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Optimal Power Market Participation of Plug-In
Electric Vehicles Pooled by Distribution Feeder

Justin M. Foster, Graduate Student Member, IEEE, and Michael C. Caramanis, Member, IEEE

Abstract—Electric vehicle grid integration has the potential
to stress distribution network equipment and increase peak
consumption, unless properly managed. In this paper, we use dy-
namic programming to develop a decision support algorithm and
market participation policy for a load aggregator (LA) managing
the charging of plug-in electric vehicles (PEVs) connecting at the
same distribution network feeder. The LA submits inflexible and
flexible bids to a liberalized hour-ahead power market, while
monitoring localized feeder and PEV rate constraints. Flexible
bids, which include a bid price or utility, can be cleared as
regulation service, cleared as energy, or rejected by the market
operator. These market events are probabilistically included
within the modeling framework. A case study, based on New
York independent system operator data, found that the market
participation policy may reduce daily electricity costs for PEVs
significantly more than is expected through forecasted electricity
price based scheduling.

Index Terms—Load management, electric vehicle grid integra-
tion, wholesale power markets, distribution network, dynamic
programming, scenario tree, decision-making.

NOMENCLATURE

In order to best present the complex notation necessary

to properly formulate this problem, we have adopted the

following general convention: indices appear as subscripts and

abbreviations of verbal descriptions appear as superscripts.

A. Indices

t Hour-ahead market period t = 1, 2, ..., 24 (1 h).

b Market bid b.

g Generator g.

τ Departure class τ = 1, 2, ..., 48.

k Iteration k of extension period estimation algorithm.

B. Parameters

ctg Marginal cost of generator g in period t ($ per kWh).

p
tg

Technical min for generator g in period t (kW).

ptg Technical max for generator g in period t (kW).

s Minimum system regulation service (RS) require-

ment (kW per h).

∆xtτ Uncharged energy of τ class plug-in electric vehicles

(PEVs) connecting during period t (kWh).

∆ntτ Number of τ class PEVs connecting during period t.

Ct Available feeder capacity in period t (kW).

Manuscript received May 11, 2011; revised November 11, 2011; revised
June 1, 2012, revised September 13, 2012. This work was supported by NSF
EFRI 1038230, an EPA STAR Fellowship, and a Switzer Fellowship.

Both authors are with the Division of Systems Engineering, Boston
University College of Engineering, Boston, MA, 02446 USA (e-mail: jfos-
ter2@bu.edu; mcaraman@bu.edu).

r Maximum vehicle charging rate (kW).

φ Penalty cost for uncharged energy ($ per kWh).

µτ Class τ extension period uncharged energy cost ($

per kWh).

C. State and Decision Variables

ptg Dispatch of generator g in period t (kWh).

stg RS cleared for generator g in period t (kW per h).

qtb Dispatch of flexible bid b in period t (kWh).

stb RS cleared for flexible bid b in period t (kW per h).

QF
tb Quantity of flexible bid b for period t (kWh).

πtb Bid price of flexible bid b in period t ($ per kWh).

QI
tb Quantity of inflexible bid b for period t (kWh).

ftτ Flexible bid quantity allocated to class τ in t (kWh).

itτ Inflexible bid quantity allocated to class τ in t (kWh).

xtτ Uncharged energy of class τ PEVs at period t (kWh).

ntτ Number of class τ PEVs at period t.

xt Vector of state variables for period t.

ut Vector of decision variables for period t.

D. Random Variables

Note that realizations of random variables are denoted

without the tilde.

λ̃E
t Energy price for period t ($ per kWh).

λ̃R
t RS price for period t ($ per kWh).

λ̃t Price vector for period t.

m̃ (πtb) Market outcome of flexible bid b for period t.

I. INTRODUCTION

INNOVATION in communication, sensing, automation, and

computation intelligence is being adopted at an increasing

rate by the electric power system while national directives

stress the importance of embedding the intelligence neces-

sary to support increased levels of renewable generation and

demand response programs, and to promote grid reliability,

stability, and economic and environmental sustainability. In-

creasing amounts of flexible loads, whether existing (e.g., heat

pumps, data processing centers) or emerging (e.g., electric

vehicles), provide opportunities for demand to actively par-

ticipate in power markets as encouraged by the US Federal

Energy Regulatory Commission [1], given security issues are

properly considered [2]. In the US, demand response and the

load-side provision of reserves has entered the early stages of

adoption [3], [4]. This paper examines the potential inclusion

of plug-in electric vehicles (PEVs) in wholesale power markets

through a load aggregator (LA).

