magnitude of AC voltages, keeping the same frequency.

A transformer is characterized by the primary and secondary voltages, as well as by

its rated capacity. The primary voltage can be thought of as the input voltage that

will be transformed and the secondary voltage can be thought of as the output, or

the transformed voltage.

Figure 3·2: Transformer’s primary and secondary coils and their ratio.

Figure 3·2 shows the transformer turns. The ratio of the primary turns N1 to

the secondary turns N2 equals the ratio of the primary voltage V1 to the secondary

voltage V2, namely:

N1

N2

=
V1

V2

(3.1)

For a step-up transformer, where V1 ≤ V2, the primary turns are less than the

secondary turns, N1 ≤ N2, as is the case for the leftmost pair of primary- secondary

coils shown in Figure 3·2 above.

For a step-down transformer, where V1 ≥ V2, the primary turns are more than
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the secondary turns, N1 ≥ N2, as is the case for the rightmost pair of primary-

secondary coils shown in Figure 3·2 above.

The transformer rated capacity, similarly to a line capacity, shows how much

power can flow through the transformer.

In this work, we use a simplified transformer model, where the transformer is

modeled similar to a line, i.e. represented by a series resistance and reactance. More

complex models can include shunt elements to the transformer model.

Types of Transformers

As mentioned above, transformers are able to transform voltage magnitude. They

do this with induction between their primary and secondary coils. In traditional

transformers, the ratio of number of turns in the primary coil to the number of turns

in the secondary coil is fixed, therefore the ratio of primary to secondary transformer

voltage is also fixed.

This is not the case for tap-changing transformers. They are equipped with a tap

changer, that acts like a connection point selection across the secondary windings.

This way, the primary to secondary turns ratio may be varied, thus changing the

primary to secondary voltage ratio. The tap changing mechanism can be manual or

automated and the tap changes can be made during no load conditions or on-load

conditions.

An autotransformer is a type of tap-changing transformer. The two windings of a

tap-changing transformer are connected in series and become one winding. Therefore,

portions of this single winding make up both the primary and the secondary coils. In

other words, the two sides of an autotransformer are connected physically, in addition

to being connected through induction. The tap-changer allows the secondary voltage

to be varied, but this time the relationship of the primary voltage to the secondary

voltage given the primary and secondary coils is V1
V2

= N1+N2

N1
, as can be seen in Figure
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3·3 below.

Figure 3·3: Autotransformer’s coils.

Voltage regulators that are autotransformers with automatic tap-chargers are

especially applicable to distribution networks. They can be installed in medium or

low voltage circuits, close to the substation or further into the distribution network

and aim at keeping voltages flat. This task is performed through changing the turns

ratio, as in any tap-transformer.

An even more recent transformer type is called solid state transformer (SST).

Unlike traditional and tap-changing transformers, that change the voltage magnitude

operating on the 50 or 60Hz frequency, a SST employs power electronics, to change

the voltage magnitude operating on a much higher frequency, commonly in the order

of kHz. In specific, the steps that a SST follows to transform 50/60 Hz AC voltages

are as follows:

1. Power electronics convert the primary voltage to a voltage of the same magni-
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tude and higher frequency.

2. A high-frequency transformer, that is much smaller and lighter than low-frequency

transformers, steps the voltage magnitude up or down, while maintaining the

high frequency.

3. Finally, power electronics re-shape the AC voltage back to the 50/60Hz fre-

quency.

This results in SSTs having much less weight and volume than traditional trans-

formers. Other benefits include real power control, as well as reactive power compen-

sation abilities (She et al., 2012).

Transformer Hottest Spot Temperature

Similar to lines, transformers are also characterized by a rated capacity. However, it

is common for transformers to be temporarily loaded beyond that capacity, in which

case the transformer is called overloaded. This is even more common a phenomenon

for distribution network transformers, first because the network is radial and such

overloading might be necessary to ensure service to distribution customers and sec-

ond because of the bi-directional flows caused by the recent increased presence of

distributed energy resources (see Section 3.4 and Chapter 4).

The flow through a transformer affects the temperatures inside the transformer

and therefore affects its performance. Much work in the literature has been devoted

to studying the evolution of temperatures inside a transformer. The crucial factor

affecting a transformer’s performance turns out to be the hottest spot temperature

(HST), namely the highest temperature that develops in the transformer’s insula-

tion. Other factors like moisture and oxygen content, that can contribute to the

performance of the transformer, have a lesser effect now due to new oil preservation

technologies.
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We refer the reader to (IEEE, 1996) for transformer hottest spot temperature

formulas. In this work, we assume that the hottest spot temperature of a transformer

is calculated as:

θHSb,b′ (h) = θHSb,b′ (h− 1)− k1 · (
θHSb,b′ (h) + θHSb,b′ (h− 1)

2
− T out(h)) + k2 · (

Sb,b′(h)

SNb,b′
)2 (3.2)

where θHSb,b′ (h), θHSb,b′ (h− 1) is the average hottest spot temperature during hours h and

h−1 respectively, Sb,b′ is the apparent flow through the transformer, SNb,b′ is the rated

capacity of the transformer and k1, k2 ≥ 0 are parameters.

If we assume short transition periods from one hour’s equilibrium hottest spot

temperature to the next hour’s hottest spot temperature, i.e., that there is no impact

of the previous hour’s hottest spot temperature θHSb,b′ (h − 1), then we can use the

relation:

θHSb,b′ (h) = k1 · T out(h) + k2 · (
Sb,b′(h)

SNb,b′
)2 (3.3)

Parameters k1, k2 ≥ 0 should be calibrated such that:

• Under nominal loading conditions, i.e. Sb,b′(h) = SNb,b′ ,the insulation tempera-

ture should be θHSb,b′ (h) = 110C.

• When the transformer is overloaded, Sb,b′(h) ≥ SNb,b′ , and θHSb,b′ (h) ≥ 110C.

• When the transformer is underloaded, Sb,b′(h) ≤ SNb,b′ , and θHSb,b′ (h) ≤ 110C.

If the hottest spot temperature in a transformer exceeds 180C, the transformer’s

insulation might be inadvertently damaged. Therefore, in calibrating k1 and k2, a high

loading (of the order of 1.5 ≤ Sb,b′

SN
b,b′
≤ 2) is assumed to correspond to a hottest spot

temperature of 180C.



30

Transformer Economic Life Degradation

The hottest spot temperature is linked to the insulation’s deterioration over time

through the Arrhenius reaction rate. The aging acceleration factor is therefore calcu-

lated as (IEEE, 1996):

Γb,b′(h) = exp(
15000

383
− 15000

273 + θHSb,b′ (h)
) (3.4)

This equation relates the transformer’s lost economic life to each clock hour of loading

that causes hottest spot temperatures of θHSb,b′ (h).

• Under nominal loading conditions, i.e. Sb,b′(h) = SNb,b′ , the insulation temper-

ature should be θHSb,b′ (h) = 110C, and then from equation 3.4, the transformer

loses one hour of economic life per clock hour of nominal loading.

• When the transformer is overloaded, Sb,b′(h) ≥ SNb,b′ , and θHSb,b′ (h) ≥ 110C the

transformer loses more than one hour of economic life per clock hour of over-

loading.

• When the transformer is underloaded, Sb,b′(h) ≤ SNb,b′ , and θHSb,b′ (h) ≤ 110C

the transformer loses less than one hour of economic life per clock hour of

underloading.

The last two points together with the more detailed hottest spot temperature

evolution equation (3.2) relate to the practical conclusion that a transformer’s life

might not be greatly affected if overloading periods are followed by underloading

periods.

The individual costs of a transformer are therefore equal to:

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h)) = ctrb,b′ · Γb,b′(h)

, where ctrb,b′ is the cost of transformer b, b′ per hour of economic life.
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Equation 3.4 is convex with respect to θHSb,b′ (h) for all practical values of θHSb,b′ (h).

(The inflection point occurs at θHSb,b′ (h) = 7227C.) Equations 3.3 and 3.2 can both

easily be seen to be convex with respect to Sb,b′(h), therefore the aging acceleration

factor Γb,b′(h) is convex with respect to Sb,b′(h).

3.1.3 Shunt Capacitors

Shunt capacitors or capacitor banks are capacitors placed as shunt elements to the

electricity network, i.e. they are connected in line-to-neutral. A capacitor stores

electrical energy and can provide it back to the system in the form of reactive power.

Therefore, shunt capacitors or capacitor banks are employed to provide reactive power

for the basic goal of voltage control. Capacitors are normally connected after a switch

that connects or disconnects them from the rest of the system. Nowadays about 19,000

capacitors are used to control system voltages at all voltage levels. Most of them,

about 12,000, are used by distribution utilities to control distribution voltages (US

Department of Energy, 2011). Utilities place capacitors at the end of long distribution

lines and switch them on to prevent undervoltages during periods of high load.

Through the provision of reactive power, shunt capacitors can also work as

”power factor correcting devices”. Injecting reactive power next to an inductive load

reduces net reactive power demand, i.e. reduces apparent flow on the line leaving real

power unaffected, thereby increasing the power factor (see equation 2.15). Capacitors

are called on to correct the power factor when the latter drops below 0.8.

Shunt capacitors have the disadvantage that their reactive power output is pro-

portional to the square of the voltage (Eremia and Bulac, 2013). Capacitors can be

modeled as on-or-off devices relative to their capacity Cα and the square of the bus’

voltage magnitude:

Qα = {−min(Cα · vb, Cα), 0} (3.5)
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We may also model them as continuously controllable devices through:

−min(Cα · vb, Cα) ≤ Qα ≤ 0 (3.6)

This is in line with the recent use of semiconductor switches (e.g., thyristors)

to provide continuous control of the output of many reactive power compensating

devices (e.g., SVC, STATCOM).

We assume zero individual costs for shunt capacitors fα(Pα(h), Qα(h)) = 0.

3.2 Generators

Generators are able to provide real and reactive power. The most important generator

characteristic is its capacity, Cα. Simplistic generator models often use rectangle

constraints for real and reactive output limits. This means that real and reactive

power outputs are treated as if they were independent. For a more realistic model of

generators, the well-known D-curves shown in Figure 3·4 are used. We approximate

the D-curve with a half-circle.
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Figure 3·4: Generator’s D curve, relating real and reactive power
output to capacity.

Therefore, the relevant equations describing generators’ outputs in real and re-

active power are as follows:

Pα ≤ 0

P 2
α +Q2

α ≤ C2
α.

With regard to costs, generators’ variable costs for real power production de-

pend on the generator type (e.g., different fuel type) and are generally modeled as a

linear function of them fα(Pα(h), Qα(h)) = cα · Pα(h). Fuel costs for the production

of reactive power are considered to be negligible. However, depending on where the

operating point is located on the half circle of Figure 3·4 the generator might incur

other costs for providing reactive power. Indeed, if the generator’s operating point

is on the circumference, meaning that P 2
α + Q2

α = C2
α, then there is a trade-off rela-

tionship between real and reactive power. In other words, in order to produce more
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reactive power, the generator has to cut back on real power production. Such costs

are referred to as ”opportunity costs”. Opportunity costs will be discussed in greater

detail in Chapter 5.

3.3 Traditional Loads

The simpler load model found in power systems analyses is the constant power load.

However, most loads are optimized to work at some voltage level v̆. As a result,

the power consumption of loads has been shown to differ based on their voltage v

when v 6= v̆ (Fairley, 2010). This is more significant for inductive loads (i.e. loads

consuming reactive power). Conservation Voltage Reduction (CVR) is the reduction

of energy consumption resulting from bringing feeder voltage closer to v̆.

In order to reflect the effect of voltage magnitude on the consumption, loads

can be modeled using the ZIP model (Pacific Northwest National Laboratory, 2010).

In the latter, a load is assumed to be made up of a constant impedance part (Z), a

constant current part (I) and a constant power part (P). Voltage magnitude affects

the consumption of the constant impedance and constant current components (Pacific

Northwest National Laboratory, 2010).

Figure 3·5: ZIP model for traditional loads.
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In this work, we incorporate the effect of voltage magnitudes on the real power

consumption of loads through the use of the following model: A load is optimized

to work with voltage of v̆ and then consumes Pα. We call Pα the energy service

requirement of this load. For deviations of the voltage v from v̆, the power consumed

by the load becomes:

P̆α = Pα · (1 + w · (v − v̆)2) (3.7)

If we assume that these loads have a constant power factor cos(θα) and that

they are inductive, then their reactive power consumption is written as:

Q̆α(h) = P̆α(h) ·
√

1− cos2(θα)

cos(θα)
(3.8)

We assume zero individual costs for traditional loads fα(Pα(h), Qα(h)) = 0.

The abovementioned loads are inflexible or fixed, because their energy service

requirement Pα(h) does not change depending on system conditions. However, system

conditions, namely the voltage magnitude at their connection bus, affect the real

consumption of the load. We call these loads traditional loads in contrast to other

loads, we will later detail, that are flexible. See section 3.4.2 below.

3.4 Distributed Energy Resources

The distribution network is currently increasingly populated with Distributed Energy

Resources (DERs). DERs include photovoltaics, microgenerators as well as flexible

loads, like electric vehicles, HVAC loads and storage. DERs are capable of attractive

time-shiftable behavior. Also, DERs are commonly interfaced with power electronics,

meaning that they are also able to provide reactive power. For example, photovoltaic

panels produce DC real power and are connected to the grid through a DC-to-AC

converter (inverter). Also, electric vehicles can charge their batteries with DC current

through the grid by means of a charger equipped with AC-to-DC converter.
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Power electronics accompanying DERs work in the following way: take the case

of the inverters of photovoltaics that are equipped with power electronics. When the

amount of real power transferred from the panel to the grid is below the limit of

the inverter, then the inverters power electronics have excess capacity. That excess

capacity can be put to dual use, or in simpler terms, that excess capacity can be used

to produce reactive power. In fact, power electronics interfaced DERs are able to

behave like a capacitor and inject reactive power to the grid when voltages are low or

behave like an inductor and consume/ absorb reactive power when voltages are high.

The same thing can happen for the converter in the charger of an electric vehicle.

On the other hand, power electronics are not always accompanying a device

that provides/ consumes real power. Distributed Volt/Var devices that only inject/

consume reactive power fall within the power electronics spectrum and can be referred

to as stand-alone power electronics. In this case, all of their capacity can be used to

provide/consume reactive power.

The section continues with specific analysis of the DERs most relevant to this

work.

3.4.1 Distributed Generation Types

Photovoltaics

The amount of real power generated from a PV panel during a certain hour is a

percentage of its nameplate capacity Cα. That percentage k3 expresses the fixed solar

irradiation levels of this hour. The real power injection is described by:

−k3 · Cα ≤ Pα(h) ≤ 0 (3.9)

The amount of power able to reach the grid is also limited by the inverter capac-

ity. For the remainder of this work, as is common in the literature, we assume that
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the inverter is oversized and therefore the limiting factor is the nameplate capacity.

As a result, if the solar irradiation is not 100%, then the remainder of the nameplate

capacity can be used to provide reactive power.

The equations that describe the relationship of the real and reactive power capa-

bilities of a photovoltaic installation depend on the inverter type. The inverter must

operate off a DC bus to be able to provide or consume reactive power. When the sun

is shining, k3 > 0, the DC bus is provided by the panels, in which case the real and

reactive power outputs are connected through the quadratic relationship which holds

also for conventional fossil generators:

P 2
α(h) +Q2

α(h) ≤ C2
α (3.10)

The losses of real power because of the inverter are of the order of 3% ·Qα.

If k3 = 0, as is the case at night, reactive power provision is only possible if the

inverter is equipped with a capacitor that can act as a DC bus. The capacitor will be

charged through a battery or an AC source. In this case however, losses in addition

to the 3% in the inverter would be incurred because of the charging/ discharging

efficiency of the capacitor.

If the inverter is not equipped with a capacitor, then the quadratic relationship

only holds when k3 > 0. If k3 = 0, the photovoltaic cannot provide reactive power,

despite having excess capacity.

Some PV arrays utilize a DC-to-DC converter connected between the panels and

the inverter. The converter steps the panel voltage up or down so as to maximize the

efficiency in converting solar power to electrical power.

In this work, we assume that the PV is equipped with a capacitor, therefore

reactive power provision when k3 = 0 is possible. We also disregard losses because of

the inverter and the capacitor charging.
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A photovoltaic installation is assumed in our models to incur no operating cost

to produce real or reactive power, fα(Pα(h), Qα(h)) = 0.

Wind and microgeneration

Other types of real power generating DERs are also available: renewable like wind

generators, and non-renewable like microgenerators, with or without CHP (Combined

Heat and Power). Wind generators can provide real power as allowed by the hourly

wind conditions, but cannot provide reactive power. Microgenerators’ real and reac-

tive power output is described by constraints similar to centralized generators.

3.4.2 Flexible Loads

Electric Vehicles

The electric vehicle (EV) charging station, depending on its voltage, can provide a

certain amount of power per hour, rα. The charger also has a capacity, Cα, that

dictates the maximum battery charging rate it can handle. In addition to these two

factors, the amount of energy that can be stored into the battery of the EV is also

limited by the uncharged state of the battery. If the charger is not using all of its

capacity, then the unused portion can be used to provide reactive power.

We translate the above description into the following equations describing the

behavior of electric vehicles, assuming that they cannot discharge, i.e. while they are

plugged in, they do not provide real power to the grid:

0 ≤ Pα(h) ≤ rα, α ∈ E, harr ≤ h ≤ hdep (3.11)

xα(hdep) = xα(harr)−
hdep∑

h=harr

Pα(h), α ∈ E (3.12)

xα(hdep) ≥ 0, α ∈ E (3.13)

Pα(h)2 +Qα(h)2 ≤ Cα(h)2, α ∈ E, harr ≤ h ≤ hdep (3.14)
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Electric vehicles incur uncharged battery costs, that they need to replace with

fuel, fα(Pα(h), Qα(h)) = u(xα(hdep)). They are zero when xα(hdep) = 0 and positive

otherwise.

Space Conditioning

Building space conditioning currently accounts for a significant proportion of the over-

all energy consumption. Given a comfort zone of temperatures, a smart thermostat is

able to shift consumption between hours, also known as pre-heating and pre-cooling.

This is done through embedded decision support software, that detects signals from

the network. These signals are most times related to prices.

For the case of heating, the smart thermostat model is described by the following

equations, if we assume a constant power factor cos(θα):

Tin
α ≤ T inα (h) ≤ T̄ inα (3.15)

0 ≤ Pα(h) ≤ Cα (3.16)

T inα (h) = T inα (h− 1) + k4 · Pα(h)− k5 · (
T inα (h) + T inα (h− 1)

2
− T out(h)) (3.17)

Qα(h) = Pα(h) ·
√

1− cos2(θα)

cos(θα)
(3.18)

Equation 3.17 shows that the inside temperature of the building is equal to

the temperature of the previous hour, increased by a component based on the con-

sumption of the pump but also decreased because of heat dissipation to the outside

environment. Specifically, the decrease of the inside temperature because of the out-

side temperatures is relative to the temperature difference inside and outside the

building.
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For the case of cooling, the temperature evolution equation becomes:

T inα (h) = T inα (h− 1)− k4 · Pα(h) + k5 · (T out(h)− T inα (h) + T inα (h− 1)

2
) (3.19)

Equation 3.19 can be similarly interpreted: the inside temperature of the build-

ing is equal to the temperature of the previous hour, decreased by a component based

on the consumption of the pump but also increased because of the outside tempera-

tures.

We assume no individual costs for smart thermostats, fα(Pα(h), Qα(h)) = 0.

Storage

Battery, flywheel and similar storage options have been relatively expensive, which

is why power systems cannot rely on storage for system reliability. Storage is mostly

used for islanding conditions (eg. microgrids). Recent technological breakthroughs

have made storage much more affordable, leading to more interest in distribution-

network connected storage not only from the literature but also from utilities. Storage

capabilities are modeled similarly to those of an electric vehicle battery, minus the

assumption of no discharge and of connection during certain hours only (storage is

assumed to be connected at all times).

xα(h) = xα(h− 1)− Pα(h), α ∈ E (3.20)

xα(h) ≥ 0, α ∈ E (3.21)

Pα(h)2 +Qα(h)2 ≤ Cα(h)2, α ∈ E (3.22)

With regard to cost, storage operational costs to provide power or charge should

relate to and express the degradation of the battery. In this work, these costs will be

ignored, fα(Pα(h), Qα(h)) = 0, as is common in the literature.
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Chapter 4

Electricity Markets

Power systems’ operational planning ensures the reliable operation of power systems

(adequate supply, reserves etc) by scheduling resources for the provision of three core

electric products:

• Real power

• Reactive power

• Reserves, of various types, as discussed in Chapter 2.

Uncertainties in generator and line outages, demand as well as physical con-

straints (generator up/ down times, generator capacities, line capacities) need to be

taken into account for the scheduling. Since these physical limitations require plan-

ning ahead, but uncertainty is revealed with accuracy closer to ”real time”, opera-

tional planning is performed in multiple, cascaded time scales. Longer-term planning

is done months or weeks ahead. Shorter-term planning is performed the day before

the operating day as well as throughout the day (hour ahead and minutes ahead).

Until quite recently, the electric power industry was regulated. The owners

of the generating resources also owned the transmission and distribution network

lines that delivered the generated power to the customers. These utilities are called

vertically integrated. They performed the longer-term planning, while the shorter-

term planning was performed by a control center, using a cost-of-service approach

based on generator’s marginal costs and capabilities.
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The liberalization of the electric power industry with the introduction of deregu-

lated electricity markets in 1990 in England, in 1997 in the United States and in 1999

in continental Europe made short-term operational planning the result of competitive

bidding. Liberalized power markets have brought by a host of benefits and efficiencies

including lower cost operation, decreased congestion and reserves needs.

Distribution networks are assumed to have no generation and (almost com-

pletely) price inelastic demand. Since the only generating and price-responsive enti-

ties are connected to the transmission network, all focus on competition towards cost

minimization was on transmission network markets. As such, today, when we refer

to a ”power market” we refer to a market for electricity service in the transmission

network.

This chapter proceeds with a description of transmission and distribution net-

work pricing today. Section 4.1 describes the discovery of marginal-cost-based prices

through transmission power markets. Distribution network pricing is currently rate

based, as Section 4.2 discusses. Section 4.3 showcases the inefficiencies of regu-

lated distribution power markets. The chapter concludes with Section 4.4 that pro-

poses an alternate pricing mechanism for distribution markets, namely spatiotemporal

marginal-cost-based distribution power markets.

4.1 Transmission Power Markets

Transmission power markets interact with four classes of entities:

• The generating entities

• The consuming entities: resellers and large end-users

• The transmission system owners

• The Independent System Operator (ISO).
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Electricity resellers, that include electric utility companies, competitive power

suppliers and electricity marketers, group demand of individual distribution-network

connected customers and purchase the requisite amount of energy in the transmission

markets. Because of this grouping of customers by the resellers, transmission markets

are often also referred to as wholesale markets. Recently, large end-users were given

the option to purchase electricity directly from the transmission markets, rather than

be served through an intermediary.

The first two classes of entities, which make up the competitive sector of power

systems, submit price-quantity bids and are scheduled though the market to receive/

offer service. On the other hand, the last two entities are regulated. The transmission

system owners are responsible for building and maintaining the transmission system

following the ISO instructions. The ISO’s role is to facilitate the market operation,

in many ways, including transmission network control. In other words, in deregu-

lated markets transmission ownership and transmission control are independent and

unbundled from generation, demand and retailing. Since the transmission network

is a natural monopoly, regulation of the ISO and the transmission ownership ensures

non-discriminatory access to the network for all competing entities.1

The ISO performs longer-term and shorter-term operational planning. For the

shorter-term, the ISO performs a task called Unit Commitment (UC) to decide which

units should be operating (online or committed units) the next day. UC is a hard

computational task since it includes binary decision variables.