Electric vehicle grid integration is an area of active research

[5], and extensive work has been published. Studies have

Page 1 of 12 IEEE PES Transactions on Power Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



WORKING PAPER 2

considered the benefits of using PEV batteries as grid re-

sources serving transmission system stability [6], [7] in a high

renewable generation future impacting transmission resources

and requirements for capacity reserves and load following [8]–

[10]. Many works consider centralized command and control

scheduling approaches in order to minimize electricity costs or

power plant cycling, coordinate with times of high renewable

generation, and provide valley filling [11]–[13]. In addition,

impacts on the low voltage distribution network [14]–[17] have

been considered.

Recently, mathematical formulations for smart-charging

have been proposed. Ma et al. developed a decentralized

control algorithm, which responds to estimates of electricity

prices to achieve socially optimal overnight valley filling [18].

Work by Rotering and Ilic proposes dynamic programming

algorithms based on a forecast of future electricity prices to

minimize costs to the PEV owner [19]. In addition, papers have

developed algorithms for optimal bidding of LAs managing

the charging of PEVs in power markets [20]–[22].

This paper builds on our previous work [20], as we consider

the optimal distributed bidding of a LA participating in a

liberalized wholesale energy market. The LA manages PEVs

connected to a specific feeder and shares cost reduction

benefits with the PEV owners. The LA receives smart grid

information on feeder specific capacity constraints, and PEV

battery state-of-charge (SoC) and desired departure time. The

LA bids to the wholesale market to minimize PEV battery

charging costs aiming at a user specified SoC for each PEV

by its desired departure time, given that it is physically

feasible and economically desirable. In this paper, extensions

include the optimal designation of bid prices as well as

quantities, proof of the convergence of the extension period

approximation algorithm, and extensive numerical results and

sensitivities obtained as part of a case study using New York

independent system operator (NYISO) data.

This work contributes to the existing literature by consider-

ing several yet unexplored market features. Rather than having

a perfect forecast of energy and reserve prices, we assume

that the LA cannot anticipate prices beyond an associated joint

probability distribution. Therefore, rather than solely determin-

ing optimal bid quantities, the LA also determines associated

bid prices representative of the instantaneous PEV charging

utility. In addition, we consider regulation service (RS) trans-

actions in a market where RS is a band of up-and-down

capacity, as in NYISO [23] and Pennsylvania-Jersey-Maryland

regional transmission organization (PJM) [24], rather than

two separate commodities RS-up and RS-down, as in Cali-

fornia independent system operator (CAISO) and the electric

reliability council of Texas (ERCOT). Finally, we propose

a scalable modeling framework and a convergent extension

period approximation algorithm. The modeling framework

limits the state space explosion that results from a fleet PEVs

at varied locations and with different departure times, while

the extension period estimation allows for proper accounting

of PEVs scheduled to depart outside of the modeled horizon.

This paper is organized as follows. Section II presents

the hour-ahead power market structure in which the LA

participates. Section III formulates the LA optimal market par-

ticipation problem as a stochastic dynamic program. Section

IV summarizes our solution algorithm based on multistage

stochastic programming, and proves algorithm convergence.

Sections V and VI provide case study results and sensitivity

analyses, respectively. Section VIII concludes.

II. POWER MARKET STRUCTURE

In this section, we describe the hour-ahead wholesale power

market structure. For simplicity we limit our consideration of

reserves to RS, which, as previously mentioned, we assume

to consist of an up-and-down band of capacity. We assume

that the RS signal is energy neutral over the hour, as is

true in NYISO [23]. In addition, we discuss demand-side

participation in the hour-ahead market, formulate the market

clearing optimization, and describe the key market events from

the LA perspective.