Power markets schedule the resources deemed online through UC for the provi-

sion of real power, reactive power and reserves. Of these three core products, modern

power markets co-optimize real power and some types of reserves. The remaining

electrical products, reactive power and the remaining types of reserves, are scheduled

1We note that there is also the possibility for suppliers and resellers (or end users) to form a
”bilateral contract” in which they agree to sell/ buy service to/ from each other at freely negotiated
prices.
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outside the market, i.e. they are provided dynamically but not competitively. For

example, for reactive power, as discussed in Chapter 3, transmission line reactance is

much higher than their resistance, therefore reactive power losses are very high over

transmission lines. As such, reactive power provision in transmission markets would

be a monopoly or oligopoly at best. In other words, transmission markets do not have

the makings for competitive reactive power provision. Rather, reactive demand and

generation are matched outside of the power market, by contracting interconnected

generators to provide reactive power as needed.

Following the multisettlement structure of operational planning, power markets

clear in multiple time scales: Day Ahead, Hour Ahead and Real Time.

The Day-Ahead market runs the day before the operating day and typically

closes at noon. For the Day-Ahead (DA) market, the ISO accepts price-quantity bids

from generation and demand. 2 These bids can be thought of as reservation prices:

Generating entities’ bids for real power show the amount of power they are willing to

offer when prices equal or exceed their bid. The bids for reserves show the amount of

capacity they are willing to hold on stand-by state so that they can be able to provide

it as reserves if called upon closer to real time. Consuming entities’ bids show the

amount of power they are willing to buy when the price does not exceed their bid.

The ISO uses these bids to solve an Economic Dispatch (ED) problem: maxi-

mize generators’ and consumers’ surplus, based on the bids, over the entire 24 hours

of the operating day, with the decision variables being, among others, the generators’

MW output over the 24 hours. This surplus maximization is of course performed

subject to various constraints, like power flow constraints, generators’ capacity con-

straints, transmission line capacity constraints, contingency constraints and reserve

requirements. The absence of binary decision variables makes DA ED a much simpler

2We abuse the word demand to refer to resellers. This is done for simplicity and for clarity in
differentiating it from generation.
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problem to solve than UC.

A simplified version of the Day Ahead transmission power market clearing prob-

lem is shown below. Here, we use the B theta model presented in Section 2.2.2.

Alternatively, the Day Ahead transmission power market clearing problem can also

be modeled as a shift factor version written with fewer but denser constraints based

on line flow sensitivities or shift factors (Goldis, 2015), (Caramanis et al., 2016).

minimize
Pα(h),Rα(h)

∑
α∈G,h

−cα · Pα(h)− cRα ·Rα(h) (4.1)

subject to
∑

α,αinG,D

Pα(h) + losses = 0∀h→ πP (h) (4.2)

∑
α,α∈Gn,Dn

Pα(h) +
∑
n,n′

Pn,n′(h) = 0,∀h→ πPn (h) (4.3)

−
∑
α,α∈G

Rα(h) ≥ R→ πR(h) (4.4)

−Cα ≤ Rα(h) + Pα(h) (4.5)

Pα(h) ≤ Rα(h),∀h (4.6)

Pn,n′(h) = −Bn,n′ · (θn(h)− θn′(h)),∀h (4.7)

P n,n′ ≤ Pn,n′(h) ≤ P̄n,n′ ,∀h→ γn,n′(h) (4.8)

In this process, the wholesale market discovers spot prices for electricity, widely known

as the Locational Marginal Price (LMP), specifically Day Ahead LMP (DA LMP).

This is the cost of supplying the next MW of load at a specific location after con-

sidering generator marginal costs, congestion costs and losses. It is the shadow price

πPn (h). The price for reserves is πR(h) and is zonal rather than locational. In other

words, it is a single price for all transmission buses n (and their connected devices)

in the transmission area with reserve requirement R.

Considering an additional infinitesimal and costless injection at transmission bus
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n, namely Pġn(h), we can rewrite the problem above as (Liu et al., 2009), (Schweppe

et al., 1988):

minimize
Pα(h),Rα(h),Pġn (h)

∑
α∈G,h

−cα · Pα(h)− cRα ·Rα(h) (4.9)

subject to
∑

α,αinG,D

Pα(h) + Pġn(h) + losses = 0∀h→ πP (h) (4.10)

∑
α,α∈Gn,Dn

Pα(h) + Pġn(h) +
∑
n,n′

Pn,n′(h) = 0,∀h→ πPn (h) (4.11)

−
∑
α,α∈G

Rα(h) ≥ R→ πR(h) (4.12)

−Cα ≤ Rα(h) + Pα(h) (4.13)

Pα(h) ≤ Rα(h),∀h (4.14)

Pn,n′(h) = −Bn,n′ · (θn(h)− θn′(h)),∀h (4.15)

P n,n′ ≤ Pn,n′(h) ≤ P̄n,n′ ,∀h→ γn,n′(h) (4.16)

−ε ≤ Pġn(h) ≤ 0 (4.17)

By virtue of the zero generating cost, the shadow price of constraint −ε ≤

Pġn(h) ≤ 0 is πPn (h). We use γn,n′(h) = γ̄n,n′(h) − γ
n,n′

(h). The Lagrangian of the

problem at hour h is written as:

L(h) =
∑
α∈G

−cα · Pα(h)− cRα ·Rα(h) +
∑
n,n′

γn,n′(h) · Pn,n′(h)

+ πP (h) · (
∑

α,α∈G,D

Pα(h) + Pġn(h) + losses) + πPn (h) · (−ε− Pġn(h)) (4.18)

In the above, we have excluded the nodal power balance constraint and the power

flow constraint, since they always hold. We take the derivative of the Lagrangian with

respect to Pġn(h), bearing in mind that:

• The derivative of terms containing other decision variables is zero
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• ∂L(h)
∂Pġn (h)

= 0

We conclude that the LMPs of real power are equal to:

πPn (h) = πP (h) · (1 +
∂losses

∂Pġn(h)
) +

∑
n,n′

γn,n′(h) · ∂Pn,n
′(h)

∂Pġn(h)
(4.19)

We provide a short explanation of the above components of the LMP:

• πP (h) is called the energy component, because it is the same for all buses

• πP (h) · ∂losses
∂Pġn (h)

is called the loss component.

•
∑

n,n′ γn,n′(h) · ∂Pn,n′ (h)

∂Pġn (h)
is called the congestion component. Congestion occurs

when a transmission line capacity constraint is binding. Then it holds that

γn,n′(h) 6= 0, so this component of the LMP is non-zero only when congestion

occurs.

The second time scale in the multisettlement transmission power market clearing

process is Hour Ahead. In Hour Ahead (HA) markets, the ISO accepts new price-

quantity bids from demand and generation, that reflect updated demand patterns as

well as updated generation information, to solve an Economic Dispatch (ED) problem.

Similarly to the DA ED, HA ED also matches bids to maximize generators’ and

consumers’ surplus. The difference is that for the HA ED problem, the decision

variable is the single period output of the committed generators. The decreased

number of decision variables in the time domain makes HA ED a simpler problem

to solve compared to DA ED. This is expected; since it runs closer to ”real time” it

should clear fast enough. Since hour ahead markets update generator schedules, they

also result in updated LMPs.

Further adjustments as uncertainty is revealed happen in markets that close

minutes ahead. They can be 5 or 10 minute ahead markets that we refer to as Real
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Time markets. Reserves are only promised in Day Ahead and Hour Ahead markets,

but are actually deployed in time scales closer to real time, in the Real Time markets

or even seconds ahead of real time, depending on the type of reserves.

LMP discovery through wholesale power markets that was described above is

instructive to the formulation of spatiotemporal distribution power markets, whose

description follows in Section 4.4. Distribution power markets will discover Distribu-

tion Locational Marginal Prices (DLMPs). Despite numerous differences between the

two markets, that are also discussed in Section 4.4 (including additional market prod-

ucts like reactive power and voltage magnitude considerations), the LMP discovery

process is instructive since DLMPs and LMPs have the same economic interpretation:

they show the marginal value of an electric product at a specific hour and bus. As

will be shown later in the thesis, while DLMP discovery is ”distinct from and more

complex than” (Tabors et al., 2017) LMP discovery, LMPs at the interface of trans-

mission and distribution networks, that we call the substation bus, are key drivers of

DLMPs (Tabors et al., 2017).

4.2 Distribution Network Operation Today

As mentioned above, nowadays customers at the distribution network are served

through intermediaries. The distribution network market is regulated, with rules on

prices aiming at achieving the following goals (Brown and Faruqui, 2014):

1. Economic efficiency

2. Equity between different customer groups (eg. industrial, commercial, residen-

tial)

3. Revenue stability for the utility

4. Bill stability for the customers
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In keeping with revenue and bill stability goals, retail prices are agreed beforehand,

when the customer and the utility engage in a contract. Retail prices consist of the

following components:

• A base charge (or connection charge), that is independent of consumption

• The largest, most important component of the electric bill is the energy costs,

which are based on consumption. The energy costs may be calculated on:

– a fixed $/kWh price

– a variable rate per kWh. Variable $/kWh pricing structures include:

1. Pricing where each level of consumption in kW may come at different

rates per kWh. These charges are based on peak demand and are

called demand charges.

2. Time of Use pricing (TOU). Under this concept, rates per kWh are

set higher during projected on- peak hours and lower during projected

off- peak hours. However, TOU is not currently used as a means

to incentivize customer behavior but rather as a fair treatment to

customers actually costing less to the utility company by consuming

during off- peak hours for any reason.

The above components of the agreed rates are designed by utilities such that they

recover the costs they incur to buy the requisite amount of power (demand plus

losses) from wholesale markets plus other operational costs, like distribution network

resource upgrades, repairs and replacements as well as some rate of profit. In addi-

tion, different classes of customers (industrial, commercial, residential) are subject to

different rates (eg. different fixed $/ kWh for each class of customers) and maybe

even different energy cost calculations (eg. demand charges and/or TOU for larger

industrial customers but fixed $/kWh prices for residential customers).
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Last but not least, the utility company has to provide quality service to cus-

tomers. Additional to the actual adequacy of energy, this also relates to maintaining

voltage levels and avoiding over-voltages and under-voltages that can cause malfunc-

tioning of the retail customers’ electrical equipment or even pose security risks for

customers. Today, utilities employ capacitors to adjust reactive power injections and

keep voltages within desired bounds. Capacitor bank switching is in most cases based

on previous experience with voltages sagging in certain areas and certain hours.

4.3 Problems with today’s practice

Power systems and power markets are on the verge of massive transformation because

of changes on both the generation and the demand side.

On the generation side, the integration of renewable generation is increasing.

Federal and state regulations, trying to keep up with aggressive emission and sus-

tainability goals, push for rapid and increasing renewable integration. To this end,

renewables are treated as must-take resources in power markets: they bid zero costs

in the DA and RT power markets and are thus always cleared to provide real power.

However, this increased renewable deployment presents power systems with a plethora

of challenges. The most significant challenges are related to renewables’ volatility.

Power system operators that had to deal with demand uncertainty only now have to

incorporate the volatility of generation too. Reported negative impacts of the inter-

mittency of renewables include undergeneration instances, resulting in loss of load,

as well as overgeneration instances. The latter are becoming increasingly frequent.

Germany faced such issues in 2010 and 2013 on low-load sunny days, when generation

exceeded demand. So did California in 2012. In fact, during these over-generation

instances energy prices are suppressed, even becoming negative. Low energy prices

cause reliable, baseline units to lose money, urging them to disconnect from the grid
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and challenging power system reliability. Several other issues, like frequency prob-

lems, are related to renewables’ lack of rotating inertia.

At the same time, the demand side is also undergoing major changes because of

the introduction of Distributed Energy Resources (DERs). With respect to remuner-

ation for the provision of electricity, the most commonly used method is to reward

DERs at the retail energy rates. Generation credits for customer owned DERs can

be used to offset customer charges for consumption. Generation and demand do not

have to be coincident and can be subtracted over a longer time period. This tech-

nique is called net metering. A good example can be shown in Figure 4·1 below, that

presents the power output of a residential rooftop solar together with the household

load consumption over a 24 hour period.

Figure 4·1: Residential demand and rooftop solar generation over a
24 hour period.

It can be easily seen that over the 24 hours depicted, the net demand (load minus

PV generation) is almost zero. Therefore, with net metering, this household will pay

zero dollars to the utility. However, the utility incurs transmission and distribution

network costs for the injection and withdrawal of power. Since the utility is not

getting paid back for these costs, it might end up not turning a profit.
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Focusing on solar, as the most populous DER type, (Faruqui, 2012) mentions

that decreasing costs of solar panels together with net metering at retail rates lead to

customers increasingly opting for solar. Though the decreased load, this propagates

to decreased utility revenues. Utilities then proceed to raise retail prices, further

incentivizing customers to turn to solar and creating an infinite loop of revenue and

network problems.

Specifically, utilities are implementing the following methods to deal with rev-

enue loss (Flores-Espino, 2015):

1. Adjustments to customer’s bills: Several ways to reinforce utilities within the

net metering practice have been proposed. The most important ones are:

• Increased fixed charges and decreased energy rates: While increased fixed

charges almost guarantee a rise in utility earnings, this measure affects

customers regardless of whether they own load-accompanying DERs. It

also does not promote energy conservation, since it is paired with decreased

energy rates.

• Minimum bills: In the retail bills described above, if the amount billed

to the customer is less than a minimum threshold, then the customer will

pay the threshold value. This measure has a lesser effect on the utility’s

profits than increased fixed rates, because (given a low threshold) it is only

effective when the net consumption is around zero.

2. DER Compensation plans: DER compensation plans are used to separate gen-

eration from consumption and remunerate it accordingly, in the form of the so

called Feed-In Tariffs (FIT) or Value Of Solar programs, specifically targeted

to PV. In essence what these programs do is charge customers for their con-

sumption based on the agreed retail rates and then reward DER generation
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with rates calculated on (estimates of) the utility cost savings because of this

generation. Then, the cost savings are divided by the amount of the total DER

generation, to determine a $/kWh remuneration rate. It is common for utilities

to offer such a fixed rate of remuneration for the duration of the contract, based

on their estimated cost savings.

In what follows in this chapter, we propose an alternate pricing mechanism for

distribution network markets.

4.4 Thesis Proposition: Spatiotemporal Distribution Elec-

tricity Markets

The previous section showcased that the static pricing methods used in today’s reg-

ulated distribution network markets are unable to accommodate the rising levels of

DERs. The increased network activity makes techniques like net metering and average

pricing more and more unsuitable.

Static prices are unable to provide DERs with the incentives needed to optimally

use their degrees of freedom: the capability for time-shiftable real power consump-

tion, the provision of reserves and the provision of reactive power. Drawing experience

from the scheduling of traditional generating resources in marginal-cost based whole-

sale markets and inspired by the efficiency gains resulting from the adoption of these

markets, we propose the introduction of a spatiotemporal marginal-cost based, dis-

tribution power market. In this market, DERs will compete with each other and

will strive to optimally allocate their capacity by submitting bids to provide/ receive

service. Like the transmission network, the distribution network is also a natural

monopoly, therefore fair access to all competing participants must be ensured. This

is what the distribution system operator (DSO) will do, amongst other tasks. The

distribution market operator will also match DERs’ bids to equate demand and sup-
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ply while minimizing a bid-based cost function and taking several other constraints

into account.

We focus on Day Ahead distribution power markets to harness the intertemporal

nature of DERs. To proceed in determining distribution power market products, rel-

evant costs and constraints, we elaborate on the key differences between distribution

and transmission networks.

• Voltage related differences: Not only are the operating voltages of transmission

networks much higher than the distribution network operating voltages, but

also the centralized generators are able to keep voltage magnitudes constant

across transmission buses. The absence of entities with such capabilities in

distribution networks means that voltage magnitudes at distribution buses are

upper and lower bounded.

• Differences in the electrical characteristics of transmission and distribution lines.

Resistance is much smaller than reactance in transmission lines. As mentioned

above, this results in high reactive power losses over transmission lines. The

difference of reactance and resistance of distribution lines is much more modest.

• The electrical characteristics of transmission lines, as well as the almost constant

voltage magnitudes, allow for the use linear DC approximations for the power

flow equations in transmission networks. In contrast, full AC load flow equations

are deemed necessary in distribution networks.

These network differences translate to differences in the market structure of

dynamic distribution network markets, compared to wholesale markets:

1. Power flow equations constrain the power market clearing problem. Instead

of the linear power flow equations used in wholesale markets, AC non-convex

power flow equations will be used for distribution markets.
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2. The high reactive power losses over transmission lines mean that local (to each

reactive power demand point) providers have an advantage for reactive power

provision. The creation of such oligopolistic, if not monopolistic, conditions led

to reactive power being scheduled outside the wholesale markets through long-

term contracts. The different electrical characteristics of distribution lines mean

that reactive power can be provided competitively over distribution networks.

Therefore, the proposed distribution power markets clear an additional product

of reactive power, which ties in nicely with the ability of DERs to put the excess

power electronics’ capacity to dual use to provide reactive power. This also

means that reactive power providing resources will be remunerated dynamically

in distribution markets, rather than with pre-fixed, contract-based prices as in

wholesale markets.

3. Differences in the market participant capabilities:

• Market participants in distribution power markets are DERs, which have

intertemporal dynamics. While this capability adds flexibility, it makes

the distribution power market problem hard to solve. The expression of

such dynamics and preferences constitutes a ”complex” bid, versus the

price-quantity ”uniform” bids of wholesale power markets participants.

• Distribution market participants are an order of magnitude more than the

transmission power market participants.

4. When clearing a wholesale market, distribution (net) demand is treated as ten-

tatively fixed. In clearing distribution power markets, while we cannot assume

that transmission network generators’ outputs are fixed, we assume that the

LMPs at the substation bus (i.e. the interface of transmission and distribution)

are fixed. This is equivalent to assuming that the marginal generators do not
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change.

5. Moreover, in wholesale markets, the demand of all distribution buses in feeders

connected to the same substation is considered to be located at the substation,

i.e. distribution feeders are bundled to a single bus. Similar to this demand

aggregation to the substation, in distribution power markets the transmission

network is approximated by substation connected generators only.

The detailed exposition of the differences in the market formulations goes to

show that a simple extension of power markets allowing distribution- network con-

nected entities to participate in the wholesale market under the current protocol is

unsufficient. Indeed, while the minimum size requirement to participate in whole-

sale power markets keeps decreasing, even if it were to reach the adequate levels for

distribution-network connected providers and consumers to be allowed to participate,

the existing market practice, relying on centralized market clearing and information

gathering, as well as on uniform bids and on simplified assumptions only fit to trans-

mission networks, would be inconsistent with and unable to capture the different

nature of the distribution network (line characteristics, voltage considerations) and

the intertemporal DER dynamics.

In conclusion, the envisioned Distribution Power Markets clear three products:

1. Real power

2. Reactive power

3. Reserves

DERs will compete to provide real power, reactive power and reserves and opti-

mally allocate their capacity among these three products. Similarly to existing power

markets, DERs will be scheduled by a system operator (in this case the distribution
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system operator or DSO), who solves the Day Ahead market clearing problem. It is

the minimization of bid-based and operational costs subject to:

• AC power flow constraints

• Power balance constraints

• DER dynamics and capabilities constraints

• Voltage bound constraints.

The DSO minimizes:

1. Real power costs, that implicitly include costs of real power losses

2. Reactive power costs, that implicitly include costs of reactive power losses

3. Transformer loss of life, while maximizing

4. Loads’ utilities

5. Profit from reserves sales

The primal solution of the distribution power market clearing problem is the

DER real power, reactive power and reserves schedules, as well as distribution bus

voltages and power flows over distribution lines. At optimality, the primal solution is

the optimal DER capacity allocation between these three products.

Wholesale markets discover locational Marginal Prices (LMPs) of real power as

well as zonal prices of reserves. The LMPs of real power indicate the marginal value

of an injection of real power at a specific bus and a specific time. Distribution power

markets, that clear real power, reactive power and reserves, will, in direct accordance,

discover Distribution Locational Marginal Prices (DLMPs). These prices are distinct

for each product (real power, reactive power, reserves), are varying in the time and
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space domains and express the marginal value of an injection of real power, reactive

power or reserves at a specific distribution bus and a specific time. These prices will

be the Lagrange multipliers corresponding to the optimal primal solution (optimal

DER schedules) of the market clearing problem, or in other words, the optimal dual

solution of the market clearing problem will provide the DLMPs.

The proposed distribution power market will achieve the following efficiencies:

1. Introducing competition and using all the degrees of freedom of distribution-

network connected participants will lead to lower costs, more flexibility and grid

resilience to load increases.

2. The distribution market explicitly minimizes variable costs (including losses,

electrical equipment degradation etc). DLMPs will reflect these costs, will be

time and location variant, and unbundled for each electrical product (real power,

reactive power and reserves).3

3. The prices discovered by the market show the value of each market product at

each location, thereby promoting the efficient integration of DERs throughout

the distribution network.

4. The spatiotemporal prices can also work as investment signals and promote

investments in new technologies, products and services.

5. Voltage bound constraints and power flow constraints will be included as hard

constraints in the market clearing process. DERs will be providing voltage

support by injections or withdrawals of reactive power, as indicated by the

reactive power prices. This market-based voltage control will replace today’s

ad-hoc switching of capacitor banks.

3Fixed costs may not be recovered through DLMPs alone. Constant charges like a connection
charge or a constant $/kWh charge might be required to cover fixed costs.
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6. The provision of reserves from DERs will contribute to the increased reserve

requirements imposed by the rising levels of renewables. This way of securing

reserves is less costly compared to securing an equal amount of reserves from

traditional transmission-network reserve providing resources. It will also allow

for the increase of the renewable penetration safety limits, that will itself lead

to lower emissions.

For reasons that will become clear and discussed in detail later in the thesis,

we first proceed for simplicity of exposition with day-ahead distribution power mar-

ket algorithms without modeling reserves. Chapters 5 and 6 show centralized and

distributed market clearing algorithms, respectively, excluding reserves. Chapter 7

completes the thesis contribution by showing day-ahead distribution market clearing

algorithms complete with reserve considerations.
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Chapter 5

Centralized Algorithm For Distribution

Day-Ahead Power Market Clearing

5.1 Formulation

This chapter presents the formulation of the centralized day-ahead distribution power

market and relevant numerical results. For simplicity of exposition, we present here

the centralized market clearing formulation for real and reactive power only, and

extend it to include reserve considerations in Chapter 7.

Distribution networks are connected to transmission networks at a bus called

the substation bus. At this interface of transmission and distribution, we represent

the transmission network by a source of real power at a constant price, as well as an

auxiliary generator that provides reactive power flowing into the distribution network

as needed. That constant price of real power can be thought of as the hourly LMP

at the substation bus. In other words, the constant price is assumed to be the result

of a wholesale power market clearing consistent with the behavior of DERs located

at all distribution feeders connected to the wholesale market. In reality, this would

require several iterations between each distribution feeder connected to the wholesale

market and the wholesale market itself. See Chapter 8 for more details on this

issue. As for the auxiliary reactive power providing generator, contrary to today’s

practice of contractual reactive power provision from centralized generators, it will be

dynamically remunerated for the allocation of its capacity to reactive power provision.
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The remuneration expresses the opportunity costs for the lost sales of real power and

will depend on the amount of reactive power it provides and the substation real power

LMP.

The day-ahead distribution power market clearing problem is formulated as a

constrained optimization problem. The objective function is the minimization of all

operational costs including:

(i) Real power costs for real power purchases from the transmission and distribution

interface

(ii) Real power generation costs from Distributed Energy Resources (DERs) (For

example, PVs have zero such costs while microgenerators have fuel costs.)

(iii) Reactive power production fuel costs at the substation auxiliary generator

(iv) Reactive power opportunity cost for the substation auxiliary generator

(v) The cost of voltage modulation at the substation, as needed to maintain voltages

at all distribution buses within acceptable bounds

(vi) The cost of transformer loss of life

(vii) The cost of not meeting loads

(viii) Cost of uncharged EV batteries.

The minimization is performed subject to the following constraints:

• AC load flow relationships (5.2)-(5.7)

• Voltage magnitude bound constraints (5.8)

• Real and reactive power consumption of voltage sensitive loads (5.9), (5.10),

(5.11), showing the efficiency of transforming the real power consumed to useful

energy service work, based on the voltage magnitude.
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• Real and reactive power injections/ withdrawals by DERs (5.12)

• Reactive power output of controllable shunt capacitors, which depends on their

location voltage (5.13).

• Electric vehicle charging related constraints. (5.14) expresses the real power

consumption limits based on the maximum charging rate capacity, while (5.15)

describes the inter-temporal dynamics of the uncharged EV battery. Constraints

on the EVs’ capability to offer reactive power, based on the charger’s capacity,

are also expressed through (5.12).

• Smart thermostat related constraints. (5.16) describes the evolution of the

inside temperature, given the real power consumption and the hourly outside

temperatures, while (5.17) are the comfort zone constraints.

The market clearing problem in mathematical terms follows:

C-OPT: Centralized formulation with Hard Voltage Bound Constraints

minimize
Pα(h),Qα(h),v∞(h)

∑
α,α∈E

uα(xα(hdep)) +
24∑
h=1

πP∞(h) · P∞(h)−
∑

α,α∈G,E

cα · Pα(h)+

H(Q∞(h)) +
∑
α,α∈D

uα(Pα(h))+

∑
(b,b′),(b,b′)∈tr

ctrb,b′ · Γb,b′(θb,b′(h))+

πOC∞ (h) · (C∞ −
√
C2
∞ −Q2

∞(h))+

cv∞ · (v∞(h)− 1)2

(5.1)

subject to lb,b′(h) =
P 2
b,b′ +Q2

b,b′

vb(h)
(5.2)

vb′(h)− vb(h) = −2(rb,b′ · Pb,b′ + xb,b′ ·Qb,b′) + (r2
b,b′ + x2

b,b′) · lb,b′(h) (5.3)
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∑
α,α∈Gb∪Eb

Pα(h) +
∑

α,α∈Db

P̆α(h) +
∑
b′

Pb,b′(h) = 0 (5.4)

∑
α,α∈Gb∪Eb∪Fb

Qα(h) +
∑

α,α∈Db

Q̆α(h) +
∑
b′

Qb,b′(h) = 0 (5.5)

Pb,b′(h) + Pb′,b(h) = rb,b′lb,b′(h) (5.6)

Qb,b′(h) +Qb′,b(h) = xb,b′lb,b′(h) (5.7)

vb ≤ vb(h) ≤ v̄b → µ
b
(h), µ̄b(h) (5.8)

Pα ≤ Pα ≤ P̄α, α ∈ D (5.9)

P̆α(h) = Pα(h) · (1 + w · (vb(h)− v̆)2), α ∈ D (5.10)

Q̆α(h) = P̆α(h) ·
√

1− cos2(θα)

cos(θα)
, α ∈ D (5.11)

P 2
α(h) +Q2

α(h) ≤ C2
α(h), α ∈ G,E (5.12)

−min(Cα, Cα · vb(h)) ≤ Qα(h) ≤ 0, α ∈ F → κα(h) (5.13)

0 ≤ Pα(h) ≤ rα, α ∈ E, harr ≤ h ≤ hdep, α ∈ DER set for EVs (5.14)

0 ≤ xα(hdep) = xα(harr)−
hdep∑

h=harr

Pα(h), α ∈ DER set for EVs (5.15)

T inα (h) = T inα (h− 1)− k4 · Pα(h)+

k5 · (T out(h)− T inα (h) + T inα (h− 1)

2
), α ∈ DER set for smart thermostats (5.16)

Tα ≤ T inα (h) ≤ T̄α, α ∈ DER set for smart thermostats (5.17)

For the remainder of this work, we will assume that the fuel cost of producing

reactive power at the auxiliary substation generator, H(Q∞(h)), is very small and

therefore negligible. We note that the smart thermostat constraints, describe the

evolution of the inside temperature for the case of cooling. The relevant equations for

the case of heating can be found in Section 3.4.2. The transformer loss of life equation
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Γb,b′ and the hottest spot temperature θb,b′ that appear in the objective function (5.1)

were described in Section 3.1.2.

5.2 Decision and Dependent Variables

The variables included in the above day-ahead distribution power market clearing

problem are separated into dependent variables and independent variables (decision

variables) in the table below (Wang et al., 2009), (Sivanagaraju, 2009):

Decision Variables Dependent Variables
Real Power Output Pα(h) Real Power Flow Pb,b′(h), P∞(h)

Reactive Power Output Qα(h) Reactive Power Flow Qb,b′(h), Q∞(h)
Substation Voltage v∞(h) Voltage Magnitudes of b 6=∞

Line Current lb,b′(h)
Apparent flow Sb,b′(h)

Table 5.1: Dependent and independent variables of Distribution Day
Ahead Power Market clearing problem.

5.3 Components of the Distribution Locational Marginal Prices

At optimality, the primal solution is the optimal DER capacity allocation between

real and reactive power. It corresponds to the optimal dual solution. The shadow

prices of real and reactive power balance constraints (5.4) and (5.5), namely πPb (h)

and πQb (h), respectively are the locational marginal prices of each product at each

distribution bus b and hour h. Heretofore, we will refer to the real power balance

shadow price as the Real Power Distribution Locational Marginal Price or P-DLMP

for short. Similarly, we will refer to the reactive power balance shadow price as the

Reactive Power Distribution Locational Marginal Price or Q-DLMP for short. The

shorthand DLMP will refer to either or both P-DLMP and Q-DLMP.

As for the inequality constraints, we direct the reader’s attention to the shadow

prices of the voltage bound constraints (5.8), namely µ
b

and µ̄b. These are non-zero
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when the voltage magnitudes bind. Specifically, only one of µ
b

and µ̄b can be non-zero

for each bus b and hour h.

In what follows, we use first order optimality conditions to derive interesting

relationships between P-DLMPs, Q-DLMPs, other shadow prices, sensitivities of de-

pendent variables and substation LMPs. We call the resulting relationships DLMP

unbundling equations.

In order to do so, we consider at each bus b a costless infinitesimal injection of

real power Pġb(h) and a costless infinitesimal injection of reactive power Qġb(h). As

such, the market clearing problem is rewritten as:

minimize (5.1)
Pα(h),Qα(h),v∞(h),Pġb (h),Qġb (h)

(5.18)

subject to (5.2),(5.3),(5.6)-(5.17) (5.19)

Pġb(h) +
∑

α,α∈Gb∪Eb

Pα(h) +
∑

α,α∈Db

P̆α(h) +
∑
b′

Pb,b′(h) = 0 (5.20)

Qġb(h) +
∑

α,α∈Gb∪Eb∪Fb

Qα(h) +
∑

α,α∈Db

Q̆α(h) +
∑
b′

Qb,b′(h) = 0 (5.21)

−ε ≤ Pġb(h) ≤ 0 (5.22)

−ε ≤ Qġb(h) ≤ 0 (5.23)

The zero generating cost of Pġb(h) and Qġb(h) implies that the shadow price of con-

straint (5.22) is equal to πPb (h) and the shadow price of constraint (5.23) is equal to

πQb (h). We now write the Lagrangian in its reduced form by disregarding terms from:

• power flow constraints (5.2), (5.3), (5.6) and (5.7) and power balance constraints

(5.20), (5.21). Based on Kirchoff’s laws, these constraints will always hold, i.e.

a change in the right hand side will equal the change in the left hand side.

• constraints (5.10) and (5.11)
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• All other objective function components and constraints that only contain de-

cision variables, since the derivative of any decision variable with respect to

decision variables Pġb(h) or Qġb(h) is 0, by first order optimality conditions.

Therefore, the reduced Lagrangian is equal to:

L =
∑
h



πP∞(h) · P∞(h)−
∑

α,α∈E cα · Pα(h)

+πOC∞ (h) · (C∞ −
√
C2
∞ −Q2

∞(h)) +
∑

(b,b′),(b,b′)∈tr c
tr
b,b′ · Γb,b′(h)

+
∑

b µ̄b · (vb(h)− v̄b) +
∑

b µb · (vb − vb(h))

+
∑

(b,α),α∈Fb κα(h) · (−min(Cα, Cα · vb(h))−Qα(h))

+
∑

b π
P
b (h) · (−ε− Pġ(b)(h)) +

∑
b π

Q
b (h) · (−ε−Qġ(b)(h))

(5.24)

We proceed by noting that:

• The first order optimality conditions with respect to decision variables Pġb(h)

and Qġb(h) imply that ∂L
∂Pġb (h)

= ∂L
∂Qġb (h)

= 0.

• The term in the Lagrangian arising from capacitor related constraints (5.13)

can be rewritten as:

min(Cα, Cα · vb(h)) =


Cα, vb(h) ≥ 1.

Cα · vb(h), vb(h) < 1.

(5.25)

• We use µb(h) = µ̄b(h)− µ
b
(h).
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Hence, the aforementioned optimality conditions imply that:

πPβ (h) =



πP∞(h) · ∂P∞(h)

∂Pġβ(h)︸ ︷︷ ︸
A

+
πOC∞ (h) ·Q∞(h)√
C2
∞ −Q2

∞(h)
· ∂Q∞(h)

∂Pġβ(h)︸ ︷︷ ︸
B

+

∑
h1≥h,(b,b′)∈tr

ctrb,b′ ·
∂Γb,b′(Sb,b′(h1))

∂Pġβ(h)︸ ︷︷ ︸
C

+
∑
b

µb(h) · ∂vb(h)

∂Pġβ(h)︸ ︷︷ ︸
D1

−

∑
(b,α),α∈Fb

κα(h) · 1vb(h)<1 · Cα ·
∂vb(h)

∂Pġβ(h)︸ ︷︷ ︸
D2

(5.26)

and similarly for the reactive DLMP:

πQβ (h) =



πP∞(h) · ∂P∞(h)

∂Qġβ(h)︸ ︷︷ ︸
A′

+
πOC∞ (h) ·Q∞(h)√
C2
∞ −Q2

∞(h)
· ∂Q∞(h)

∂Qġβ(h)︸ ︷︷ ︸
B′

+

∑
h1≥h,(b,b′)∈tr

ctrb,b′ ·
∂Γb,b′(Sb,b′(h1))

∂Qġβ(h)︸ ︷︷ ︸
C′

+
∑
b

µb(h) · ∂vb(h)

∂Qġβ(h)︸ ︷︷ ︸
D′1

−

∑
(b,α),α∈Fb

κα(h) · 1vb(h)<1 · Cα ·
∂vb(h)

∂Qġβ(h)︸ ︷︷ ︸
D′2

(5.27)

Relations (5.26) and (5.27) are called DLMP unbundling equations because they show

the components that make up the DLMPs. DLMPs consist of components including

substation LMPs, other constraints’ shadow prices and dependent variables’ sensitiv-

ities. In specific, these components are:

• A,A′ are the cost of sensitivity of real power flowing into the distribution net-

work at the substation bus with respect to a costless infinitesimal injection of

real and reactive power respectively. In particular, A is equal to πP∞(h)· ∂P∞(h)
∂Pġβ(h)

=

πP∞(h) · (1 + Plosses(h)
∂Pġβ(h)

), which is equivalent to the energy and loss components of

LMPs (4.19).
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• B,B′ are the marginal cost of sensitivity of reactive power of the auxiliary

generator at the substation with respect to a costless infinitesimal injection of

real and reactive power respectively.

• C,C ′ are the cost of sensitivity of transformer loss of life with respect to a

costless infinitesimal injection of real and reactive power respectively.

• D,D′ are:

1. The sensitivity of the voltage level at each binding bus times the relevant

Lagrange multiplier

2. The cost of affecting the maximum reactive power output of capacitors, if

their voltage is below 1 per unit.

D1 and D′1 are non-zero only when voltage bound constraints are binding. This is

similar to the congestion component of the LMPs (4.19) that is non-zero only when the

line capacity constraints are binding. We say that binding voltage bound constraints

express distribution network congestion, i.e. distribution network congestion is a

nodal problem and complement this statement with numerical results in Section 5.5.1.

The intuitive explanation behind the spatial variability of the DLMPs is that an

equal injection at a different distribution bus will have different effect on losses, voltage

magnitudes and line/ transformer flows. Also, DLMPs of both real and reactive power

may be lower or higher than the substation values, since A,A′, B,B′ ≥ 0 (with a subtle

assumption on πP∞(h) ≥ 0 and πOC∞ (h) ≥ 0) but C,C ′, D1, D
′
1, D2, D

′
2 can be either

positive or negative (Ntakou and Caramanis, 2015).

In order to numerically evaluate the right-hand side of (5.26) and (5.27) one

needs to determine the sensitivities of dependent variables, namely
∂Pb,b′

∂Pġβ(h)
,

∂Qb,b′

∂Pġβ(h)
,

∂vb
∂Pġβ(h)

and
∂Pb,b′

∂Qġβ(h)
,

∂Qb,b′

∂Qġβ(h)
, ∂vb
∂Qġβ(h)

. Taking the derivative of constraints (5.2), (5.3),
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(5.4), (5.6), (5.5) and (5.7) we get:

∂lb,b′

∂Pġβ(h)

=
2 · Pb,b′
vb

· ∂Pb,b
′

∂Pġβ(h)

+
2 ·Qb,b′

vb
· ∂Qb,b′

∂Pġβ(h)

−
P 2
b,b′ +Q2

b,b′

v2
b

· ∂vb
∂Pġβ(h)

(5.28)

∂vb′

∂Pġβ(h)

=
∂vb

∂Pġβ(h)

−2 ·Rb,b′ ·
∂Pb,b′

∂Pġβ(h)

−2 ·Xb,b′ ·
∂Qb,b′

∂Pġβ(h)

+(R2
b,b′+X2

b,b′) ·
∂lb,b′

∂Pġβ(h)

(5.29)

∑
b′

∂Pb,b′

∂Pġβ(h)

=


−1, b = β

0, else

(5.30)

∂Pb,b′

∂Pġβ(h)

+
∂Pb′,b
∂Pġβ(h)

= Rb,b′ ·
∂lb,b′

∂Pġβ(h)

(5.31)

∑
b′

∂Qb,b′

∂Pġβ(h)

= 0 (5.32)

∂Qb,b′

∂Pġβ(h)

+
∂Qb′,b

∂Pġβ(h)

= Xb,b′ ·
∂lb,b′

∂Pġβ(h)

(5.33)

We note that while equations (5.29) are technically 2|L| = (2N − 2) many,

only |L| = N − 1 are linearly independent. For the calculation of the sensitivities

with respect to an infinitesimal reactive power injection, we can similarly derive the

following system of equations:

∂lb,b′

∂Qġβ(h)

=
2 · Pb,b′
vb

· ∂Pb,b
′

∂Qġβ(h)

+
2 ·Qb,b′

vb
· ∂Qb,b′

∂Qġβ(h)

−
P 2
b,b′ +Q2

b,b′

v2
b

· ∂vb
∂Qġβ(h)

(5.34)

∂vb′

∂Qġβ(h)

=
∂vb

∂Qġβ(h)

−2·Rb,b′ ·
∂Pb,b′

∂Qġβ(h)

−2·Xb,b′ ·
∂Qb,b′

∂Qġβ(h)

+(R2
b,b′+X

2
b,b′)·

∂lb,b′

∂Qġβ(h)

(5.35)

∑
b′

∂Pb,b′

∂Qġβ(h)

= 0 (5.36)

∂Pb,b′

∂Qġβ(h)

+
∂Pb′,b
∂Qġβ(h)

= Rb,b′ ·
∂lb,b′

∂Qġβ(h)

(5.37)

∑
b′

∂Qb,b′

∂Qġβ(h)

=


−1, b = β

0, else

(5.38)
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∂Qb,b′

∂Qġβ(h)

+
∂Qb′,b

∂Qġβ(h)

= Xb,b′ ·
∂lb,b′

∂Qġβ(h)

(5.39)

5.4 Centralized Solution Feasibility

5.4.1 Uniqueness of Solution

As discussed in 2.2.2, relaxed branch load flow constraints are an exact reformulation

of the full AC load flow constraints. The constraint set remains not convex, because

of the quadratic equality constraints lb,b′ =
P 2
b,b′+Q

2
b,b′

vb
.

(Chiang and Baran, 1990) proves that the solution to a power flow problem with

full AC load flow equations is unique, given (i) reasonable voltage bounds and (ii)

radial network topology.

Although our problem is an optimal power flow problem with additional com-

plexity, our computational experience appears to be consistent with a unique solution.

5.4.2 Existence of Solution

(Chiang and Baran, 1990) makes the assumption of reasonable voltage bounds, of the

order of +/- 10%, constraining the power flow problem. While these constraints are

characterized as necessary to obtain a unique solution for a power flow problem, they

are not sufficient. In other words, these constraints guarantee at most one solution.

Although we model a slack bus that can provide real and reactive power as

needed, it is possible that this is not enough to sustain system voltages within their

bounds. In such an instance, the optimal power flow problem will be infeasible.

5.4.3 Centralized Algorithm modeling Voltage Bound Constraints with

a Barrier Function

Since we identified the voltage bounds constraints as the only last source of infeasi-

bility, in order to ensure feasibility we replace hard voltage bound constraints of the
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type of (5.8) with soft constraints, namely voltage-related barrier functions in the

objective function.

The hard voltage bound constraints are equivalent to penalty terms like f(vb(h)) =

H(v−vb(h))+H(vb(h)−v̄), where H is the Heaviside function. Since these constraints

are non-differentiable, we use constraints of the type f(vb(h)) = k6,b ·(exp(k7,b ·(vb(h)−

v̄)) + exp(k8,b · (v − vb(h)))). We tune k6 to control the contribution of this term to

the objective function. In fine tuning parameters k7, k8, we choose k7 >> and k8 >>

for the resulting curve to be as close to a square wave as is practical. Such a choice

of large enough k7, k8 will also ensure that the voltages of the new optimal solution

will be close to the original optimal solution.1 With this alteration, the centralized

market clearing problem becomes:

C-SVC: Centralized formulation with soft voltage bound con-

straints

minimize (5.1) +
∑

b,h k6,b · (exp(k7,b · (vb(h)− v̄)) + exp(k8,b · (v − vb(h))))

subject to (5.2)-(5.7) and (5.9)-(5.17)

We note that when adjusting the parameters in the voltage barrier functions,

there is a trade-off relationship between reaching the original voltages and deviating

from the original DLMPs. This is because large parameters ensure a box-like shape

of the barrier function and therefore a closer distance from the original voltages, but

they also magnify the voltage component of the DLMPs leading to higher DLMPs in

the presence of soft voltage bound constraints than the original DLMPs with hard

voltage bound constraints. Specifically, we derive below the unbundling of the DLMPs

1Another way to model soft voltage bound constraints is with quadratic functions of the form of
k9 · 1vb≥v̄ · (v − v̄)2 + k10 · 1vb≤v · (v − v)2. We proceed with the use of exponential functions since
they are convex.
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obtained as shadow prices of the power balance constraints of C-SVC.

πP,SV Cβ (h) =



πP∞(h) · ∂P∞(h)
∂Pġβ(h)

+ πOC∞ (h)·Q∞(h)√
C2
∞−Q2

∞(h)
· ∂Q∞(h)
∂Pġβ(h)

+∑
h1≥h,(b,b′)∈tr c

tr
b,b′ ·

∂Γb,b′ (Sb,b′ (h1))

∂Pġβ(h)
+∑

b k6,b · k7,b · exp(k7,b · (vb(h)− v̄)) · ∂vb(h)
∂Pġβ(h)

−∑
b k6,b · k8,b · exp(k8,b · (v − vb(h))) · ∂vb(h)

∂Pġβ(h)
−∑

(b,α),α∈Fb κα(h) · 1vb(h)<1 · Cα · ∂vb(h)
∂Pġβ(h)

(5.40)

πQ,SV Cβ (h) =



πP∞(h) · ∂P∞(h)
∂Qġβ(h)

+ πOC∞ (h)·Q∞(h)√
C2
∞−Q2

∞(h)
· ∂Q∞(h)
∂Qġβ(h)

+∑
h1≥h,(b,b′)∈tr c

tr
b,b′ ·

∂Γb,b′ (Sb,b′ (h1))

∂Qġβ(h)
+∑

b k6,b · k7,b · exp(k7,b · (vb(h)− v̄)) · ∂vb(h)
∂Qġβ(h)

−∑
b k6,b · k8,b · exp(k8,b · (v − vb(h))) · ∂vb(h)

∂Qġβ(h)
−∑

(b,α),α∈Fb κα(h) · 1vb(h)<1 · Cα · ∂vb(h)
∂Qġβ(h)

(5.41)

The sensitivities
∂Pb,b′

∂Pġβ(h)
,

∂Qb,b′

∂Pġβ(h)
, ∂vb
∂Pġβ(h)

,
∂Pb,b′

∂Qġβ(h)
,

∂Qb,b′

∂Qġβ(h)
, and ∂vb

∂Qġβ(h)
can be cal-

culated as in the original problem with hard voltage bound constraints.

5.5 Numerical Results

For all the numerical results shown below, we use the AIMMS Optimization software.

AIMMS provides us with the (locally) optimal primal and corresponding optimal dual

solution.

5.5.1 Un-congested Distribution Network

In this section, we provide numerical results we obtained on a realistic 800 bus dis-

tribution feeder, whose specifications can be found in Appendix A. The results that

follow use w = 0 as the relevant parameter in constraint (5.10).
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Figure 5·1 shows the spread of the real power Distribution Locational Marginal

Prices (DLMPs) by means of hourly minimum and maximum real power DLMP and

the substation real power LMP, while Figure 5·2 shows the minimum, maximum and

substation reactive power DLMP. The minimum DLMP can be seen to drop below

the substation value for both real and reactive power. The maximum DLMP spikes

during certain hours when transformer overloading occurs.

Figure 5·1: Hourly minimum, maximum and substation value of real
power DLMP
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Figure 5·2: Hourly minimum, maximum and substation value of re-
active power DLMP

Figures 5·3 and 5·4 show the components of real and reactive DLMPs at two

interesting buses in the network. The results indicate that the transformer compo-

nent as well as the voltage component can turn out to be significant contributors to

marginal costs.



75

Figure 5·3: Real power DLMP components at selected buses 351 and
689 (see equation 5.26 for explanation of each component)

Figure 5·4: Reactive power DLMP components at selected buses 351
and 689 (see equations 5.27 for explanation of each component)

Our simulations have also revealed how congestion expresses itself in distribution

networks. While in transmission networks, congestion refers to lines loaded to their

capacity, in distribution networks congestion is a nodal problem because it refers to
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voltage bound constraints binding (either above or below).

From a market perspective, transmission network congestion is a problem be-

cause it can increase operational costs when cheap resources generate below their

capacity because all lines out of them are congested. The same can happen in a

distribution power market. As our simulations reveal, PVs, whose variable costs are

zero, provide below their capacity if the voltage magnitude at their connection bus

binds from above.

Figure 5·5 below contributes to the argument that binding voltage bound con-

straints express distribution network congestion. In particular, we report the substa-

tion voltage versus the solar irradiation per hour. Since higher voltages mean lower

losses, we would expect the only voltage that is a decision variable, i.e. the substation

voltage, to be at the upper limit at all times. Contrary to that, we see that when

irradiation is high, the substation voltage drops below the upper limit. Combined

with Figure 5·6 that shows the maximum voltage among buses with photovoltaics,

we conclude that during high irradiation hours, the substation voltage drops so that

the voltage at buses with PVs can reach the upper bound, allowing PVs to produce

as close to their capacity as they can. We note that Figures 5·5 and 5·6 only show

the hours with non-zero irradiation.
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Figure 5·5: Hourly substation voltage versus solar irradiation per-
centage

Figure 5·6: Hourly substation voltage and maximum PV voltage

5.5.2 Benefits of Distribution Network Price Granularity

Below, we discuss the network and economic benefits of the proposed granular spa-

tiotemporal prices relative to today’s flat prices. The goal of this section is to show
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the benefits of time and locational incentives. To this end, we compare the following

pricing schemes:

1. Flat prices: constant price for all buses and all hours

2. Spatiotemporally varying prices (DLMPs) obtained through the proposed dis-

tribution power market.