A. Demand-Side Participation and Market Clearing

We assume that LAs participate on a par basis with gener-

ators in the joint energy and RS market. For each hour-ahead

market period t (1 h in length), demand-side market partic-

ipants submit flexible bids, indexed by b, with an associated

bid price or utility, namely

QF
tb and πtb, respectively.

In addition, demand-side participants may submit unpriced

inflexible energy bids QI
tb, with an implied infinite opportunity

cost, which are cleared as energy by the market operator and

charged at the energy clearing price.

Generators, indexed by g, submit marginal costs as well as

technical minima and maxima,

ctg, ptg, and ptg , respectively.

The market operator receives bids from market participants

and co-optimizes energy and RS by solving the energy bal-

ance and reserve requirements constrained economic dispatch

problem. We present a simplified version of the economic

dispatch in (1)-(7), where transmission network and ramp rate

constraints are omitted. The simplified economic dispatch min-

imizes the cost of generation and maximizes flexible demand

utility (1), subject to energy balance (2), RS requirements (3),

generator maximum (4) and minimum (5) limits, and flexible

load maximum (6) and minimum (7) limits.

min
ptg ,qtb,stg ,stb

∑

g

ctgptg −
∑

b

πtbqtb (1)

subject to
∑

g

ptg =
∑

b

qtb +
∑

b

QI
tb ↔ λE

t (2)

∑

g

stg +
∑

b

stb ≥ s ↔ λR
t (3)

ptg + stg ≤ ptg, ∀g (4)

ptg − stg ≥ p
tg
, ∀g (5)

qtb + stb ≤ QF
tb, ∀b (6)

qtb − stb ≥ 0, ∀b (7)
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WORKING PAPER 3

The solution of the above constitutes the clearing of the

hour-ahead market, and determines market clearing prices for

energy, λE
t , and RS, λR

t , as well as generation levels, ptg,

consumption quantities, qtb, and RS provision by generators,

stg , and demand, stb.

By (6) and (7) it is clear that in order to provide RS, the

LA must be consuming at a rate strictly between 0 and QF
tb.

B. Market Events

Note that as market competition increases through demand-

side resources participation, the probability that the flexible

bid is on margin becomes very small. Therefore, assuming

the flexible bid is not on margin, market clearing results in

three possible market events for the LA. The flexible bid can

be cleared as RS, cleared as energy, or rejected.

The flexible bid cleared as RS (FCRS) market event is

defined in (8)-(9). The average consumption rate is 1
2Q

F
tb and

the independent system operator (ISO) can send commands in

real-time to modulate consumption in the range
[

0, QF
tb

]

. Note

that we do not model the tracking of the real-time RS signal

in this paper. The price condition in (8), ensures that the LA

is compensated for any lost utility which would result from

consuming at 0 when πtb < λE
t or QF

tb when πtb > λE
t . In

this market event, the ISO debits the LA’s account for energy,
1
2λ

E
t Q

F
tb, and credits the account for RS, 1

2λ
R
t Q

F
tb.

∣

∣λE
t − πtb

∣

∣ ≤ λR
t (8)

qtb = stb =
1

2
QF

tb (9)

The flexible bid cleared as energy (FCE) market event is

defined in (10)-(12). For this market event, the ISO debits the

LA’s account for energy, λE
t Q

F
tb.

πtb > λE
t + λR

t (10)

qtb = QF
tb (11)

stb = 0 (12)

The flexible bid rejected (FR) market event is defined in

(13)-(14). For this market event, the LA’s account is neither

credited nor debited.

πtb < λE
t − λR

t (13)

qtb = stb = 0 (14)

Before the market clears, the LA does not know the clearing

prices; however, it has information available to estimate the

joint probability distribution of the clearing prices. The prob-

ability and expected value of each market event at the time

bids are made can be calculated by integrating the joint density

function of λ̃E
t and λ̃R

t over the area of the market events

shown in Fig. 1. Note that these probabilities and expected

values are function of the bid price, πtb. In this paper, we

estimate the impact of market clearing events on the LA by

performing this integration. Solving an economic dispatch as

in (1)-(7) requires that the LA knows every other market

participant’s bids and hence can anticipate actual clearing

prices.

FCE

 ! 
!

"# 
$

% &
FCRS

FR

Fig. 1. Graphical depiction of market clearing event areas.