For the results that follow, we incorporate the voltage sensitivity part of the fixed

loads (see constraint (5.10)) by using v̆ = 0.96, w = 1.

Under flat prices, electric vehicles start charging upon connection. An important

conclusion is that in the absence of locational incentives DERs are not appropriately

guided/ incentivized on how to provide reactive power. This is because a spatially

constant price does away with the effects of the network topology on the prices, i.e.

line losses and voltage magnitudes. Therefore, the DERs do not see voltage drops

or rises and as such, see no use in reactive power provision. This means that in

our simulations of the 800 bus network under flat prices, PVs will be providing the

maximum real power allowed by the solar irradiation at all hours and no reactive

power and EVs will be charging upon connection and will also not provide reactive

power.

Figure 5·7 shows the average voltage over all buses with voltage sensitive loads,

with DLMPs and flat prices. For the on peak hours, the DLMP market can attain

an average voltage across all load buses that is closer to v̆ than flat prices can. The

latter, lacks DER scheduling flexibility and has the substation voltage as the single

decision variable to decrease costs. Therefore, it cannot maintain voltages within

limits without raising voltages at load buses to be much higher than v̆.
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Figure 5·7: Comparison of the average voltage at load buses under
flat prices and DLMPs.

Figure 5·8 reports on the ex-post net cost of all distribution participants. This

is the payments minus receipts for consuming and providing, respectively, both real

and reactive power. The benefit is about 17%.

Figure 5·8: Comparison of Net Cost of Distribution Participants un-
der flat prices and DLMPs.
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The following two figures show the costs that price responsive loads incur with

spatiotemporal prices versus flat prices. Figure 5·9 shows the costs of electric vehicles

that appear to be decreasing by approximately 58%. Under flat prices, electric vehicles

charge upon connection, not taking advantage of the lowest cost hours, and do not

provide reactive power, which explains the large cost decrease electric vehicles realize

under DLMPs.

Figure 5·9: Comparison of electric vehicle (net) costs under flat prices
and DLMPs.

Figure 5·10 shows the cost savings of space conditioning that are about 38%.
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Figure 5·10: Comparison of space conditioning costs under flat prices
and DLMPs.

Figures 5·11 and 5·12 elaborate on the sub-optimality of flat prices, by concen-

trating at bus 383, where the smart thermostat of the largest capacity is located.

Figure 5·11 shows the ex-post marginal cost of real power at that bus and the con-

sumption of the smart thermostat located at this bus, under flat pricing, while Figure

5·12 shows the same measures as they are decided in a spatiotemporal distribution

power market setting. While the evolution of costs and consumption are almost in-

verse for the market case, with zero consumption during cost peaks, the evolution is

actually about analogous when using flat prices. Consuming more as prices rise and

less as prices drop is an undesirable behavior and a clear indicator of the suboptimality

of fixed rate pricing.
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Figure 5·11: 24-hour trajectory of real power DLMP and smart ther-
mostat consumption at bus 383 under flat prices.

Figure 5·12: 24-hour trajectory of real power DLMP and smart ther-
mostat consumption at bus 383 under DLMPs.

Figure 5·13 focuses on the net payments of fixed loads and depicts a very in-

teresting conclusion: price inelastic loads will also benefit from the implementation

of a spatiotemporal distribution market. Specifically, the costs of fixed loads will
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drop by about 14%. The DLMP market has the flexibility to adjust all price respon-

sive distribution participants’ schedules to achieve the optimal primal solution, which

corresponds to the optimal dual solution. Therefore, although the real and reactive

output of the fixed loads remains unchanged, the charges they incur decrease because

of the discovery of optimal marginal costs.

Figures 5·14 and 5·15 show exactly that effect on the ex-post marginal costs.

Figure 5·14 contrasts the maximum real power DLMP across the distribution feeder

with the maximum ex- post marginal costs of real power under flat prices, while

Figure 5·15 does the same for reactive power. The absence of time and location

specific information to the DERs and the resulting sub-optimal outputs of DERs,

lead to shadow prices that vary greatly from the optimal result of the DLMP market.

In other words, under spatiotemporal prices, the spikes of marginal costs in both real

and reactive power are avoided. Notice how these spikes coincide time-wise with the

spikes of the market-based DLMPs but are much larger in magnitude. The reason

for these spikes is again the transformer overloading, which is more excessive under

flat prices.
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Figure 5·13: Comparison of inflexible loads costs under flat prices and
DLMPs.

Figure 5·14: Comparison of the hourly maximum real power DLMP
and the real power ex-post marginal costs under flat prices.
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Figure 5·15: Comparison of the hourly maximum reactive power
DLMP and the reactive power ex-post marginal costs under flat prices.

5.5.3 Congested Distribution Networks

For this section, we switch to the 47-bus congested distribution network. The results

that follow aim at showing the closeness of the solution obtained by the centralized

problem with soft voltage bound constraints, C-SVC, as compared to the centralized

problem with hard voltage bound constraints, C-OPT. Figure 5·16 does so by means

of illustrating the total cost for real power service paid by the curtailable loads, while

Figure 5·17 shows the voltage magnitudes at all load buses.

In C-SVC voltages are at most 0.04% away from their true optimal values in

C-OPT. Real power DLMPs of C-SVC differ about 1-2% from the real power DLMPs

of C-OPT. This difference is much smaller than the effect of binding voltages on

DLMPs. Specifically, we quantify the effect of binding voltages by decreasing the

voltage lower bound v enough for it to no longer bind. We notice that by doing so

real power DLMPs are decreased by as much as 15%.
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Figure 5·16: Comparison of Real Power Costs to Curtailable Loads
in the presence of hard voltage bound constraints (C-OPT) and soft
voltage bound constraints (C-SVC).

Figure 5·17: Comparison of voltage magnitudes of load buses in the
presence of hard voltage bound constraints (C-OPT) and soft voltage
bound constraints (C-SVC).
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5.6 Computational Effort

The basic contributors to computational complexity of the centralized distribution

market clearing algorithm are:

1. Market participants order in the hundreds of thousands

2. Distribution market participants’ capabilities are complex and time-coupled (eg.

electric vehicles, smart thermostats)

3. The optimal power flow problem is not constrained over a convex set, because

of the non-convex power flow equations. Specifically, the non-convex constraint

is the line current constraint (5.2) that is a quadratic equality constraint.

The number of variables grows proportionally to the network size as well as with the

number of market participants, therefore the centralized market clearing algorithm

can easily be seen to become intractable for real-size distribution networks. AC OPF

problems are generally known to be NP hard to solve. The literature has dealt with

this issue with two main approaches:

• Approximations of the AC load flow constraints that convexify the problem.

Several approximations have been proposed over the years, the most popular

being the B-theta model shown in Chapter 2. More recently, (Li et al., 2012a)

proposed replacing the quadratic equality constraint with inequalities, yielding

lb,b′ ≥
P 2
b,b′+Q

2
b,b′

vb
and investigated when the relaxation is exact.

• Decomposition approaches (see Chapter 6 for more details)

Since in the distribution power market clearing problem it is not only the AC load

flow constraints, but also the numerous and complex DER dynamics constraints, that

contribute to the high computational burden, decomposition approaches are more
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relevant to the problem that this thesis addresses. Therefore, the thesis continues

with the presentation and implementation of distributed algorithms.
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Chapter 6

Distributed Algorithms for Distribution

Day-Ahead Power Market Clearing

The AC OPF problem aims at minimizing a certain objective (generator scheduling

to minimize generation costs, or minimize losses etc) subject to AC power flow con-

straints, power balance constraints and voltage bound constraints. For scheduling

type of AC OPF problems, as is the case for example in power market problems, ad-

ditional constraints are needed (generator capacity constraints, DER dynamics etc).

The AC OPF problem is generally known to be NP hard to solve. This is due

to the quadratic equality constraints that describe the line current 5.2. The compu-

tational burden is further exacerbated in the case of a problem like the centralized

distribution power market clearing problem seen in Chapter 5, that, in addition to

the AC load flow relationships, includes other complex constraints as well, like the

intertemporal DER dynamics and the intertemporal transformer hottest spot tem-

perature relationships.

The literature has proposed several approximations of the AC load flow con-

straints that convexify the problem, the most popular being the B-theta model shown

in Chapter 2. More recently, (Li et al., 2012a) and (Farivar and Low, 2013) proposed

replacing the quadratic equality constraint with inequalities, yielding lb,b′ ≥
P 2
b,b′+Q

2
b,b′

vb

and investigated when the relaxation is exact.

The dual of the AC OPF problem has also received lots of attention in the

literature. Active research reported in the literature is looking into solving the dual
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of the AC OPF problem instead of the AC OPF problem itself. The dual problem

is preferable because it is convex. (Lavaei and Low, 2012) and (Molzahn, 2013)

examine the resulting duality gap based, amongst others, on the network topology

(radial or meshed) so as to decide how close is the optimal objective function value

of the dual problem to the optimal objective function value of the AC OPF (primal)

problem. (Lavaei and Low, 2012) proves certain conditions as sufficient to guarantee

zero duality gap (like oversatisfaction of load), but shows through simulation results

that many more instances, not satisfying the sufficient conditions, have zero duality

gap. (Molzahn, 2013), on the other hand, simulates instances where the duality gap

is non-zero (when line capacities are low, or when shadow prices of power balance

constraints of original OPF problem (i.e. nodal marginal prices) are negative).

Other researchers are trying to deal with the computational burden of OPF

problems through decomposition. This is more relevant to the types of problems

in this thesis since as mentioned above the computational burden of a distribution

power market problem is not only caused by the AC load flow constraints but by

other complex constraints too.

For OPF problems, the objective function is typically separable. For example, for

loss minimization problems the objective function is the sum of line specific terms.

For an economic dispatch problem, the objective function is the sum of bid-based

components specific to each competing entity. However, the presence of nodal equality

and inequality constraints renders the OPF problem overall non-separable.

For transmission OPF problems, the coupling nodal constraints are equality

constraints: real power balance 2.25 and real power flow constraints 2.27. For distri-

bution OPF problems, as is the distribution day-ahead power market clearing problem

of Chapter 5, nodal coupling constraints are equality and inequality. Coupling equal-

ity constraints consist of real power balance constraints 5.4, reactive power balance
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constraints 5.5 and voltage drop constraints 5.3. Voltage magnitude bound inequality

constraints 5.8 are the coupling inequality constraints.

Constraints that contain nodal as well as line-specific variables, like 2.27 and

5.3, are not only coupling but also imply another equality constraint of consistency,

that is implicit in the centralized OPF formulation. Constraints of the type of 2.27

imply voltage angle consistency, i.e. that all transmission lines going in and out of

the same bus have the same angle at their ends. Constraints of the type 5.3, imply

voltage magnitude consistency, meaning that that all distribution lines going in and

out of the same bus have the same voltage at their ends.

The literature has studied relaxations of the coupling equality constraints to

enable the decomposition of the OPF problem. We proceed with an overview of

the methods used so far in the literature to distribute the computation of the OPF

problem. A very high level description of the OPF problem that aims at capturing

the decomposable nature of the objective function versus the coupling nature of the

constraints of interest follows:

minimize
x=[xk]

∑
k

fk(xk)

subject to Ax = b→ λ

xk ∈ Xk

where we use x to collectively refer to primal variables of the OPF problem and λ to

refer to the dual variables of the coupling constraints of the OPF problem.

Lagrangian-based methods have been employed, with a plethora of past work

employing dual decomposition. The lagrangian of the above OPF problem is written

as:

L =
∑
k

fk(xk) + λ · (Ax− b) =
∑
k

(fk(xk) + λ · Ak · xk)− λ · b
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The decomposition to subproblems and the dual decomposition steps are straightfor-

ward:

• Primal variable update step xi+1
k = argmin

xk∈Xk
fk(xk)+λi ·Ak ·xk. These individual

problems can be solved in parallel.

• Dual variable update step λi+1 = λi + si · (A · xi+1 − b)

The stepsize si needs to be properly adjusted to avoid oscillations (see (Bertsekas

and Tsitsiklis, 1989)). Still, dual decomposition requires strict technical conditions

for convergence, which motivated the use of other methods. Augmented Lagrangian

based methods require looser technical conditions for convergence. The augmented

Lagrangian is written as:

L =
∑
k

fk(xk) + λ · (Ax− b) +
ρ

2
· ||Ax− b||22

The quadratic augmentation terms 1
2
||Ax − b||22, multiplied by the penalty ρ

robustify convergence, but also destroy the straightforward splitting to subproblems

that the lagrangian methods, like dual decomposition offer.

In order to enable the decomposition of the augmented Lagrangian, several past

methods proposed minimizing over one variable while keeping all of the variables

tentatively fixed. This resulted in the following process:

• Primal variable update step:

xi+1
k = argmin

xk∈Xk
fk(xk)+λi ·Ak ·xk+ ρ

2
· ||+

∑
m≤k Amx

k+1
m +Akxk+

∑
m≥k Amx

k
m−

b||22. This is obviously separable, but results in a sequential method.

• Dual variable update step λi+1 = λi + ρ · (A · xi+1 − b)

Recently, the Alternating Direction Method of Multipliers (ADMM) provided a

way to end up with parallelizable individual subproblems. (Boyd et al., 2011) shows
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how ADMM can be applied to a multitude of optimization problems, including OPF

problems. ADMM starts from the augmented Lagrangian and through the use of

local and global copies of variables, bridges the decomposability of dual decompo-

sition methods with the robustness of augmented Lagrangian methods. We refer

the interested reader to (Kraning et al., 2014), (Bertsekas and Tsitsiklis, 1989) and

(Ntakou and Caramanis, 2014) for the math leading to the steps of the ADMM for

the simplistic OPF problem that follow below:

• Primal variable update step xi+1
k = argmin

xk∈Xk
fk(xk)+λi ·Ak ·xk+ ρ

2
·||Akxk−Akxik+

x̂i||22, where x̂i = Axi−b
N

. x̂i can be thought of as the imbalance in satisfying the

coupling constraint. These individual problems are fully parallelizable.

• Dual variable update step λi+1 = λi + ρ · x̂i+1
k

The quadratic augmentation terms offer robustness and help in oscillation avoidance

in the calculation of the primal variables. They converge to zero.

The following quarantees hold for ADMM:

1. Upon convergence, the optimal objective function value is found.

2. Upon convergence, the optimal dual variables are found lim
i→∞

λi → λ∗.

3. Upon convergence, the relaxed constraints hold, lim
i→∞

x̂i → 0.

We now focus on interpreting the subproblems. For the case of dual decompo-

sition, the update steps shown above can be described in words as:

• Each subproblem xi+1
k = argmin

xk∈Xk
fk(xk)+λi ·Ak ·xk is solved in parallel to update

primal variable xk while the dual variable λ is fixed.

• The dual variable is updated based on the violation of the relaxed constraint

Ax = b, given the tentative xi+1
k .
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For an OPF problem, real power balance constraints are among the coupling

constraints that are relaxed to enable the decomposition. Section 5.3 discussed that,

for a power market problem, the dual variables of the power balance constraints are

the locational marginal prices. As in all spot markets, this is the price that a market

participant connected to this bus would pay to receive or gets paid to provide real or

reactive power respectively. Therefore, the individual subproblems have an interesting

power market interpretation.

The dual variables λi are referred to as price estimates since they converge to

the nodal prices. It can easily be seen that the objective of participant k who solves

the problem of deciding xi+1
k is the minimization of all the costs that the participant

incurs: personal costs fk(xk) (e.g., transformer loss of life or uncharged EV battery

costs) and payments/ remuneration based on the nodal price estimates λi · Ak · xk.

This instructive interpretation is extended to the subproblems resulting from the

augmented Lagrangian based decompositions like ADMM. An augmented Lagrangian,

as the one used in ADMM, includes the terms in the simple Lagrangian plus quadratic

terms of the relaxed constraints. The role of these constraints is to provide robustness

and they converge to zero. Therefore, the interpretation of the subproblems used

in ADMM is the same as the interpretation of dual decomposition subproblems:

subproblems minimize all the costs that a participant incurs: personal costs (e.g.,

transformer loss of life or uncharged EV battery costs) and payments/ remuneration

based on the nodal price estimates.

(Peng and Low, 2015), (Kraning et al., 2014) and (Chakrabarti et al., 2014)

solve OPF problems using ADMM to relax relevant coupling equality constraints and

enable the problem splitting.

(Peng and Low, 2015) refers to distribution networks and as such the information

passing assumes a tree topology by requiring a unique ancestor for each bus. The
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primal variables are the net injection at each bus, the line flows and the voltage

magnitudes. Equality coupling constraints 5.4, 5.5, 5.3 are relaxed through ADMM

to enable the decomposition of the original problem to bus specific subproblems.

Coupling inequality constraints 5.8 remain hard constraints but are now made local

to each bus subproblem. In each subproblem, the bus decides its voltage, its net

injection and the flow on the unique line from its parent (direct upstream bus) based

on tentative values it has received for the voltage of its parent as well as for the flows

on the lines that connect it to its children (directly connected downstream buses). The

flows on the lines that connect it to its children are decided in the subproblems solved

by the children buses with similar logic. The dual variable update step calculates the

dual variable of the relaxed constraints (nodal power balance and voltage coupling

constraints) and involves the calculation of x̂i, the imbalance in satisfying the coupling

constraints based on the tentative individual bus decisions.

(Kraning et al., 2014) and (Chakrabarti et al., 2014) use ADMM to solve schedul-

ing OPF problems for transmission networks in a distributed fashion. The primal

variables are the injections of each device (e.g., generator), the line flows and the

voltage angles. The additional constraints of each device that should be scheduled

(e.g., generator capacity constraints) dictate the splitting of the original problem

below the bus level to individual device subproblems. In this context, local commu-

nication is defined as communication between the a bus and its connected devices.

However the equality coupling constraints for real power balance 2.25 and real power

flow 2.27, couple decisions at the bus level. Relaxing 2.25 and the voltage angle con-

sistency constraints, allows for network resources that connect buses to each other

(e.g., lines and transformers) to also solve individual subproblems. This is equiv-

alent to distributing the load flow to line specific subproblems. Coupling equality

constraints 2.27 are now local to each line subproblem. Device specific subproblems
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decide on their output based on messages they have received on the output decisions

of other devices or lines/ transformers connected to the same bus. Lines/transformers

decide the injection (or withdrawal) at the sending end and withdrawal (or injection)

at the receiving end based on the tentative outputs of the devices and other lines/

transformers connected to both ends. All of these subproblems are solved in parallel.

Buses calculate the imbalance x̂i and perform the dual variable update step.

The first distributed algorithm proposed in this thesis to decompose the cen-

tralized power market problem shown in Chapter 5 falls under the category of OPF

problems split to device subproblems using ADMM to relax coupling equality rela-

tionships. We will heretofore refer to this algorithm as Fully Distributed Algorithm or

FDA. By relaxing real and reactive power balance (equality coupling) constraints and

voltage magnitude consistency constraints, the original problem splits to DER and

line/ transformer subproblems. Each DER, solves an individual cost minimization

subproblem, as do lines and transformers. The objective function is based on price

estimates that the buses calculate. In specific, buses perform the dual update step

of ADMM by first, calculating the imbalances in satisfying the relaxed constraints x̂i

and then updating the price estimates λi. Coupling inequality constraints, namely

voltage bound inequality constraints, as well as coupling equality constraints of the

type of 5.3 become local to each line subproblem.

Our work draws from (Kraning et al., 2014) and provides the following major

advancements:

• We apply ADMM to a much more complex centralized problem, in a multi-

ple commodity market, with complex network constraints and complex DER

dynamics.

• We improve upon current ADMM practices by proposing local, instead of the

usual global, methods to verify convergence of the ADMM process as well as
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adjust the penalties multiplying the quadratic augmentation terms. These local

updates lessen the communication burden and improve the convergence rate.

• In Chapter 5, distribution network congestion was linked to binding voltage

bound constraints. In this Chapter, we will show that the convergence speed of

FDA is slower in the presence of binding voltage inequality constraints. We can

attribute this to two main reasons: First, binding inequality constraints impose

an additional constraint on the voltage decisions that makes consensus on volt-

age harder to reach. Second, binding inequality constraints explicitly affect the

nodal prices, as the DLMP unbundling equations 5.26 and 5.27 reveal. We deal

with this issue in two ways: (i) by using the DLMP unbundling relationships

5.26 and 5.27, that provide us with the building blocks of DLMPs, to correct

tentative FDA results and (ii) by modeling hard voltage bound inequality con-

straints with voltage barrier functions.

The second distributed algorithm proposed by this thesis is called Partially Dis-

tributed Algorithm (PDA). The first step is identical to classic dual decomposition.

It involves the solution of individual, lagrangian-based subproblems for each DER

in parallel. Each DER subproblem adjusts the DER dispatch so as to minimize the

DERs personal costs plus costs based on price estimates it receives from a system

operator. The second step is the calculation of updated price estimates given the ten-

tative DER dispatch. The updated price estimates are calculated centrally through

either of two equivalent ways.

• The price estimates can be calculated through solving the load flow based on

the tentative DER dispatch and then using the unbundling equations 5.26 and

5.27.

• The dual solution of a mock centralized market clearing problem with fixed
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DER schedules will include the price estimates.

In other words, PDA differs from classic dual decomposition in that the coupling

constraints are not relaxed but rather they are enforced in every iteration. This

is in line with recent work by (Li et al., 2012b) and (Joo and Ilic, 2013), where

market participants respond to centrally calculated price estimates. Binding voltage

inequality constraints pose feasibility and convergence challenges to PDA. We model

these hard voltage bound inequality constraints with voltage barrier functions to deal

with these issues.

6.1 Fully Distributed Algorithm (FDA): Distributed DER

Scheduling and Power Flow

6.1.1 Problem Formulation with Hard Voltage Bound Constraints

In this section, we derive the formulation of the Fully Distributed Algorithm (FDA)

for distribution Day-Ahead market clearing. Our formulation draws from (Kraning

et al., 2014) as well as other works in the ADMM and proximal algorithms area. We

remind the reader of the centralized algorithm for distribution Day- Ahead power

market clearing problem with hard voltage bound constraints, C-OPT, by giving a

higher level overview of it.

minimize
Pα(h),Qα(h),v∞(h)

∑
α,h

fα(Pα(h), Qα(h)) +
∑

(b,b′),h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

(6.1)

subject to:

• Equality constraints on each line/ transformer (5.2), (5.6) and (5.7)

• DER capacity constraints (5.9)-(5.17)

• Nodal equality constraints:
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– Real power balance constraints (5.4)

– Reactive power balance constraints (5.5)

– Voltage drop constraints (5.3)

• Nodal inequality constraints:

– Voltage bound constraints (5.8)

Looking at the objective function terms and the constraints, we conclude that

they are all DER and line/ transformer 1 specific, except for the nodal equality and

inequality constraints. The right hand side of constraints (5.3) contains only line/

transformer specific variables, while the left hand side includes nodal variables. There-

fore, if we use vb,b′ to denote the voltage magnitude at the end b of line b, b′ , we can

re-write the Day-Ahead problem as:

minimize
Pα(h),Qα(h),v∞(h)

∑
α,h fα(Pα(h), Qα(h))+

∑
(b,b′),h fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

subject to:

• Constraints on each line/ transformer

1. Voltage equality constraints

vb′,b(h)−vb,b′(h) = −2 · (rb,b′ ·Pb,b′(h)+xb,b′ ·Qb,b′(h))+(r2
b,b′+x2

b,b′+)lb,b′(h)

(6.2)

2. Voltage inequality constraints

v ≤ vb,b′(h) ≤ v̄ → µb,b′(h) (6.3)

3. Other equality constraints (5.2), (5.6) and (5.7)

• DER capacity constraints (5.9)-(5.17)

1In this chapter, when we refer to lines, we generally refer to a distribution line or a transformer.
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• Nodal equality constraints:

– Real power balance constraints (5.4) → πPb (h)

– Reactive power balance constraints (5.5)→ πQb (h)

• Voltage consistency constraints:

vb,b′(h) = vb,β(h),∀b′, β → ζb,b′(h) (6.4)

The additional voltage consistency constraints impose the same voltage on the

ends of all lines sharing the same bus and allows for the voltage bound inequality

constraints to be line specific. The power balance constraints, as well as the voltage

consistency constraints, couple individual DER and line/ transformer decisions. In

order to come up with a distributed formulation, we relax them and include them as

objective function terms. Looking at applications of ADMM to common problems,

the nodal power balance constraints look like exchange constraints, while voltage

consistency constraints are similar to consensus constraints. Applying the proximal

algorithm to the above and dropping constants, the DER specific subproblem at iter-

ation i+1 can be written as (Bertsekas and Tsitsiklis, 1989), (Ntakou and Caramanis,

2014):

(P i+1
a (h), Qi+1

a (h)) = argmin
DER constraints

∑
h

fa(Pa(h), Qa(h))

+
∑
h

π̂P,ib (h) · Pa(h) +
∑
h

ρP
2
· ||Pa(h)− P i

a(h) + P̂ i
b (h)||22

+
∑
h

π̂Q,ib (h) ·Qa(h) +
∑
h

ρQ
2
· ||Qa(h)−Qi

a(h) + Q̂i
b(h)||22

subject to DER constraints.

(6.5)
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where we use the following relations: 2

P̂ i
b (h) =

∑
α∈Ab P

i
α(h) +

∑
b′ P

i
b,b′(h)

|Ab|+ |Hb|
(6.6)

Q̂i
b(h) =

∑
α∈Ab Q

i
α(h) +

∑
b′ Q

i
b,b′(h)

|Ab|+ |Hb|
(6.7)

For a distribution line/ transformer (b, b′) we can write with similar logic:

(P i+1
b,b′ (h), Qi+1

b,b′ (h), vi+1
b,b′ (h), P i+1

b′,b (h), Qi+1
b′,b (h), vi+1

b′,b (h)) =

argmin
∑
h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

+
∑
h

π̂P,ib (h) · Pb,b′(h) +
∑
h

ρP
2
· ||Pb,b′(h)− P i

b,b′(h) + P̂ i
b (h)||22

+
∑
h

π̂P,ib′ (h) · Pb′,b(h) +
∑
h

ρP
2
· ||Pb′,b(h)− P i

b′,b(h) + P̂ i
b′(h)||22

+
∑
h

π̂Q,ib (h) ·Qb,b′(h) +
∑
h

ρQ
2
· ||Qb,b′(h)−Qi

b,b′(h) + Q̂i
b(h)||22

+
∑
h

π̂Q,ib′ (h) ·Qb′,b(h) +
∑
h

ρQ
2
· ||Qb′,b(h)−Qi

b′,b(h) + Q̂i
b′(h)||22

+
∑
h

ζ ib,b′(h) · vb,b′(h) +
∑
h

ρv
2
· ||vb,b′(h)− v̂ib(h)||22

+
∑
h

ζ ib′,b(h) · vb′,b(h) +
∑
h

ρv
2
· ||vb′,b(h)− v̂ib′(h)||22

subject to line equality constraints (6.2), (5.2), (5.6) and (5.7)

and line inequality constraints (6.3)

(6.8)

2Note the notation change from πP
b (h) to π̂P,i

b (h) and similarly for reactive power. Throughout

this thesis we are using πP
b (h), πQ

b (h), πP,i
b (h) and πQ,i

b (h) to refer to the ex-post marginal costs of
a solution that satisfies nodal power balance and voltage consistency constraints. In other words,
πP
b (h), πQ

b (h), πP,i
b (h) and πQ,i

b (h) are shadow prices of the power balance constraints. π̂P,i
b (h) and

π̂Q,i
b (h) refer to intermediate, tentative price estimates that might not satisfy power balance and

voltage consistency for all iterations i. As can be seen from the convergence guarantees that follow,
we will have that limi→∞ π̂P,i

b (h) = πP
b (h) and limi→∞ π̂Q,i

b (h) = πQ
b (h).
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where we have defined:

v̂ib(h) =

∑
b′,(b,b′)∈Hb vb,b′(h)

|Hb|
(6.9)

The coupling voltage bound inequality constraints are now local to each line

subproblem.

The price updates are performed following the rules below:

π̂P,i+1
b (h) = π̂P,ib (h) + ρP · P̂ i+1

b (h) (6.10)

π̂Q,i+1
b (h) = π̂Q,ib (h) + ρQ · Q̂i+1

b (h) (6.11)

ζ i+1
b,b′ (h) = ζ ib,b′(h) + ρv · (vi+1

b,b′ (h)− v̂i+1
b (h)) (6.12)

The DER and line/transformers subproblems’ objective function can be re-

written in the following shorter form (called ”scaled form” in (Kraning et al., 2014)

and (Boyd et al., 2011)) by combining the linear and quadratic terms in each objective

function (6.5) and (6.8).

(P i+1
a (h), Qi+1

a (h)) = argmin
DER constraints

∑
h

fa(Pa(h), Qa(h))

+
∑
h

ρP
2
· ||Pa(h)− P i

a(h) + P̂ i
b (h) + uib(h)||22

+
∑
h

ρQ
2
· ||Qa(h)−Qi

a(h) + Q̂i
b(h) + λib(h)||22

subject to DER constraints.

(6.13)
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and

(P i+1
b,b′ (h), Qi+1

b,b′ (h), vi+1
b,b′ (h), P i+1

b′,b (h), Qi+1
b′,b (h), vi+1

b′,b (h)) =

argmin
∑
h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

+
∑
h

ρP
2
· ||Pb,b′(h)− P i

b,b′(h) + P̂ i
b (h) + uib(h)||22

+
∑
h

ρP
2
· ||Pb′,b(h)− P i

b′,b(h) + P̂ i
b′(h) + uib′(h)||22

+
∑
h

ρQ
2
· ||Qb,b′(h)−Qi

b,b′(h) + Q̂i
b(h) + λib(h)||22

+
∑
h

ρQ
2
· ||Qb′,b(h)−Qi

b′,b(h) + Q̂i
b′(h) + λib′(h)||22

+
∑
h

ρv
2
· ||vb,b′(h)− v̂ib(h) + σib,b′(h)||22

+
∑
h

ρv
2
· ||vb′,b(h)− v̂ib′(h) + σib′,b(h)||22

subject to line equality constraints (6.2), (5.2), (5.6) and (5.7)

and line inequality constraints (6.3)

(6.14)

where we have used: uib(h) =
π̂P,ib (h)

ρP

λib(h) =
π̂Q,ib (h)

ρQ

σib,b′(h) =
ζi
b,b′ (h)

ρv
.

For the remainder of the thesis, we will be using the formulation described by

6.5 and 6.8 since it is more intuitive and instructive to the process that FDA follows:

DERs self-schedule by solving problems aiming at minimizing their overall costs, that

are comprised of individual costs fα(h) plus what DERs pay for real and reactive

power π̂Pb (h) · Pα(h) + π̂Qb (h) ·Qα(h).

The line subproblems can have a similar interpretation if one thinks of lines as

an entity that buys real/ reactive power from its one end and sells it to the other end.

Then π̂P,ib (h) ·Pb,b′(h)+ π̂P,ib′ (h) ·Pb′,b(h) (same for reactive power) can be interpreted as
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costs that the line wants to minimize. A line also minimizes costs fb,b′(h). Note that,

as discussed in Chapter 3, fb,b′(h) is the transformer degradation costs for transformer

lines, while fb,b′(h) = 0 for non-transformer lines.

The remainder of the terms in the objective functions, i.e., the second norm

squared terms like ||Pa(h) − P i
a(h) + P̂ i

b (h)||22, are augmentation terms whose role is

to robustify convergence. As iterations progress and convergence is achieved, these

augmentation terms converge to zero.

The Fully Distributed Algorithm with hard voltage bound constraints (FDA-

OPT) is finally described as:

FDA-OPT: Fully Distributed Algorithm with Hard voltage bound con-

straints

1. Initialize i← 1.

2. For α ∈ D,G,E, F solve:

minimize
Pα(h),Qα(h)

∑
h


fa(Pa(h), Qa(h))

+π̂P,ib (h) · Pa(h) + augmentation terms for Pa(h)

+π̂Q,ib (h) ·Qa(h) + augmentation terms in Qa(h)

(6.15)

subject to DER constraints.
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3. For (b, b′) ∈ H solve:

minimize

Pb,b′(h), Pb′,b(h)

Qb,b′(h), Qb′,b(h)

vb,b′(h), vb′,b(h)

∑
h



fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

+π̂P,ib (h) · Pb,b′(h) + π̂P,ib′ (h) · Pb′,b(h)

+augmentation terms for Pb,b′(h), Pb′,b(h)

+π̂Q,ib (h) ·Qb,b′(h) + π̂Q,ib′ (h) ·Qb′,b(h)

+augmentation terms for Qb,b′(h), Qb′,b(h)

+ζ ib,b′(h) · vb,b′(h) + ζ ib′,b(h) · vb′,b(h)

+augmentation terms for vb,b′(h), vb′,b(h)

(6.16)

subject to line equality constraints (6.2), (5.2), (5.6) and (5.7)

and line inequality constraints (6.3)

4. For all buses update:

π̂P,i+1
b (h) = π̂P,ib (h) + ρP · P̂ i+1

b (h)

π̂Q,i+1
b (h) = π̂Q,ib (h) + ρQ · Q̂i+1

b (h)

ζ i+1
b,b′ (h) = ζ ib,b′(h) + ρv · (vi+1

b,b′ (h)− v̂i+1
b (h))

vi+1
b (h) =

∑
b′,(b,b′)∈Hb

vi+1
b,b′ (h)

|Hb|

µi+1
b (h) =

∑
b′,(b,b′)∈Hb µ

i+1
b,b′ (h)

5. If tolerance criterion satisfied, terminate. Else, i← i+ 1 and go to 2.

The method is based on ADMM, therefore the following convergence guarantees

hold (Kraning et al., 2014), (Boyd et al., 2011):

• Real and reactive power balance and voltage consistency are achieved, i.e.

lim
i→∞

P̂ i
b (h) = 0, lim

i→∞
Q̂i
b(h) = 0 and lim

i→∞
vib,b′(h)− v̂ib(h) = 0.

• The optimal objective function value is reached.
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• The optimal prices are found, i.e. lim
i→∞

π̂P,ib (h) = πPb (h) and lim
i→∞

π̂Q,ib (h) = πQb (h).

6.1.2 Stopping Criteria

This section elaborates on step 5 of the above iterative algorithm. The stopping

criteria are based on the imbalances in satisfying the power balance and voltage

consistency constraints and their change from the previous iteration. We define the

vector of constraint imbalances, across all buses b and hours h as:

si = (P̂i, Q̂i,vi − v̂i) (6.17)

and the vector of imbalance changes as:

∆si = (ρP · (Pi− P̂i)− (Pi−1− P̂i−1), ρQ · (Qi− Q̂i)− (Qi−1− Q̂i−1), ρv · (v̂i − v̂i−1))

(6.18)

where:

• P̂i = [P̂i
b], P̂i

b = [P̂ i
b (h)]′,

• Q̂i = [Q̂i
b], Q̂i

b = [Q̂i
b(h)]′ and

• vi − v̂i = [vi
b,b′ − v̂i

b], vi
b,b′ = [vib,b′(h)]′, v̂i

b = [v̂ib(h)]′.

Based on (Kraning et al., 2014) and (Boyd et al., 2011), the stopping criterion is

defined as:

||si|| ≤ ε ∧ ||∆si|| ≤ ε (6.19)

However, stopping criteria of the form of (6.19) require that some agent, i.e. the

system operator, needs to obtain the imbalances and imbalance changes of all dis-

tribution buses. To do away with this need and lessen the communication burden

associated with FDA, we propose a local stopping method. At each iteration of FDA,
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each bus determines the value of a flag as below:

flag(b, i) =


1, if ||si

b|| ≤ ε ∧ ||∆si
b|| ≤ ε

0, else

(6.20)

where we define si
b = (P̂i

b, Q̂
i
b,v

i
b − v̂i

b) and ∆si
b = (ρP ·(Pi

b−P̂i
b)−(Pi−1

b −P̂i−1
b ), ρQ·

(Qi
b − Q̂i

b)− (Qi−1
b − Q̂i−1

b ), ρv · (v̂i
b − v̂i−1

b )).

A value of 1 indicates local convergence. At the beginning of iteration cycle

i + 1, each bus b communicates the value of its flag flag(b, i) to its direct upstream

nets. The upstream bus b′ receives the message and at the end of iteration i+ 1 adds

to it the value of its own flag flag(b′, i + 1) and communicates the sum to its direct

upstream bus. If the value of the sum at the substation is equal to the number of

buses in the network and if that is true for as many iterations as the depth of the

tree (i.e. number of buses in the longest distribution line), then it follows logically

that all flags were 1 at the same time and the algorithm has converged (Wainwright

et al., 2003).

6.1.3 Iterative Penalty Change

As described in (Kraning et al., 2014), updating the penalty at each iteration can

make convergence faster. This is performed during step 4 of the algorithm shown

above. However, the update rules proposed in (Kraning et al., 2014) require global

communication. Moreover, in order to guarantee convergence, changes to the penalty

should stop after some iterations. (Kraning et al., 2014) and (Boyd et al., 2011) limit

the penalty updates to some number of initial iterations and disallow penalty updates

after that limit is exceeded.

This thesis proposes an alternate penalty update that not only is local but

also does away with the need to count the number of penalty updates. Like our
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proposed local stopping criterion, the penalty update rule is based on the imbalances

in satisfying the power balance and voltage consistency constraints and their change

relative to the previous iteration. As iterations progress, imbalances and their changes

decrease, therefore the penalty changes will also decrease until they do no longer

change. Specifically, in the case of a centrally adapted penalty ρi = ρiP = ρiQ = ρiv,

the proposed penalty change is:

ρi+1 =



ρi · (1 + (||si+1||+ ||∆si+1||)), if ||si+1||
||∆si+1|| > 5 ∧ ||si+1||+ ||∆si+1|| < 0.3

1.3 · ρi, if ||si+1||
||∆si+1|| > 5 ∧ ||si+1||+ ||∆si+1|| ≥ 0.3

ρi · (1− (||si+1||+ ||∆si+1||)), if ||∆si+1||
||si+1|| > 5 ∧ ||si+1||+ ||∆si+1|| < 0.3

0.7 · ρi, if ||∆si+1||
||si+1|| > 5 ∧ ||si+1||+ ||∆si+1|| ≥ 0.3

ρi, else

(6.21)

Penalties can also be specific to each bus, in which case the update rule is:

ρi+1
b =



ρib · (1 + (||si+1
b ||+ ||∆si+1

b ||)), if
||si+1

b ||
||∆si+1

b ||
> 5 ∧ ||si+1

b ||+ ||∆si+1
b || < 0.3

1.3 · ρib, if
||si+1

b ||
||∆si+1

b ||
> 5 ∧ ||si+1||+ ||∆si+1|| ≥ 0.3

ρib · (1− (||si+1
b ||+ ||∆si+1

b ||)), if
||∆si+1

b ||
||si+1

b ||
> 5 ∧ ||si+1

b ||+ ||∆si+1
b || < 0.3

0.7 · ρib, if
||∆si+1

b ||
||si+1

b ||
> 5 ∧ ||si+1

b ||+ ||∆si+1
b || ≥ 0.3

ρib, else

(6.22)

Finally, as per our original FDA problem derivation, penalties can be specific to

each quantity. This is important because the quantities that each term is specific to,

namely real power, reactive power and voltage, are not necessarily of the same order

of magnitude. Bus-and-quantity specific penalties’ update rules are not explicitly

described but follow easily. In the case of iterative penalty changes, Step 4 of the



109

FDA algorithm becomes (shown for bus-specific penalty changes):

π̂P,i+1
b (h) = π̂P,ib (h) + ρib · P̂ i+1

b (h)

π̂Q,i+1
b (h) = π̂Q,ib (h) + ρib · Q̂i+1

b (h)

ζ i+1
b,b′ (h) = ζ ib,b′(h) + ρib · (vi+1

b,b′ (h)− v̂i+1
b (h))

vi+1
b (h) =

∑
b′,(b,b′)∈Hb

vi+1
b,b′ (h)

|Hb|

µi+1
b (h) =

∑
b′,(b,b′)∈Hb µ

i+1
b,b′ (h)

ρi+1
b = ρi+1

b (ρib, ||si+1
b ||, ||∆si+1

b ||)

π̂P,i+1
b (h) :=

ρib
ρi+1
b

· π̂P,i+1
b (h)

π̂P,i+1
b (h) :=

ρib
ρi+1
b

· π̂Q,i+1
b (h)

ζ i+1
b,b′ (h) :=

ρib
ρi+1
b

· ζ i+1
b,b′ (h)

6.1.4 Synchronization of Device Solutions to Nodal Price Updates

In the description of the algorithm shown above we assume that all device subproblems

complete solving before buses update the price variables. In other words, updates are

synchronous.

While synchronization is a necessary condition to guarantee convergence of

ADMM, it causes bottlenecks related to the slowest computational time among line

and DER subproblems. Recent work has investigated asynchronous algorithms. In

our case, asynchronous updates would allow for buses to update their nodal prices

and penalties after receiving the tentative schedules of only some of the connected

devices.

Literature is promising in the general direction of asynchronous implementan-

tions. (Bertsekas and Tsitsiklis, 1989) discusses problems that can converge under

asynchronous implementations as well as benefits and problems associated with asyn-

chronous updates. Recent work on techniques for convergence of asynchronous algo-

tihms is too vast to investigate for the scope of this work. We mention (Zhang and

Kwok, 2014), (Li and Marden, 2012) and (Wei and Ozdaglar, 2013) as representa-
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tive work. On the more specific literature of asynchronous distributed algorithms for

power systems, (Li et al., 2014) concentrates on voltage control and proves through a

Lyapunov function that updates with no communication at all result in convergence.

6.1.5 Enhancements for Voltage Congested Distribution Networks

Because of the nature of FDA, where voltage bound inequality constraints are local to

each line subproblem, solving instances where these constraints bind at the optimal

solution can be challenging for two main reasons. First, binding voltage inequality

constraints are an additional constraint imposed on voltage decisions, making voltage

consensus harder to reach. Second, as revealed by the DLMP unbundling equations

5.26 and 5.27 active voltage bound constraints explicitly affect nodal prices.

In the case of binding voltage bound constraints, where µb(h) 6= 0, we notice

that before full convergence to the primal and dual variables is achieved, it is possible

to have busses with µb(h) 6= 0 and vb(h) 6= v̄∧vb(h) 6= v. Also, numerical results indi-

cate that convergence is slower in the presence of binding voltage bound constraints.

This is our motivation for enhancements to the above structure of FDA. Our efforts

concentrate around:

1. A correction process applied to non-fully converged prices based on the DLMP

unbundling equations.

2. Modeling of hard voltage bound inequality constraints with barrier-function-

based soft voltage constraints, as in the modification of the centralized algo-

rithms shown in Section 5.4.

Price Estimate Correction Process

With the motivation that binding voltage bound constraints affect DLMPs, in this

section, we use equations 5.26 and 5.27 that show the building blocks of the real and
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reactive power DLMPs to correct price estimates obtained by intermediate iterations

of FDA. The premises upon which relations 5.26 and 5.27 are derived do not hold for

not fully converged iterations of FDA. Specifically, at each iteration of FDA-OPT,

the discrepancy in satisfying 5.26 and 5.27 is equal to:

εP,iβ (h) =



−πP,iβ (h) + πP∞(h) · ∂P
i
∞(h)

∂Pġβ(h)
+ πOC∞ (h)·Qi∞(h)√

C2
∞−(Qi∞(h))2

· ∂Q
i
∞(h)

∂Pġβ(h)
+∑

h1≥h,(b,b′)∈tr c
tr
b,b′ ·

∂Γb,b′ (S
i
b,b′ (h1))

∂Pġβ(h)
+
∑

b µb(h) · ∂v
i
b(h)

∂Pġβ(h)
−∑

(b,α),α∈Fb κα(h) · 1vib(h)<1 · Cα ·
∂vib(h)

∂Pġβ(h)

(6.23)

εQ,iβ (h) =



−πQ,iβ (h) + πP∞(h) · ∂P
i
∞(h)

∂Qġβ(h)
+ πOC∞ (h)·Qi∞(h)√

C2
∞−(Qi∞(h))2

· ∂Q
i
∞(h)

∂Qġβ(h)
+∑

h1≥h,(b,b′)∈tr c
tr
b,b′ ·

∂Γb,b′ (S
i
b,b′ (h1))

∂Qġβ(h)
+
∑

b µb(h) · ∂vib(h)

∂Qġβ(h)
−∑

(b,α),α∈Fb κα(h) · 1vib(h)<1 · Cα ·
∂vib(h)

∂Qġβ(h)

(6.24)

We aim at minimizing the discrepancies εP,iβ (h),∀β, h and εQ,iβ (h),∀β, h. We perform

the minimization using P i
b,b′(h),Qi

b,b′(h), vib(h),πP,ib (h),πQ,ib (h) as parameters and µb(h)

as the decision variables. The resulting price estimate correction process is of the

form:

1. Corrected voltage bound inequality constraint shadow prices are the solution of

the following problem:

minimize
µ≥0

||Ai
P · µ− ci

P||22 (6.25)

for voltages binding above and

minimize
µ≤0

||Ai
P · µ− ci

P||22 (6.26)

for voltages binding below, where:

• µ = [µb(h)]
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• AiP = [
∂vib(h)

∂Pġβ (h)
]

• ciP = [πP,iβ (h)−πP∞(h) · ∂P
i
∞(h)

∂Pġβ(h)
− πOC∞ (h)·Qi∞(h)√

C2
∞−(Qi∞(h))2

· ∂Q
i
∞(h)

∂Pġβ(h)
−
∑

h1≥h,(b,b′)∈tr c
tr
b,b′ ·

∂Γb,b′ (S
i
b,b′ (h1))

∂Pġβ(h)
+
∑

(b,α),α∈Fb κα(h) · 1vib(h)<1 · Cα ·
∂vb(h)
∂Pġβ(h)

]

It follows easily that the reactive power DLMP-based correction process is equiv-

alent. 3

minimize
µ≥0

||Ai
Q · µ− ci

Q||22 (6.27)

and for voltages binding below:

minimize
µ≤0

||Ai
Q · µ− ci

Q||22 (6.28)

where:

• AiQ = [
∂vib(h)

∂Qġβ (h)
]

• ciQ = [πQ,iβ (h)−πP∞(h) · ∂P
i
∞(h)

∂Qġβ(h)
− πOC∞ (h)·Qi∞(h)√

C2
∞−(Qi∞(h))2

· ∂Q
i
∞(h)

∂Qġβ(h)
−
∑

h1≥h,(b,b′)∈tr c
tr
b,b′ ·

∂Γb,b′ (S
i
b,b′ (h1))

∂Qġβ(h)
+
∑

(b,α),α∈Fb κα(h) · 1vib(h)<1 · Cα ·
∂vb(h)
∂Qġβ(h)

]

2. Using the corrected µ into 5.26 and 5.27 together with tentative FDA results

P i
b,b′ , Q

i
b,b′ and vib allows us to get corrected price estimates.

Going back to our original statement about the nature of FDA leaving room for

solutions with µb(h) 6= 0 and vb(h) 6= v̄ ∧ vb(h) 6= v, in performing the minimizations

of (6.25) and (6.27) we take into account only the buses whose voltage is binding

as candidates for µb(h) 6= 0. The numerical effects of the price estimate correction

process are shown in Section 6.1.6. Admittedly, the implementation of this correction

process requires that global information be gathered by some agent. Therefore, the

3We remind the reader that µb(h) = µ̄b(h)− µ
b
(h), where µ̄b(h), µ

b
(h) ≥ 0. When voltages bind

above, µ̄b(h) ≥ 0, µ
b
(h) = 0 ⇒ µb(h) = µ̄b(h) ⇒ µb(h) ≥ 0. When voltages bind from below,

µ̄b(h) = 0, µ
b
(h) ≥ 0⇒ µb(h) = −µ

b
(h)⇒ µb(h) ≤ 0.
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periodicity of implementing it should be such that the computational requirements

are still low.

FDA modeling Voltage Bound Constraints with a Barrier Function

The formulation of FDA with voltage barrier functions is based off of (5.4). We show

below the modified formulation of FDA that we refer to as FDA-SVC, standing for

Soft Voltage Constraints. The only changes compared to FDA-OPT appear in Step

3, where the distribution line subproblem is shown, as well as Step 4:

FDA-SVC: Fully Distributed Algorithm with Soft Voltage Constraints

1. Initialize i← 1.

2. For α ∈ D,G,E, F solve:

minimize
Pα(h),Qα(h)

∑
h


fa(Pa(h), Qa(h))

+π̂P,ib (h) · Pa(h) + augmentation terms for Pa(h)

+π̂Q,ib (h) ·Qa(h) + augmentation terms in Qa(h)

(6.29)

subject to DER capacity constraints.
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3. For (b, b′) ∈ H solve:

minimize

Pb,b′(h), Pb′,b(h)

Qb,b′(h), Qb′,b(h)

vb,b′(h), vb′,b(h)

∑
h



fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

+π̂P,ib (h) · Pb,b′(h) + π̂P,ib′ (h) · Pb′,b(h)

+augmentation terms for Pb,b′(h), Pb′,b(h)

+π̂Q,ib (h) ·Qb,b′(h) + π̂Q,ib′ (h) ·Qb′,b(h)

+augmentation terms for Qb,b′(h), Qb′,b(h)

+ζ ib,b′(h) · vb,b′(h)

+
k6,b
|Hb|
· exp(k7,b · (vb,b′(h)− v̄))

+
k6,b
|Hb|
· exp(k8,b · (v− vb,b′(h)))

+ζ ib′,b(h) · vb′,b(h)

+
k6,b′

|Hb′ |
· exp(k7,b′ · (vb′,b(h)− v̄))

+
k6,b′

|Hb′ |
· exp(k8,b′ · (v− vb′,b(h)))

+augmentation terms for vb,b′(h), vb′,b(h)

(6.30)

subject to line equality constraints (6.2), (5.2), (5.6) and (5.7)

4. For all buses update:

π̂P,i+1
b (h) = π̂P,ib (h) + ρP · P̂ i+1

b (h)

π̂Q,i+1
b (h) = π̂Q,ib (h) + ρQ · Q̂i+1

b (h)

ζ i+1
b,b′ (h) = ζ ib,b′(h) + ρv · (vi+1

b,b′ (h)− v̂i+1
b (h))

vi+1
b (h) =

∑
b′,(b,b′)∈Hb

vi+1
b,b′ (h)

|Hb|

µi+1
b (h) =

∑
b′,(b,b′)∈Hb µ

i+1
b,b′ (h)

5. If tolerance criterion satisfied, terminate. Else, i← i+ 1 and go to 2.

Note the change in the multiplier of the voltage barrier function terms k6,b. We
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divide by the degree of each bus b (i.e. the number of lines entering or exiting bus b),

since in FDA-SVC this term is used for each line, rather than each bus as in C-SCV.

6.1.6 Numerical Results using FDA

This section is dedicated to the numerical results using the Fully Distributed Algo-

rithm FDA). We use the 47-bus network described in Appendix A and adjust the

DER presence and capabilities to induce or relieve congestion. We start with results

on non-congested conditions and continue with congested instances.

FDA Results on Uncongested Networks

We begin by comparing the iterations needed for convergence with the use of:

1. Constant penalty

2. Centrally adapted penalty

3. Bus-specific penalty

4. Bus-and-quantity specific penalty

ρ1 Constant Centrally Adapted Bus Specific Bus& Quantity
5 1205 409 196 205
10 2298 514 261 241
20 1595 519 355 331
50 >> 5000 442 417 342

Table 6.1: Number of iterations required for convergence using Fully
Distributed Algorithms with various penalty updates rules.

We conclude that a large constant penalty can indeed result in no convergence.

On the other hand, local penalties result not only in lower communication burden

but also in decreased number of iterations needed for convergence.
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The following figures show the evolution of a centrally adapted penalty and the

evolution of bus-specific penalties, respectively, starting from much different initial

values.

Figure 6·1: Evolution of centrally adapted penalty across iterations.

Figure 6·2: Evolution of bus-specific penalty across iterations at a
specific distribution bus, starting from different penalty values.

In addition, to underline the importance of locational penalties, we show the
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updates of bus-specific penalty for two different distribution buses starting from the

same penalty value.

Figure 6·3: Evolution of bus-specific penalty across iterations at two
distribution buses, starting from the same initial penalty value.

The two figures below show the updates of the bus-and-quantity specific penalties

for two different buses.
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Figure 6·4: Updates of bus-specific penalty of real power, reactive
power and voltage consistency across iterations at distribution bus 30.

Figure 6·5: Updates of bus-specific penalty of real power, reactive
power and voltage consistency across iterations at distribution bus 2.

We reach the following conclusions regarding penalties:

1. In agreement with (Kraning et al., 2014), the choice of the starting value of the

penalty is not important, if the penalty is allowed to change for many iterations.
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2. Our choice of penalty update rules, based on imbalances and the imbalances’

changes, indeed leaves the penalties unchanged for many iterations before con-

vergence, as is desired for ADMM’s theoretical convergence guarantees.

3. Bus specific penalties can vary significantly across buses, as in Figure 6·3.

4. Starting from the same initial value and specifying quantity and bus specific

penalties, can result in penalties for each quantity varying greatly in the space

domain, as in Figures 6·5 and 6·4.

The following figures show the convergence of the prices of real and reactive power,

by means of the maximum and average deviation across iterations, with the use of

bus and quantity specific penalties that are initialized at 50.

Figure 6·6: Percent deviation of real power price estimates from op-
timal reactive power price across iterations.
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Figure 6·7: Percent deviation of reactive power price estimates from
optimal reactive power price across iterations.

For completeness, the tables below show the deviation from the optimal real and

reactive DLMPs, for bus specific penalties and for all tested starting values of the

penalty (Ntakou and Caramanis, 2014).

ρ1 Average Deviation Minimum Deviation Maximum Deviation
5 0.0513 0.0001 0.2821
10 0.0585 0.0001 0.5445
20 0.0895 0.0003 0.5553
50 0.0290 0.0000 0.1706

Table 6.2: Average, minimum and maximum deviation of real power
prices from P-DLMPs (%) at convergence, with the use of bus specific
penalties.

ρ1 Average Deviation Minimum Deviation Maximum Deviation
5 0.6435 0.4048 0.8442
10 1.3242 0.8299 1.5025
20 1.3455 0.8738 1.5254
50 1.2026 0.9728 1.3571

Table 6.3: Average, minimum and maximum deviation of reactive
power prices from Q-DLMPs (%) at convergence, with the use of bus
specific penalties.
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The tables below show the same metrics for bus-and-quantity specific penalties

and for all tested starting values of the penalty.

ρ1 Average Deviation Minimum Deviation Maximum Deviation
5 0.0476 0.0005 0.2016
10 0.0171 0.0001 0.0523
20 0.0176 0.0032 0.0808
50 0.0255 0.0003 0.1413

Table 6.4: Average, minimum and maximum deviation of real power
prices from P-DLMPs (%) at convergence, with the use of bus-and-
quantity specific penalties.

ρ1 Average Deviation Minimum Deviation Maximum Deviation
5 0.1547 0.0497 0.2162
10 1.6385 1.2788 1.7887
20 1.3719 1.1010 1.4991
50 1.1715 0.9868 1.3566

Table 6.5: Average, minimum and maximum deviation of reactive
power prices from Q-DLMPs (%) at convergence, with the use of bus-
and-quantity specific penalties.

(Peng and Low, 2015) examines how the network size and the network diam-

eter (distance, measumed in number of lines, of the two furthest buses) affect the

number of iterations required for convergence of ADMM to solve an OPF problem

over a tree network. Through simulations, (Peng and Low, 2015) concludes that the

network distance is the most important factor affecting the convergence speed. We

contribute to this result by comparing the convergence speed of FDA for the 47-bus

network, whose results are shown above, to the convergence speed of FDA for a 253-

bus network, that on top of higher network size, also has a larger diameter. This

results in slower convergence (Ntakou and Caramanis, 2014). The specifications of

both networks can be found in the Appendix.
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Figure 6·8: Average percent deviation of real power price estimates
from optimal real power price across iterations, 47-bus network versus
253-bus network.

Figure 6·9: Maximum percent deviation of real power price estimates
from optimal real power price across iterations, 47-bus network versus
253-bus network.
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FDA Results on Congested Networks

We simulate a congested instance of the 47-bus network A, where hard voltage bound

inequality constraints bind (Ntakou and Caramanis, 2016).

Motivated by the superiority of results with the use of bus-and-quantity specific

penalties, we proceed in the analysis of FDA for congested conditions using bus-and-

quantity specific penalties.

The figure below shows that the sum of voltage shadow prices over all distribution

buses,
∑

b µ
i
b(h) =

∑
b,b′ µ

i
b,b′(h) converges to the optimal sum in a small number of

iterations.

Figure 6·10: Percent deviation of the sum of the voltage magnitude
shadow prices across all buses from the optimal value across iterations.

However, individual values µib(h) take much longer to converge. The following

two figures show the percent deviation of real and reactive power price estimates across

iterations, respectively, by means of the minimum, average and maximum deviation.
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Figure 6·11: Minimum, average and maximum percent deviation of
real power price estimates across all buses from the optimal value across
iterations.

Figure 6·12: Minimum, average and maximum percent deviation of
reactive power price estimates across all buses from the optimal value
across iterations.

Figure 6·13 below, zooms into Figures 6·11 and 6·12 above, to show the percent

deviation of real and reactive power price estimates many iterations after the tolerance
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criterion is met.

Figure 6·13: Average percent deviation of the real and reactive power
price estimates across all buses from the optimal value long after con-
vergence.

We conclude that the slow convergence of the individual µib(h) values propagates

to a decreased rate of convergence of the real and reactive power marginal costs.

To proceed, we show the discrepancy in satisfying the first order optimality

constraints 6.23. In specific, the figure below shows the maximum and average values

of the ratio
100·εPb (i)(h)

πP,ib (h)
across iterations and over all distribution buses.
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Figure 6·14: Deviation in satisfying first order optimality conditions
of real power DLMPs as a percentage of the benchmark real power
DLMP.

The results of the proposed price estimate correction process follow below. First,

voltage bound inequality constraints’ shadow prices are corrected through 6.25 and

6.27 as shown in Figure 6·15 below. Figure 6·15 only shows buses that correspond

to non-zero voltage magnitude shadow prices for at least one of the methods that we

compare.
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Figure 6·15: Shadow prices of voltage bound constraints, before and
after the correction process.

Compared to the optimal solution, obtained by the centralized solution, that we

use as a benchmark, the correction process results in 2 additional buses appearing

to be binding, versus 4 additional buses in the unassisted FDA results. For the 2

additional buses, the shadow prices assigned are very small. Interestingly, the sum of

the voltage magnitude shadow prices after the correction process is still equal to the

optimal sum, even if we do not constrain it explicitly in 6.25 and 6.27.

We conclude the reporting of results of the correction process by showing the

resulting corrected price estimates. Specifically, as described above, we feed the cor-

rected voltage magnitude shadow prices in 5.26 and 5.27 and get updated price es-

timates, that are closer to the optimal DLMPs. Figure 6·16 overlays the average

deviation of the updated price estimates after the correction process to the average

deviation of the unassisted price estimates shown in Figure 6·13 above.
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Figure 6·16: Average percent deviation of real and reactive power
price estimates from the optimal values before and after the correction
process.

Lastly, we present results when using FDA with soft voltage constraints for

congested instances. Note that our benchmark results are now different, since they

are based on the centralized formulation with soft voltage constraints. We choose the

parameters in the voltage barrier function to be such that the voltage magnitudes

in the new optimal solution will be as close to the voltages in the original optimal

solution with the hard voltage bound inequality constraints.

The two figures below show the superior convergence performance of FDA with

soft voltage constraints by means of the maximum and average percent deviation of

real power price estimates as compared to the benchmark values obtained from the

centralized algorithm with soft voltage constraints.
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Figure 6·17: Fully Distributed Algorithms, Average Error in Real
power DLMPs across iterations (%)

Figure 6·18: Fully Distributed Algorithms, Maximum Error in Real
power DLMPs across iterations (%)

The FDA with soft voltage constraints is able to converge fully (accuracy of 0.1%

error in the prices) to the centralized benchmark after 7500 iterations. FDA-OPT

(FDA with hard voltage bound constraints) is unable to reach this level of accuracy
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even after 50000 iterations. Therefore, the computational effort improvement of using

soft voltage constraints is at least 6 times.

We repeat our clarification that the deviations of FDA-OPT are based on the

benchmark values of C-OPT and the deviations of FDA-SVC are based on the bench-

mark vales of C-SVC.

6.2 Partially Distributed Algorithm (PDA): Distributed DER

Scheduling and Centralized Power Flow

This section presents the second distributed algorithm proposed in this thesis, called

Partially Distributed Algorithm (PDA). As in FDA, DERs still solve individual cost

minimization problems in parallel. The subproblems’ objective is the minimization

of the DER individual costs plus what the DERs pay for real and reactive power.

Contrary to FDA, in PDA, line currents, flows, losses, voltage magnitudes and price

estimates are calculated centrally.

6.2.1 Problem Formulation with Hard Voltage Bound Constraints

The FDA subproblems were shown to be equivalent to the subproblems of classic dual

decomposition in the sense that they are cost minimization problems for each device

or line. This interpretation motivates the Partially Distributed Algorithm (PDA)

formulation.

PDA is composed of two steps:

1. DERs self-schedule in parallel, solving cost minimization problems identical to

dual decomposition subproblems. In other words, the objective functions of

the DER subproblems used in PDA will not include the second-norm-squared

augmentation terms that DER and line/ transformer subproblems in FDA in-

cluded. In PDA, DERs aim at minimizing their individual costs plus what they
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pay for real and reactive power based on price estimates they receive from the

system operator.

2. The second step includes the update of these price estimates. The system

operator receives the DER tentative schedules and uses them to calculate real

and reactive flows on lines, voltage magnitudes, and ex-post marginal costs in

a centralized fashion, i.e. for all distribution lines and buses together. These

quantities can be calculated by the system operator in two equivalent ways:

(a) Solve a load flow problem to obtain real and reactive power flows and

voltage magnitudes and then, insert them into 5.26 and 5.27 to obtain

ex-post marginal costs.

(b) Solve a mock centralized market clearing problem, where DER schedules

are fixed to the tentative solution of the individual DER subproblems. The

primal solution of this problem is the real and reactive power flows and the

voltage magnitudes, while the dual solution is the ex-post marginal costs.

In other words, in PDA the coupling constraints are not relaxed.

The price estimates that the DERs base their scheduling decisions on are based

on the ex-post marginal costs that the system operator determined in the previous

iteration. If the price estimates of the current iteration are set equal to the ex-post

marginal costs of the previous iteration, oscillatory behavior might occur. To this end,

more smooth price estimate updates should be implemented. Based on (Caramanis

and Foster, 2011), the price estimate of the current iteration is based on the price

estimate of the previous iteration, the ex-post marginal costs of the previous iteration

as well as a stepsize. This method of price estimate updates has the same functionality

as the augmentation terms in the DER and line/ transformer subproblems’ objective
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functions: oscillation avoidance and convergence robustification. In other words, in

both distributed algorithms, oscillations are avoided in different but equivalent ways.

PDA-OPT is described below, using the mock centralized power market with

fixed DER injections approach to determine ex-post marginal costs:

PDA-OPT: Partially Distributed Algorithm with Hard voltage bound

constraints

1. Initialize i← 1.

2. For α ∈ D,G,E, F solve:

minimize
Pα(h),Qα(h)

∑
h

f(Pα(h), Qα(h)) + π̂P,ib (h) · Pα(h) + π̂Q,ib (h) ·Qα(h) (6.31)

subject to DER capacity constraints (6.32)

3. The Distribution System Operator calculates the power flow:

minimize

∑
h

πP∞(h) · P∞(h) + πOC∞ (h) · (C∞ −
√
C2
∞ −Q2

∞)

+
∑

(b,b′),h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h)) (6.33)

subject to equality constraints (5.2)-(5.7) → πP,ib (h), πQ,ib (h)

and inequality constraints (5.8)

4. Convergence check: if maxb,h(π̂
P,i
b (h)−πP,ib (h)) ≤ tolerance & maxb,h(π̂

Q,i
b (h)−

πQ,ib (h)) ≤ tolerance, break.

5. DLMP estimate update mindful of oscillation avoidance and convergence:

π̂P,i+1
b (h) = (1 − s(i)) · π̂P,ib (h) + s(i) · πP,ib (h) and π̂Q,i+1

b (h) = (1 − s(i)) ·
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π̂Q,ib (h) + s(i) · πQ,ib (h).

6. If tolerance criterion satisfied, terminate. Else, i← i+ 1 and go to 2.

We use π̂P,ib (h) and π̂Q,ib (h) for price estimates, and πP,ib (h), πQ,ib (h) for ex-post

marginal costs that appear as the shadow prices of energy balance constraints.

6.2.2 DER Subproblems

We notice that in fact, some subproblems have an even more interesting interpretation

than the general cost minimization explanation. Take for example the subproblem of

a photovoltaic, that has fα(Pα(h), Qα(h)) = 0, which is written as:

minimize
Pα(h),Qα(h)

∑
h

π̂Pb (h) · Pα(h) + π̂Qb (h) ·Qα(h)

subject to P 2
α(h) +Q2

α(h) ≤ C2
α → κα(h)

Pα(h), Qα(h) ≤ 0

Then the Lagrangian is written as:

L =
∑
h

π̂Pb (h) · Pα(h) + π̂Qb (h) ·Qα(h) + κα(h) · (P 2
α(h) +Q2

α(h)− C2
α)

The optimal solution to this subproblem is found by taking the partial derivative of

the Lagrangian with respect to, first, Pα(h) and then Qα(h):

0 = π̂Pb (h) + 2 · κα(h) · Pα(h)

and

0 = π̂Qb (h) + 2 · κα(h) ·Qα(h)

that can be combined to:

π̂Qb (h)

π̂Pb (h)
=
Qα(h)

Pα(h)
(6.34)
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The ratio of the price estimates that a photovoltaic sees is equal to the ratio of

optimal outputs in response to these prices.

Similar results can be extended to a microgenerator subproblem, namely:

minimize
Pα(h),Qα(h)

∑
h

−cα(h) · Pα(h) + π̂Pb (h) · Pα(h) + π̂Qb (h) ·Qα(h)

subject to P 2
α(h) +Q2

α(h) ≤ C2
α

Pα(h), Qα(h) ≤ 0

that yields with similar logic:

π̂Qb (h)

π̂Pb (h)− cα
=
Qα(h)

Pα(h)
(6.35)

These equations can be used as closed-form solutions to the subproblems.

6.2.3 Stepsize Updates

The formulation above implies the use of an adaptive stepsize. As is common in the

literature, for our price update we use the following stepsizes s(i):

s(i) =


constant, s(i) = s,∀i

diminishing, s(i) = (k11
i

)k12 , k12 ≤ 1

(6.36)

The choice of a good constant stepsize is not an easy task. Large stepsizes can lead to

divergence, while smaller stepsizes can result in slow convergence. This is the reason

why we use a diminishing stepsize; it will be large in the beginning to get close to

the optimal solution faster and then it will be slow to allow the algorithm to find the

optimal solution and not diverge. Our dimishing stepsize satisfies limi→∞ s(i) = 0

and
∑

i s(i) =∞, thereby guaranteeing convergence.

Additionally, to more effectively deal with oscillations, we use stepsize update
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rules that are based on the direction of the price changes. This results in stepsizes

specific to each hour and bus as well as quantity (real or reactive power) at each

iteration. We show the process for real power, but the same can be applied for

reactive power.

1. Calculate ∆πP,ib (h) = π̂P,ib (h)− πP,ib (h)

2. Update stepsize based on price trends:

sP,ib = min{sP,1b , sP,i−1
b · (k13 · 1∆πP,ib (h)·∆πP,i−1

b (h)≥0 + k14 · 1∆πP,ib (h)·∆πP,i−1
b (h)≤0)},

where k13 ≥ 1 and 0 ≤ k14 ≤ 1.

3. Update prices as before using π̂P,i+1
b (h) = π̂P,ib (h) + sP,ib (h) ·∆πP,ib (h).

6.2.4 PDA modeling Voltage Bound Constraints with a Barrier Function

In section 5.4 we discussed how the hard voltage bound inequality constraints can

result in the centralized algorithm being infeasible. Even if the socially optimal

solution with hard voltage bound constraints is feasible, i.e. C-OPT is feasible, it

is straightforward to see that intermediate steps of PDA-OPT might not be feasible

since Step 3, where ex-post marginal costs are calculated, requires the solution of a

load flow (or mock OPF) with hard voltage bound constraints. Therefore, voltage

barrier functions have an additional use to PDA.

The formulation with voltage barrier functions is based on the corresponding

centralized formulation of Chapter 5. The process is detailed below, and only differs

from the PDA formulation with hard voltage constraints in Steps 3 and 5. We refer

to this algorithm as PDA-SVC, standing for Soft Voltage Constraints.
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PDA-SVC: Partially Distributed Algorithm with Soft Voltage Bound

Constraints.

1. Initialize i← 1.

2. For α ∈ D,G,E, F solve:

minimize
Pα(h),Qα(h)

∑
h

f(Pα(h), Qα(h)) + π̂P,ib (h) · Pα(h) + π̂Q,ib (h) ·Qα(h) (6.37)

subject to DER capacity constraints (6.38)

3. The Distribution System Operator calculates the power flow:

minimize
v∞(h)

∑
h

πP∞(h) · P∞(h) + πOC∞ (h) · (C∞ −
√
C2
∞ −Q2

∞)

+
∑
b,h

k6,b · (exp(k7,b · (vb(h)− v̄)) + (exp(k8,b · (v(h)− vb))

+
∑

(b,b′),h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h)) (6.39)

subject to equality constraints (5.2)-(5.7) → πP,ib (h), πQ,ib (h)

4. Convergence check: if maxb,h(π̂
P,i
b (h) − πP,ib (h)) ≤ tolerance and

maxb(π̂
Q,i
b (h)− πQ,ib (h)) ≤ tolerance, break.

5. DLMP estimate update mindful of oscillation avoidance and convergence:

π̂P,i+1
b (h) = (1 − s(i)) · π̂P,ib (h) + s(i) · πP,ib (h) and π̂Q,i+1

b (h) = (1 − s(i)) ·

π̂Q,ib (h) + s(i) · πQ,ib (h).

6. If tolerance criterion satisfied, terminate. Else, i← i+ 1 and go to 2.
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6.2.5 Numerical Results using PDA

For the numerical results of PDA, we use an uncongested instance of the 800-bus

network and a congested instance of the 47-bus network.

PDA Results on Uncongested Networks

Convergence of the PDA with either soft or hard voltage constraints to the uncon-

gested instance of the 47 bus network is achieved after a couple of iterations only.

Therefore, in this section we proceed to show convergence results of the 800 bus

distribution network.

First, we show in Table 6.6 below that the ratios of the price estimates and the

ratios of the outputs for photovoltaics indeed are equal. Table 6.6 shows all hours

with non-zero irradiation.

Hour Price Ratio Output ratio
4am 0.048397 0.048397
5am 0.129386 0.129386
6am 0.162562 0.162562
7am 0.200072 0.200072
8am 0.268259 0.268259
9am 0.282382 0.282382
10am 0.28858 0.28858
11am 0.312838 0.312838
12pm 0.349725 0.349725
1pm 0.381179 0.381179
2pm 0.389191 0.38919
3pm 0.434982 0.434983
4pm 0.539158 0.539158
5pm 0.571462 0.571462
6pm 0.452549 0.452549
7pm 0.416436 0.416436

Table 6.6: Ratio of price estimates (reactive over real) and ratio of
outputs (reactive over real) for a photovoltaic subproblem in PDA are
equal.

In the PDA with hard voltage constraints, we notice that the prices of buses

whose voltage binds might exhibit oscillatory behavior. In particular, we see that in

the benchmark results of the 800 bus network, obtained by the solution of C-OPT,
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in the neighborhood of a binding bus, there are two other buses that are marginally

not binding. PDA results in the binding voltage being assigned periodically to one of

three neighboring buses, as Figure 6·19 reveals. Given the effect of voltage binding

constraints on DLMPs revealed by (5.26) and (5.27), the voltage oscillations result in

real power price devations. Figure 6·20 shows these price deviations by showing the

real power ex-post marginal costs π̂P,ib (h).

Figure 6·19: Partially Distributed Algorithm with Hard Voltage Con-
straints, Oscillations of Voltage Magnitude results, Bus 689, 690 and
691, Hour 2pm.
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Figure 6·20: Partially Distributed Algorithm with Hard Voltage Con-
straints, Oscillations of Real power ex-post marginal costs across iter-
ations, Bus 689, 690 and 691, Hour 2pm.

We also note that the sum of the voltage magnitude shadow prices over these

three buses is equal to the voltage magnitude shadow price of the true binding bus,

as decided by the centralized solution with hard voltage constraints.

With this motivation, we proceed to show results on the 800 bus network using

PDA with soft voltage constraints.

The figures below show the maximum (across buses) percent difference between

the price estimate and the ex-post marginal costs, i.e. shadow prices of power balance

constraints, at the same iteration. The results in these figures refer to the peak hour

i.e. the hour in the 24- hour horizon when demand, summed over all buses, is highest.

They converge to zero, as does the percent deviation of the ex-post marginal costs to

the optimal DLMPs of the centralized solution.
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Figure 6·21: Partially Distributed Algorithm with Soft Voltage Bound
Constraints, Maximum deviation of Real power price estimates to real
power ex-post marginal costs across buses and iterations, Peak Hour.

Figure 6·22: Partially Distributed Algorithm with Soft Voltage Bound
Constraints, Maximum deviation of Reactive power price estimates to
reactive power ex-post marginal costs across buses and iterations, Peak
Hour.

The oscillation avoidance achieved by the replacement of hard voltage constraints
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with voltage barrier functions provides another benefit of using soft rather than hard

voltage magnitude bound constraints.

PDA Results on Congested Networks

First and foremost, we mention the inability of the PDA formulation with hard voltage

bound constraints to solve many congested instances on the 47-bus network. There-

fore, the results that follow are with the use of the PDA with soft voltage constraints.

The figures that follow show the convergence of the average error in the real and

reactive power prices, as well as voltage magnitudes. Exact convergence is observed

after about 400 iterations only.

Figure 6·23: Average percent deviation of real power price estimates
from the optimal value across all buses and iterations using PDA with
SVC.
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Figure 6·24: Average percent deviation of reactive power price esti-
mates from the optimal value across all buses and iterations using PDA
with SVC.

Figure 6·25: Average percent deviation of voltage magnitude iterates
from the optimal value across all buses and iterations using PDA with
SVC.

The behavior of the convergence curves of the real and reactive prices is a result

of the price estimate update that we perform after the solution of the power flow
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problem (namely step 5 of PDA-SVC in section 6.2.4 above). The decline in prices is

steeper in the first iterations since we use a decreasing stepsize, specifically s(i) = 10/i.

Convergence is smoother in Figures 6·21 and 6·22 since for our 800 bus simulations

we used a stepsize based on the direction of price changes.

6.3 Comparison of FDA and PDA results

In this section, we compare the computational burden of FDA and PDA for conges-

tion conditions, by comparing the number of iterations needed for convergence. One

iteration of the FDA algorithm requires the solution of |A| + |H| subproblems, all

of which can be executed in parallel. (We assume that the bus level calculations of

penalties, prices and imbalances are computationally trivial.) One iteration of PDA

consists of the solution of |A| problems, that are parallelizable, plus the centralized

load flow that follows.

Figure 6·26 below shows the first 500 iterations of the proposed PDA-SVC, that

are actually adequate for absolute convergence to the benchmark, together with the

first 500 iterations of the fully distributed algorithms FDA-OPT and FDA-SVC. It

can be seen that there is an overall benefit of more than 100 times.
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Figure 6·26: Comparison of Average Real power DLMP estimate
deviation from the optimal DLMPs during 500 first iterations (%)

Based on our numerical results, we conclude that:

1. Congested instances are much harder to solve than non-congested ones, using

either FDA or PDA.

2. PDA-SVC is generally faster than FDA-SVC.

3. FDA-SVC outperforms FDA-OPT.

4. We cannot easily compare FDA-OPT to PDA-OPT, since the latter is prone to

infeasibilities of intermediate iterations.
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Chapter 7

Reserves

7.1 Reserves in Distribution Power Markets

The increasing integration of renewables is introducing uncertainty to the generation

side and mandates increased reserve requirements to deal with the volatility. Given

how costly it is to procure these additional reserves from traditional transmission-

network connected devices, the literature has proposed the provision of regulation

reserves from demand- side connected entities. (Bilgin, 2014) studies the provision

of regulation reserves by building loads. (Foster, 2012) discusses the provision of

regulation reserves from electric vehicles. In this chapter, we expand this to all

non-intermittent DERs like microgeneration and incorporate it in our Day Ahead

Distribution Power Market Clearing algorithm.

Before we proceed, we elaborate on a crucial difference between reserves as

a transmission power market product and reserves as a distribution power market

product. In transmission power markets, where line capacity limits are imposed, the

amount of reserves committed in Day ahead and Hour Ahead markets might not

be deliverable in real time, if the additional reserve injections result in violations of

the line flow capacity constraints. On the other hand, in distribution power markets

it is nodal voltage bounds that can make reserves committed in the day ahead or

hour ahead markets undeliverable in real time. This happens when the additional

reserve injections drive voltages outside the bounds (Caramanis et al., 2016). This

difference stems from the different definition of congestion in transmission and dis-
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tribution networks. Transmission network congestion, refers to binding line capacity

constraints, while distribution network congestion, refers to binding nodal voltage

bound constraints, as discussed in Chapter 5.

To address the infeasibilities that might result during the deployment of undeliv-

erable reserves, we account for the ”worst case scenario” in distribution power markets

that include reserves. Specifically, we include three sets of power flow constraints:

1. Worst case below: y = −1, power flow constraints when all resources have to

give the maximum amount of promised down reserves. Results in power flow

variables P dn
b,b′(h), Qdn

b,b′(h), vdnb (h), ldnb,b′(h).

2. Regulation signal y = 0, power flow constraints as in Chapter 4. Results in

power flow variables Pb,b′(h), Qb,b′(h), vb(h), lb,b′(h).

3. Worst case above: y = 1, power flow constraints when all resources have to give

the maximum amount of promised up reserves. Results in power flow variables

P up
b,b′(h), Qup

b,b′(h), vupb (h), lupb,b′(h).

Further, we assume that DERs can slightly adjust their reactive power output

based on the value of the regulation signal, so as to deal more efficiently with volt-

ages binding during reserve deployment. Our worst case scenario approach results in

three values of the reactive power output Qdn
α (h), Qα(h) and Qup

α (h). Reactive power

outputs for any intermediate value of the regulation signal y can be written as convex

combinations of these three values.

7.1.1 Centralized Day-Ahead Distribution Power Market with Reserves

The centralized, day ahead market clearing problem with hard voltage bound con-

straints and reserve considerations, C-OPT+R, is described below. In addition to

costs minimized in the objective function of C-OPT, 5.1, the objective function of
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C-OPT+R maximizes the earnings of DERs for reserve provision, remunerated as

the amount of reserves reaching the substation (provided reserves adjusted by losses)

times the marginal price of reserves at the substation. The latter is assumed to be

constant like the substation real power LMP. We also assume that reserves are sym-

metric and approximate the flow of reserves with Rb,b′(h) =
Pup
b,b′ (h)−P dn

b,b′ (h)

2
. As a result,

the flow of reserves at the substation is R∞(h) = Pup∞ (h)−P dn∞ (h)
2

. This flow of reserves

at the substation is upstream, therefore based on our convention R∞(h) ≤ 0. In the

formulation that follows, we ignore costs associated with reserve provision from DERs

(e.g., additional fuel costs to microgenerators from output modulation to match the

regulation signal y).

The mathematical formulation of C-OPT+R is as follows:

minimize

Pα(h), Rα(h)

Qα(h), Qup
α (h), Qdn

α (h)

v∞(h), vup∞ (h), vdn∞ (h)

(5.1) +
∑
h

πR∞(h) · P
up
∞ (h)− P dn

∞ (h)

2
(7.1)

+penalties for deviation of Qup
α (h) and Qdn

α (h) from Qα(h) subject to
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y=-1



Pα(h)−Rα(h) +
∑

b′,(b,b′)∈Hb P
dn
b,b′(h) = 0→ πP,dnb (h)

Qdn
α (h) +

∑
b′,(b,b′)∈Hb Q

dn
b,b′(h) = 0→ πQ,dnb (h)

P dn
b,b′(h) + P dn

b′,b(h) = Rb,b′ · ldnb,b′(h)

Qdn
b,b′(h) +Qdn

b′,b(h) = Xb,b′ · ldnb,b′(h)

ldnb,b′(h) =
(P dn
b,b′ (h))2+(Qdn

b,b′ (h))2

vdnb (h)

vdnb′ (h) = vdnb (h)− 2 · (Rb,b′ · P dn
b,b′(h) +Xb,b′ ·Qdn

b,b′(h)) + (R2
b,b′ +X2

b,b′) · ldnb,b′(h)

vb ≤ vdnb (h) ≤ v̄b → µdn
b

(h), µ̄dnb (h)

vdn∞ (h) = v∞(h)

(7.2)

y=0



Pα(h) +
∑

b′,(b,b′)∈Hb Pb,b′(h) = 0→ πPb (h)

Qα(h) +
∑

b′,(b,b′)∈Hb Qb,b′(h) = 0→ πQb (h)

Pb,b′(h) + Pb′,b(h) = Rb,b′ · lb,b′(h)

Qb,b′(h) +Qb′,b(h) = Xb,b′ · lb,b′(h)

lb,b′(h) =
P 2
b,b′ (h)+Q2

b,b′ (h)

vb(h)

vb′(h) = vb(h)− 2 · (Rb,b′ · Pb,b′(h) +Xb,b′ ·Qb,b′(h)) + (R2
b,b′ +X2

b,b′) · lb,b′(h)

vb ≤ vb(h) ≤ v̄b → µ
b
(h), µ̄b(h)

(7.3)
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y=1



Pα(h) +Rα(h) +
∑

b′,(b,b′)∈Hb P
up
b,b′(h) = 0→ πP,upb (h)

Qup
α (h) +

∑
b′,(b,b′)∈Hb Q

up
b,b′(h) = 0→ πQ,upb (h)

P up
b,b′(h) + P up

b′,b(h) = Rb,b′ · lupb,b′(h)

Qup
b,b′(h) +Qup

b′,b(h) = Xb,b′ · lupb,b′(h)

lupb,b′(h) =
(Pup
b,b′ (h))2+(Qup

b,b′ (h))2

vupb (h)

vupb′ (h) = vupb (h)− 2 · (Rb,b′ · P up
b,b′(h) +Xb,b′ ·Qup

b,b′(h)) + (R2
b,b′ +X2

b,b′) · l
up
b,b′(h)

vb ≤ vupb (h) ≤ v̄b → µup
b

(h), µ̄upb (h)

vup∞ (h) = v∞(h)

(7.4)

Constraints 5.9, 5.10, 5.11, 5.13, 5.14, 5.16, 5.17, plus

Rα ≤ 0 (7.5)

P 2
α(h) +Q2

α(h) ≤ C2
α (7.6)

(Pα(h) +Rα(h))2 + (Qup
α (h))2 ≤ C2

α (7.7)

(Pα(h)−Rα(h))2 + (Qdn
α (h))2 ≤ C2

α (7.8)

If DER generates real power (eg. microgenerators), Pα(h) ≤ 0, then:

Pα(h) ≤ Rα(h) ≤ 0, α ∈ E (7.9)

else if DER consumes real power (eg. electric vehicle), Pα(h) ≥ 0 then:

Pα(h) ≥ −Rα(h) ≥ 0, α ∈ E (7.10)
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7.1.2 Distribution Locational Marginal Prices with Reserve Considera-

tions

Having three sets of power flow equations means that we will have three prices for

each key value of the regulation signal value for reactive power and for real power.

The real power DLMPs for y = 1 and y = −1 have a limited interpretation apart

from their relation to the reserves DLMP. There is a single reserves DLMP for all

values of y equal to πRb (h) = πP,dnb (h) + πP,upb (h).

Following the same process as in Chapter 5, we assume the existence of a costless,

infinitesimal generator of one of the following: real power, reserves, reactive power

when y = −1, reactive power when y = 0 and lastly, reactive power when y = 1. The

unbundling of the prices is as follows:

• Real power marginal price components

πPb (h) =



πP∞(h) · ∂P∞(h)
∂Pġβ(h)

+ πOC∞ (h)·Q∞(h)√
C2
∞−Q2

∞(h)
· ∂Q∞(h)
∂Pġβ(h)

+∑
h1≥h,(b,b′)∈tr c

tr
b,b′ ·

∂Γb,b′ (Sb,b′ (h1))

∂Pġβ(h)
+
∑

b µb(h) · ∂vb(h)
∂Pġβ(h)

−∑
(b,α),α∈Fb κα(h) · 1vb(h)<1 · Cα · ∂vb(h)

∂Pġβ(h)

.

• Reactive Power price marginal price components when y = 0

πQβ (h) =



πP∞(h) · ∂P∞(h)
∂Qġβ(h)

+ πOC∞ (h)·Q∞(h)√
C2
∞−Q2

∞(h)
· ∂Q∞(h)
∂Qġβ(h)

+∑
h1≥h,(b,b′)∈tr c

tr
b,b′ ·

∂Γb,b′ (Sb,b′ (h1))

∂Qġβ(h)
+
∑

b µb(h) · ∂vb(h)
∂Qġβ(h)

−∑
(b,α),α∈Fb κα(h) · 1vb(h)<1 · Cα · ∂vb(h)

∂Qġβ(h)

.

• Reactive power marginal price components when y = −1

πQ,dnb (h) = −πR∞(h)
2
· ∂P

dn
∞ (h)

∂Q
ġdn
β

(h)

+
∑

b µ
dn
b (h) · ∂v

dn
b (h)

∂Q
ġdn
β

(h)

.

• Reactive power marginal price components when y = 1

πQ,upb (h) = πR∞(h)
2
· ∂P

up
∞ (h)

∂Q
ġ
up
β

(h)
+
∑

b µ
up
b (h) · ∂v

up
b (h)

∂Q
ġ
up
β

(h)
.

• Reserves marginal price components
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πRb (h) = πR∞(h)∂R∞(h)
∂Rġβ(h)

+
∑

b µ
up
b (h) · ∂v

up
b (h)

∂Rġβ(h)
+

∑
b µ

dn
b (h) · ∂v

dn
b (h)

∂Rġβ(h)
, where R∞ =

Pup∞ −P dn∞
2

≤ 0.

7.1.3 Fully Distributed Algorithm with Reserves

In this section we repeat the Fully Distributed Algorithm of Chapter 6, with the

addition of reserves. The derivation is similar to the derivation of the original FDA

without reserves shown in Chapter 6.

FDA-OPT+R: Fully Distributed Algorithm with Hard voltage bound

constraints and reserve considerations

1. Initialize i← 1.

2. For α ∈ D,G,E, F solve:

minimize

Pα(h), Rα(h),

Qα(h), Qy
α(h),

y ∈ up, dn

∑
h



fa(Pa(h), Qa(h))

+π̂P,i+1
b (h) · Pa(h) + ρP

2
· ||Pa(h)− P i

a(h) + P̂ i
b (h)||22

+yπ̂
P,i+1
b (h) · P y

a (h) +
ρyP
2
· ||P y

a (h)− P y,i
a (h) + P̂ y,i

b (h)||22

+π̂Q,i+1
b (h) ·Qa(h) +

ρQ
2
· ||Qa(h)−Qi

a(h) + Q̂i
b(h)||22

+yπ̂
Q,i+1
b (h) ·Qy

a(h) +
ρyQ
2
· ||Qy

a(h)−Qy,i
a (h) + Q̂y,i

b (h)||22

+penalties for deviation ofQup
a (h)andQdn

a (h)fromQa(h)

(7.11)

subject to DER capacity constraints and P up
a (h) = Pa(h)+Ra(h) and P dn

a (h) =

Pa(h)−Ra(h).
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3. For (b, b′) ∈ H solve:

minimize

Pb,b′(h), Qb,b′(h), vb,b′(h),

P y
b,b′(h), Qy

b,b′(h), vyb,b′(h)

Pb′,b(h), Qb′,b(h), vb′,b(h),

P y
b′,b(h), Qy

b′,b(h), vyb′,b(h),

y ∈ up, dn

∑
h



fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h))

+π̂P,ib,b′(h) · Pb,b′(h) + π̂Q,ib,b′(h) ·Qb,b′(h)

+ρP
2
· ||Pb,b′(h)− P i

b,b′(h) + P̂ i
b (h)||22

+
ρQ
2
· ||Qb,b′(h)−Qi

b,b′(h) + Q̂i
b(h)||22

+ζ ib,b′(h) · vb,b′(h) + ρv
2
· ||vb,b′(h)− v̂ib(h)||22

+yπ̂
P,i
b,b′(h) · P y

b,b′(h) +y π̂
Q,i
b,b′(h) ·Qy

b,b′(h)

+
ρyP
2
· ||P y

b,b′(h)− P y,i
b′,b(h) + P̂ y,i

b (h)||22

+
ρyQ
2
· ||Qy

b,b′(h)−Qy,i
b′,b(h) + Q̂y,i

b (h)||22

+yζ
i
b,b′(h) · vyb,b′(h) + ρyv

2
· ||vyb,b′(h)− v̂y,ib (h)||22

+π̂P,ib′,b(h) · Pb′,b(h) + π̂Q,ib′,b(h) ·Qb′,b(h)

+ρP
2
· ||Pb′,b(h)− P i

b′,b(h) + P̂ i
b′(h)||22

+
ρQ
2
· ||Qb′,b(h)−Qi

b′,b(h) + Q̂i
b′(h)||22

+ζ ib′,b(h) · vb′,b(h) + ρv
2
· ||vb′,b(h)− v̂ib′(h)||22

+yπ̂
P,i
b′,b(h) · P y

b′,b(h) +y π̂
Q,i
b′,b(h) ·Qy

b′,b(h)

+
ρyP
2
· ||P y

b′,b(h)− P y,i
b′,b(h) + P̂ y,i

b′ (h)||22

+
ρyQ
2
· ||Qy

b′,b(h)−Qy,i
b′,b(h) + Q̂y,i

b′ (h)||22

+yζ
i
b′,b(h) · vyb′,b(h) + ρyv

2
· ||vyb′,b(h)− v̂y,ib′ (h)||22

(7.12)

subject to line constraints (6.2), (6.3), (5.2), (5.6) and (5.7)

4. For all buses update:

π̂P,i+1
b (h) = π̂P,i+1

b (h) + ρP · P̂ i+1
b (h)
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yπ̂
P,i+1
b (h) =y π̂

P,i+1
b (h) + ρP · P̂ y,i+1

b (h)

π̂Q,i+1
b (h) = π̂Q,i+1

b (h) + ρQ · Q̂i+1
b (h)

yπ̂
Q,i+1
b (h) =y π̂

Q,i+1
b (h) + ρQ · Q̂y,i+1

b (h)

ζ i+1
b,b′ (h) = ζ ib,b′(h) + ρv · (vi+1

b,b′ (h)− v̂i+1
b (h))

yζ
i+1
b,b′ (h) =y ζ

i
b,b′(h) + ρv · (vy,i+1

b,b′ (h)−y v̂i+1
b (h))

vi+1
b (h) =

∑
b′,(b,b′)∈Hb

vi+1
b,b′ (h)

|Hb|

µi+1
b (h) =

∑
b′,(b,b′)∈Hb µ

i+1
b,b′ (h)

vup,i+1
b (h) =

∑
b′,(b,b′)∈Hb

vup,i+1

b,b′ (h)

|Hb|

µup,i+1
b (h) =

∑
b′,(b,b′)∈Hb µ

up,i+1
b,b′ (h)

vdn,i+1
b (h) =

∑
b′,(b,b′)∈Hb

vdn,i+1

b,b′ (h)

|Hb|

µdn,i+1
b (h) =

∑
b′,(b,b′)∈Hb µ

dn,i+1
b,b′ (h)

5. If tolerance criterion satisfied, terminate.

Else, i← i+ 1 and go to 2.

The subproblems retain the same interpretation as the subproblems of FDA

without reserves: they are cost minimization problems where additional market-based

(price times quantity) costs for reserves are now considered.

7.1.4 Partially Distributed Algorithm with Reserves

This section elaborates on the Partially Distributed Algorithm with reserve consid-

erations, which follows:

PDA-OPT+R: Partially Distributed Algorithm with Hard voltage

bound constraints and reserve considerations

1. Initialize i← 1.
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2. For a ∈ D,G,E, F solve:

minimize
Pα(h),Qα(h),Qyα(h),Rα(h),y∈up,dn

∑
h



fa(Pa(h), Qa(h))

+Pa(h) · π̂P,ib (h) +Ra(h) · π̂R,ib (h)

+Qa(h) · π̂Q,ib (h) +Qy
a(h) ·y π̂Q,ib (h)

+penalties for deviation ofQy
a(h)fromQa(h)

(7.13)

subject to DER capacity constraints.

3. The Distribution System Operator calculates the power flow:

minimize

∑
h

πP∞(h) · P∞(h) + πOC∞ (h) · (C∞ −
√
C2
∞ −Q2

∞) + πR∞(h) · P
up
∞ − P dn

∞
2

+
∑

(b,b′),h

fb,b′(Pb,b′(h), Qb,b′(h), Pb′,b(h), Qb′,b(h)) (7.14)

subject to Power flow constraints (5.2)-(5.8)→ πP,ib (h), πQ,ib (h) (7.15)

7.2 and 7.4→y π
P,i
b (h),y π

Q,i
b (h) (7.16)

4. Convergence check: if maxb,h(π̂
P,i
b (h) − πP,ib (h)) ≤ tolerance, maxb,h(π̂

Q,i
b (h) −

πQ,ib (h)) ≤ tolerance, maxb,h(yπ̂
Q,i
b (h)−y πQ,ib (h)) ≤ tolerance, maxb,h(π̂

R,i
b (h)−

πR,ib (h)) ≤ tolerance, break.

5. DLMP estimate update mindful of oscillation avoidance and convergence:

πR,ib (h) =up π
P,i
b (h) +dn π

P,i
b (h)

π̂R,ib (h) = (1− s(i)) · π̂R,ib (h) + s(i) · πR,ib (h)

π̂P,i+1
b (h) = (1− s(i)) · π̂P,ib (h) + s(i) · πP,ib (h)

π̂Q,i+1
b (h) = (1− s(i)) · π̂Q,ib (h) + s(i) · πQ,ib (h).
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yπ̂
Q,i+1
b (h) = (1− s(i)) ·y π̂Q,ib (h) + s(i) ·y πQ,ib (h).

6. If tolerance criterion satisfied, terminate. Else, i← i+ 1 and go to 2.

7.2 Numerical Results

We proceed with results on the 47 bus network, using the centralized Day ahead

algorithm C-OPT+R. The following three figures show the hourly evolution of real

power DLMPs, reserves DLMPs and reactive power DLMPs respectively.

Figure 7·1: Hourly minimum, maximum and substation value of real
power DLMP.
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Figure 7·2: Hourly minimum, maximum and substation value of re-
serve DLMP.

Figure 7·3: Hourly minimum, maximum and substation value of re-
active power DLMP, y=0.

We notice that the minimum marginal price across all distribution buses is higher

than the substation price for all products (real power, reactive power and reserves).

This indicates that distribution demand is higher than DER injections and distribu-

tion flows are still downstream. When DERs injections are higher than the local bus
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demand, then DLMPs can be lower than the substation LMP and the flows can be

upstream. This is the case for the 800- bus network results presented in Chapter 5.

If we increase DG capacity, we notice that the minimum value of the reserve DLMPs

indeed becomes lower than the substation reserve LMP. This happens for the hours

that there is export of real power from the distribution network to the transmission

network, i.e. upstream flow at the substation at y=0. We proceed to show the real

power flow on the substation line for the case of small DGs and larger DGs.

Figure 7·4: Flow of real power into the distribution network with
small DGs present for the three key values of the regulation signal.
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Figure 7·5: Flow of real power into the distribution network with
larger DGs present for the three key values of the regulation signal.

During the hours of 10pm and 11pm, in the presence of small DGs, we only have

net export of real power when the regulation signal is y = 1. As the preceding graphs

show, DLMPs are always higher than LMPs in this case. On the other hand, for the

hours of 10pm and 11pm, in the presence of larger DGs, we have net export of real

power when the regulation signal is y = 0 and when the regulation signal is y = 1.

This is indicated by the negative real power flows for y = 0 and y = 1 reported in

Figure 7·5 above. In this case, DLMPs are lower than LMPs for the hours that net

export is observed while y = 0.

The following three graphs show the unbundling of the marginal prices of real

power, reactive power and reserves to their respective components at a selected dis-

tribution bus. We notice that the transformer loss of life is a significant contributor

to the marginal prices. Also, the symmetry in providing up and down reserves is

reflected in the components of the reserve DLMP: the y = 1 component makes up

about half of the reserve DLMP, while the y = −1 component is the other half. The

peak hour refers to the hour of the 24- hour horizon that has the highest demand,
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summed over all buses.

Figure 7·6: Components of the real power DLMP at Bus 31 during
the peak hour.

Figure 7·7: Components of the reactive power DLMP at Bus 31 during
the peak hour, for y=0.
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Figure 7·8: Components of the reserves DLMP at Bus 31 during the
peak hour.
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Chapter 8

Concluding Remarks and Future Work

8.1 Contributions

This work proposes the novel concept of marginal-cost based, distribution power

markets. It is the first attempt at calculating dynamic spatiotemporal marginal costs

at the distribution network. This thesis provides a complete spectrum of theoretical

foundation and implementation, starting from the market formulation and leading up

to computationally efficient formulations. The first part of the work has to do with

the market formulation: defining the relevant distribution power market products,

costs and constraints. We formulate a centralized distribution power market whose

products are:

1. Real power

2. Reactive power

3. Reserves

The salient distribution network costs include real and reactive power losses,

transformer degradation, voltage sensitive loads, and utilities of loads. With regard

to the constraint set, we model full non-convex AC load flow constraints, nodal power

balance constraints, nodal voltage magnitude bounds and intertemporal DER dynam-

ics and capabilities. The primal solution of the centralized distribution power market

clearing algorithm is the optimal allocation of the DER capacity among these three
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products, as well as the power flows and voltage magnitudes. The dual solution in-

cludes the Distribution Locational Marginal Prices (DLMPs) of each product at each

bus and hour. DLMPs reflect marginal costs.

The exact relations between real and reactive power, in both the load flow equa-

tions and the market participants’ capabilities, are often ignored by the literature for

simplicity, but are taken into account in this thesis. This detailed modeling showcases

the complexity of marginal-cost analysis/network pricing with multiple, correlated

products and price-contributing network dynamics.

While one of our goals and contributions is to provide realistic and detailed

models of costs and market participants, our market algorithm formulation remains

accommodating to any other types of DER (eg. data centers (Chen et al., 2015)).

We apply first order optimality conditions to the centralized algorithm to derive

valuable relationships between the DLMPs of real power, reactive power and reserves

at distribution buses with:

1. other dual variables, like the shadow prices of the voltage magnitude bounds

2. sensitivities of line flows and voltage magnitudes

3. prices at the substation bus, where distribution and transmission interface.

These relationships define the components of DLMPs and as such are called DLMP

unbundling equations.

Another crucial result is the definition of congestion in distribution networks.

Congestion is a well-known and much studied transmission network issue. In trans-

mission networks, congestion occurs when transmission line capacity constraints are

binding, whereas in distribution networks, congestion is a nodal problem and appears

when buses’ voltage magnitudes constraints are binding above or below. From a mar-

ket perspective, congestion is undesirable in wholesale markets since it can increase
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operational costs when cheap resources are underutilized because all lines out of them

are congested. Distribution network congestion works in similar ways to affect distri-

bution prices and DER schedules. For example, our simulations have revealed that

photovoltaics, whose variable costs are zero, are providing below their capacity when

connected to a bus whose voltage is binding above.

We also provide an analysis of the benefits of the proposed granular marginal-

cost based prices relative to today’s flat prices. We conclude that compared to flat

prices, spatiotemporal prices would yield significant cost benefits to price elastic, as

well as price inelastic market participants alike. Moreover, our results indicate that

spatially varying prices are the only way to appropriately incentivize DERs on how

to optimally provide reactive power.

The non-convex AC load flow constraints together with the intertemporal DER

dynamics and capabilities make centralized market clearing algorithms non-scalable

for real size distribution networks, motivating the second part of this thesis that

provides equivalent distributed algorithms for distribution power market clearing.

The proposed methods harness new developments in algorithms, computation and

technology.

First, we apply augmented Lagrangian logic to our centralized market formula-

tion and use the Alternating Direction Method of Multipliers (ADMM) to obtain a

fully distributed algorithm (FDA). The relaxation of nodal equality constraints (like

power balance constraints and voltage related constraints) allows for the splitting of

the problem into simpler DER and distribution line/ transformer specific subprob-

lems. The DER subproblems are shown to be individual cost minimization problems

of personal costs (e.g., uncharged battery costs for electric vehicles) plus market based

costs (nodal price estimate times quantity). Line subproblems are also cost minimiza-

tion problems, if we consider the line as an entity minimizing the cost of buying (real



164

or reactive power or reserves) from its one end and selling it at the other end. These

subproblems are coordinated through nodal price estimates that promote and even-

tually enforce nodal equality constraints. Upon convergence, nodal balances hold and

marginal prices are discovered. We further the literature around proximal message

passing and ADMM methods, by (i) providing a new application to a much more

complex initial problem and (ii) using local updates to the multipliers of the aug-

mentation terms and local convergence state signaling to reduce communication time

and costs.

Moreover, we provide a novel partially distributed formulation (PDA). In it,

DERs self-schedule again through cost minimization subproblems, based on nodal

price estimates. These price estimates are calculated centrally by a system operator

either through the solution of a load flow and the use of the DLMP unbundling

equations or equivalently through a mock centralized market clearing problem, where

DER schedules are fixed. The dual solution of this mock centralized market clearing

problem provides the price estimates.

All in all, the main difference between partially and fully distributed algorithms

is whether coupling constraints are relaxed or not. With regard to similarities, both

fully and partially distributed algorithms rely on massive DER (and line for FDA)

subproblem parallelization, rendering them scalable to real-size distribution networks

embracing numerous DERs.

Finally, extending our finding that binding voltage bound constraints express

distribution network congestion, we studied clearing voltage congested instances with

distributed algorithms. We applied several enhancements like:

• We use the abovementioned DLMP unbundling equations to decrease the error

of intermediate price estimates.

• We model hard voltage constraints with voltage-related barrier functions that
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lead to significantly increased convergence speed.

The solution of FDA with binding voltage constraints is challenging because

binding voltage constraints (i) impose an additional constraint on voltage decisions

and can make voltage consensus hard to reach and (ii) they affect the DLMPs, i.e.

they contribute to the prices.

We expect that our methods and conclusions can be used for other applications

of reaching concensus on constrained variables, when these constraints bind at the

optimal solution.

Distribution power markets will be the stepping stone for a wide range of bene-

fits that will include not only distribution network efficiencies, but also synergies with

renewables. On the distribution side, dynamic locational prices will incentivize the

efficient distributed provision of real power, reactive power and reserves from DERs.

This will itself lead to lower losses as well as assist voltage and frequency control.

Those network benefits extend to economic benefits, since they will allow the distri-

bution system operator to defer infrastructure investments. Another advancement

of the adoption of distribution power markets is that the aforementioned dynamic

locational prices will not only appropriately guide existing DERs, but also serve as

incentives for investments in new types of DERs, new technologies and new products.

Lastly, the synergies between DERs and renewables will allow for the increase of the

renewable penetration safety limit, promoting lower emissions.

Related areas of research Finally, we point out current work in different areas

that align with this thesis. First, work in the area of cyber-attacks, recently growing in

popularity as the internet-based applications grow. (Caramanis et al., 2016) discusses

how power markets can fall victim to cyber-attacks. Centralized and distributed

formulations can face feasibility and convergence issues if the physical layer is attacked

(eg. set point of tap transformers). Distributed market algorithms are also prone to
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attacks to the bus calculations. (Caramanis et al., 2016) mentions the ability to detect

and isolate the attacked buses without changes to our market formulation. Indeed,

initial numerical results indicate that external changes to price estimates or nodal

imbalances are ’absorbed’ by the quadratic augmentation terms of ADMM within a

couple of iterations. Thus, we expect that in order to take effect, changes should be

numerically coordinated and across many buses.

Our market formulation also ties in with work in the area of microgrids and

islanding.

The detailed modeling and tractable algorithms developed in this thesis provide

answers to which quantities should be measured, how they should be calculated and

how variables relate to one another. It does not include analysis of how this market

should and could be practically implemented. A detailed analysis of this aspect can

be found in (Tabors et al., 2016) and (Tabors et al., 2017). These papers propose

the introduction of an economic platform. DERs will join the platform and submit

bids to receive/ provide service and will be matched for service reception/ provision

through the platform. This platform, owned and provided by the distribution system

operator, is consistent with our market structure and furthers its benefits by exploiting

the effects of network economics.

Current applications of dynamic distribution pricing We conclude this sec-

tion by noting that the concept of dynamic distribution pricing has become more and

more popular with academics as well as system operators, regulators and utilities.

While techniques like DER aggregation, direct load control and cost averaging are

becoming outdated, dynamic distribution pricing is starting to slowly but steadily

become the clear means for achieving distribution network efficiency. Australia is

currently evaluating such measures (Brown and Faruqui, 2014), while recent orders

of the New York State Energy Research and Development Authority’s (NYSERDA)
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Reforming the Energy Vision (REV) aim at pricing described as ”consumer-centered

approach that harnesses technology and markets” (Tabors et al., 2016).

8.2 Future Work

Modeling This thesis included traditional transformer models to show the effect

of their degradation costs to marginal cost based distribution prices. Future work

could be directed towards the modeling of tap-changing transformers that would pro-

vide the system operator with an additional degree of freedom. An important type

of tap-changing transformers for distribution networks is voltage regulators, as men-

tioned in Chapter 3. However, modeling of tap-changing transformers will dictate

the inclusion of shunt elements to the modeling. The shunt elements of tap trans-

formers are shunt capacitors, whose capacity depends on the tap setting. Modeling

these shunt capacitances might end up being a challenging task. (Christakou et al.,

2015) mentions that the presence of shunt capacitors in an OPF problem can lead to

various computational issues. First, the OPF problem cannot be convexified as in (Li

et al., 2012a). Second, (Christakou et al., 2015) also mentions that ADMM can fail

to converge and exhibit oscillatory behavior.

Moreover, this thesis assumed a balanced distribution network and as such con-

centrated on a single phase model. A more realistic model would be a multiphase

model that would be able to capture the physics of non-balanced distribution net-

works. The OPF problem for unbalanced distribution networks has been investigated

by the literature. We mention recent work by (Dall’Anese et al., 2012) and (Peng and

Low, 2015) as representative. Both papers include considerations for the evolution of

the feeder from three phases to two phases to one phase. The phases are of course

not independent, therefore a multiphase market-based OPF should examine the need

for distinct prices at each bus’ phase and the inter-relationships of these prices.
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Power Markets We consider this thesis to be foundational to the implementation

of distribution power markets. As these markets evolve and become mature, we

expect to see well-known transmission power market issues appearing in distribution

power markets. One of them is market power. The potential of DERs to exercise

market power by withholding capacity should be examined. This might be a harder

task compared to transmission resource market power, given the existence of multiple,

correlated products as well as the higher volatility of reactive power prices, compared

to real power prices (Ntakou and Caramanis, 2015).

The second issue is that of distribution network topology control. Distribution

networks are created with meshed capabilities but are operated radially. Distribu-

tion system operators routinely switch loads to different distribution transformers

(secondary side) for reliability reasons. Line switching for reliability purposes is also

performed in transmission networks. Recent research (Foster, 2012) and (Goldis,

2015) has shown that transmission line switching can also serve economic purposes.

Therefore, we propose distribution network topology control for cost reduction as a

promising future research direction.

In this thesis, DLMPs are calculated relative to fixed substation prices. As seen

in Chapter 5, the resulting DLMPs can be significantly higher or lower than the

substation prices. This motivates future work towards quantifying the effect of dis-

tribution network injections and withdrawals on transmission nodal prices. This is

equivalent to the simultaneous clearing of both distribution and transmission markets.

(Caramanis et al., 2016) envisions and lays down the formulation of such a unified

market. At a higher level, we can describe the process as iterating between trans-

mission and distribution market clearing. The transmission market clearing assumes

fixed DER injections and withdrawals to determine marginal prices at all transmis-

sion buses. Those prices are then used as in Chapters 4 to 7 for the calculation
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of marginal prices at all distribution buses. The two-step process will repeat until

convergence. While we managed to obtain some numerical results with a simplified

transmission network and a fully detailed distribution network, the effect of distri-

bution injections and withdrawals on transmission prices is suppressed because we

have a single feeder. Were we to model multiple distribution feeders, the effect on

transmission prices would be revealed.

Tractable Algorithms Because the centralized market clearing formulation does

not scale, this thesis has provided two distributed market clearing formulations: a

fully distributed one and a partially distributed one. While computational experience

simulating the same network instance with different methods allowed us to compare

distributed methods to each other, future work should also look into the drivers of the

convergence rate of each formulation. (Peng and Low, 2015) narrows these driving

factors down to two for the case of distribution OPF problems solved with ADMM:

the network size and the network diameter (the distance between the two furthest

buses). The latter is shown to have higher effect on the number of iterations needed

for convergence.

In the same direction, computational experience can be extended through addi-

tional simulations with alternate software. AIMMS was used for the entirety of the

simulations in this thesis. While GAMS is almost identical, CVX might be promising.

Granted, CVX requires that the problem be convex, so the relaxations in (Li et al.,

2012a) need to be utilized.

The fully distributed algorithm proposed in this thesis is based on ADMM there-

fore, based on theoretical conditions for convergence (Boyd et al., 2011) and (Kraning

et al., 2014), it employs a common clock for iteration synchronization. This ensures

that:

• A DER will not re-solve unless it receives an updated price estimate from its
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connection bus.

• A distribution line or transformer will not re-solve unless it receives updated

price estimates from both its receiving bus and its sending bus.

• A bus will not update its price estimates unless all devices in the distribution

network have solved and sent their connection buses updated tentative sched-

ules.

Therefore, the rate of iterations is limited by the slowest subproblem solution.

Recent work (Li et al., 2014), (Zhang and Kwok, 2014), (Wei and Ozdaglar,

2013) and (Li and Marden, 2012) focuses on asynchronous updates. In our case,

this would allow buses to update price estimates after receiving at least one schedule

update. DERs and lines can still re-solve only after receiving updated price estimates

from their connection bus(es), but since the latter will no longer be limited by the

slowest proximal subproblem, DER subproblems will be solved more frequently. An

interesting research direction is to examine whether such asynchrony is suitable for

as complex problems as the proposed power market.

Our fully distributed formulation belongs to the sphere of (augmented) La-

grangian methods, much like most of the distributed algorithms so far used for power

markets’ and power systems’ applications. Opting for methods that exhibit speedier

convergence, a promising direction is the use of second order Newton-like methods.

The basic challenge in these methods is that each iteration requires the inversion of

a matrix in a distributed fashion.
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Appendix A

Description of Simulated Distribution

Networks

A.1 800 bus Distribution Network

The network is adapted from a prototypical feeder (Feeder 9) from the library of

distribution networks developed by the Pacific Northwest National Labs (PNNL).

Of the 800 buses, 202 are residential load points (buses 599-800) and another 72

are commercial load points (buses 325-396). Commercial buses are at 480V, while

residential buses are at 120V. There is a medium to low voltage transformer in front

of each load. For residential loads, an additional low voltage line after the transformer

is added. Therefore, lines ending at buses 325-598 are transformers.

The maximum commercial demand at the peak hour is 0.589MW and the total

commercial demand at the peak hour is 5.1MW. The maximum residential demand

at the peak hour is 0.4MW and the total residential demand at the peak hour is

11.3MW.

Figure A·1 shows an aggregated topology of the network. Residential loads not

depicted as well as all commercial loads are aggregated for space limitation reasons

under bus 127. All 800 bus are treated as individual (non-aggregated) in all simula-

tions.
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Figure A·1: Topology of the 800-bus distribution network.

With respect to DERs, we spread photovoltaic installations of relevant sizes

across both residential and commercial buses. Commercial PVs are collocated with

commercial loads. Out of 72 commercial load buses, 25 have photovoltaic installa-

tions: one of 500kW, one of 300kW and the remaining 23 are of 40kW capacity. All

residential load buses have an 8kW PV attached. This results in commercial PV

capacity totaling 1.72MW and the residential PV capacity 1.6MW.

As for electric vehicles, most residential loads (150 out of 202) are assumed to

have an electric vehicle. The charging rate is at 3.3kW and the initial uncharged

battery is at 24kWh, while the capacity of the EV charger is set to 6.6kW.

We also assume that commercial loads can have two parts: a fixed load part and

a price responsive part, in the form of smart thermostats.

Since our feeder is described by PNNL as being in the cold climate zone, we

use Albany, NY area data for the time varying inputs (solar irradiation, outside

temperature, hourly evolution of residential and commercial loads). We pick a day

with high LMPs, specifically July 2, 2014.
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The following figures show the hourly evolution of the substation real power

LMP, the solar irradiation, the hourly demand as percentage of the peak hour demand

and the evolution of the outside temperature, respectively.

Figure A·2: Hourly values of the substation real power LMP in
$/MWh.

Figure A·3: Hourly values of the solar irradiation as a percentage.
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Figure A·4: Hourly evolution of the residential and commercial de-
mand as a percentage of the peak demand.

Figure A·5: Hourly evolution of the outside temperature in degrees
Celcius.

Voltage bounds are set to ±10%.

Finally, we calculate the per hour cost of the distribution transformers present

in the network, starting from the cost of a 50kVA transformer assumed at 4000$,
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complete of purchase and installation costs. Using an annulization rate of 15% we

estimate the total hourly cost of a transformer of rated capacity SNb,b′ as ctrb,b′(h) =

0.15·4000
8760

· (
SN
b,b′

50
)0.8.

Section 5.5.1 We use the hottest spot temperature hourly evolution equation 3.2

and w = 0 for constraint 5.10.

Section 5.5.2 We use the hottest spot temperature evolution equation 3.2 and

w = 1, v̆ = 0.96 for constraint 5.10.

Section 6.2.5 We use the hottest spot temperature hourly evolution equation 3.3

and w = 0 for constraint 5.10.

A.2 47 bus Distribution Network

The 47-bus network is based on Southern California Edison data and was originally

published in (Farivar et al., 2011). Input data for the network, like network topology,

line characteristics, load apparent demand and location, photovoltaics and capacitor

capacity and location, are kept the same.

Figure A·6: Topology of the 47-bus distribution network.
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Additionally, we use πP∞ = πOC∞ = 50 $
kWh

in the objective function costs.

Uncongested instance We infer real and reactive demand from the apparent de-

mand data by assuming that loads have a constant power factor of 0.8 and are inflex-

ible.

The table below shows the location and size of photovoltaics and capacitors.

PV Bus Capacity (MW)
1 13 1.5
2 17 0.4
3 19 1.5
4 23 1
5 24 2

Table A.1: Location and capacity of photovoltaics in the 47 bus net-
work.

PV Bus Capacity (MW)
1 1 6
2 3 1.2
3 37 1.8
4 47 1.8

Table A.2: Location and capacity of shunt capacitors in the 47 bus
network.

Voltage bounds are set to ±10%.

Congested instance In order to induce congestion, we remove photovoltaics and

capacitors from the network, as well as tighten the allowable voltage bounds to ±5%

while setting the substation voltage to 1 per unit.

In this instance, loads might not be met. We infer the maximum real demand

from the apparent demand data by assuming that loads have a constant power factor

of 0.8. For improved convergence and without loss of generality, we mitigate solution

degeneracy by assuming load utilities are of the form uα(Pα) = −Aα·Pα+Bα·P 2
α, Aα ≥

0, Bα ≥ 0,∀α ∈ D.
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A.3 47 bus Distribution Network with Reserves

Finally, for our market clearing simulation instances considerate of reserves we alter

the 47 bus network described above by adding:

1. Distribution Transformers

2. Electric Vehicles

3. Replacing PVs with DGs.

The following lines are now considered to be transformer lines, i.e. they have a

rated capacity and a cost showing the loss of their life with respect to loading relative

to that capacity, as seen in Chapters5 and 3.

Transformer Line Number Bus From Bus To
1 1 1 2
2 5 3 14
3 9 5 26
4 13 7 32
5 15 8 40
5 16 8 39
7 17 8 41
8 21 9 42
9 22 10 11
10 23 10 46
11 31 20 25
12 35 27 31
13 36 27 28
14 41 35 36
15 43 35 38

Table A.3: Location of distribution transformers in the 47 bus network
used for simulations including reserves.

To be complete, the following table shows the location and capacity of DG.

DG Bus Capacity (MW)
1 13 0.4
2 17 0.4
3 19 0.4
4 23 0.4
5 24 0.4

Table A.4: Location and capacity of DGs in the 47 bus network used
for simulations including reserves.
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DGs are considered to have a marginal cost of cα(h) = 60$/MWh. All the

electric vehicles have the same parameters as the electric vehicles connected to the

800 bus network: charging rate of 3.3kW, uncharged battery of 24kWh and battery

charger of 6.6kW. The following table shows the location of the electric vehicles in

the 47 bus network.

Electric Vehicle Bus
1 12
2 15
3 25
4 26
5 30
6 31
7 34
8 36
9 38
10 39
11 40
12 41
13 44
14 45
15 46

Table A.5: Location and size of electric vehicles in the 47 bus network
used for simulations including reserves.

We use the same real power LMP at the substation as the 800 bus network above

(see Figure A·2) and a reserve LMP at the substation equal to half the substation

real power LMP. The following figure reports the reserve LMP values.
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Figure A·7: Hourly values of the substation reserve LMP in $/MWh.

A.4 253 bus Distribution Network

The 253-bus network topology is shown in Figure A·8 below.

Figure A·8: Topology of the 253-bus distribution network.

The left-hand side of the feeder (buses 2-48) is identical to the 47-bus network

shown in (Farivar et al., 2011). The right-hand side of the feeder (buses 49-253) is

a duplicate of that feeder, where some loads were substituted by several residential

loads. This is done for loads of buses 63, 73, 75-79, 81, 87, 89 and 92, yielding 253

buses overall.
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We use πP∞ = πOC∞ = 50 $
kWh

. Voltage bounds are set to ±10%. Loads and line

resistance and reactance are identical to (Ntakou, 2014).

The location and capacity of photovoltaics and shunt capacitors are shown below.

PV Capacity (MW) Bus
1 1.5 14
2 0.4 18
3 1.5 20
4 1 24
5 2 25
6 1.5 60
7 0.4 64
8 1.5 66
9 1 70
10 2 71

Table A.6: Location and capacity of photovoltaics in the 253 bus
distribution network.

Capacitor Capacity Bus
1 1.2 4
2 1.8 38
3 1.8 48
4 1.2 50
5 1.8 84
6 1.8 94

Table A.7: Location and capacity of shunt capacitors in the 253 bus
distribution network.
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