III. OPTIMAL PEV CHARGING DECISION SUPPORT

We propose a decision support algorithm for optimal bid-

ding to the hour-ahead power market (1)-(7) by a LA who

represents PEVs connecting to a specific distribution feeder.

In our proposed PEV charging strategy, which we will refer to

as the market participation policy, for each market period t,

the LA submits a single flexible energy bid, QF
tb and πtb, and

a single inflexible energy bid, QI
tb, associated with charging

vehicles connected to the specific feeder. We model a 24 hour

cycle and approximate the infinite horizon by estimating the

extension period costs, namely the marginal cost of uncharged

PEVs that depart during the next 24 hour cycle.

Since charging decisions are a function of desired departure

time, we group PEVs into departure classes τ , which are

indicated as subscripts on the decision and state variables. We

allocate our bid quantities to individual departure classes, to

determine the inflexible (15) and flexible (16) bid quantities

introduced above.

QI
tb =

∑

τ

itτ (15)

QF
tb =

∑

τ

ftτ (16)

A. System Dynamics

The state of the system is defined by the departure class

specific number connected PEVs (ntτ ) and their uncharged

energy (xtτ ) (in kWh). The uncharged energy is calculated

using the PEV owner’s desired SoC as

xtτ = (1-SoC)*battery capacity.

The state variables evolve dynamically as a function of

energy consumption and new PEV arrivals as shown in (17).

The uncharged energy is increased by PEVs plugging-in to

the feeder, ∆xtτ , and decreased by the amount of energy

scheduled by the ISO and allocated by the LA. The inflexible

bid is automatically cleared; however, the flexible bid is subject

to the market events defined in Section II-B. The random
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variable, m̃ (πtb), indicates the impact of market events on the

energy capacity dynamics; and therefore, takes a value of 1
2 if

the flexible bid is cleared as RS (FCRS), 1 if the flexible bid

is cleared as energy (FCE), and 0 if the flexible bid is rejected

(FR). Note that the value of 1
2 for market event FCRS is based

on the expected (or average) consumption, given the energy

neutrality assumption with regards to the RS signal.

We assume the cleared energy is assigned by the LA to

distribute the uncharged capacity evenly within a departure

class. This spreads equally the risk of not fully charging an

individual PEV by its scheduled departure time. Thus, when

modeling the dynamics for the number of PEVs, we need

only consider PEVs plugging-in to the feeder, ∆ntτ , as shown

in (18). In addition, as the maximum charging rate increases

this balancing assumption becomes robust. Finally, if the PEV

departure class has passed, then the number and uncharged

energy is set to zero (19).

x(t+1)τ = xtτ +∆xtτ − itτ − m̃ (πtb) ftτ , τ > t (17)

n(t+1)τ = ntτ +∆ntτ , τ > t (18)

ntτ = xtτ = 0, τ ≤ t (19)

B. Allowable Decisions and Feeder Constraints

We are assuming that PEVs are not injecting power into

the grid, but instead are modulating their consumption about

an average rate in order to provide RS. Therefore, insurance

that bids are realizable for each hour-ahead market period t

imposes two constraints on flexible and inflexible quantities.

First, there must be sufficient feeder capacity (20). Note that

this constraint couples all departure classes. Second, enough

PEVs must be plugged-in (21), where r indicates the maxi-

mum charging rate of each PEV in kW. Finally, (22) does not

allow more energy to be charged than the current uncharged

capacity.
∑

τ

(itτ + ftτ ) ≤ Ct (20)

itτ + ftτ ≤ rntτ , ∀τ (21)

itτ + ftτ ≤ xtτ , ∀τ (22)

C. Period Costs

The period costs (23) are the sum of four terms. First, a

marginal penalty for PEVs scheduled to depart that have not

reached their desired SoC. Second, the expected cost of the

inflexible energy bid. Third, the expected cost of the flexible

energy bid conditioned on the bid being cleared as regulation

service, market event FCRS. And fourth, the expected cost of

the flexible bid conditioned on the bid being cleared as energy,

market event FCE.

E [gt (·)] = φxt(τ=t) + E
[

λ̃E
t

]

∑

τ

itτ+

1

2
Pr (FCRS)E

[

λ̃E
t − λ̃R

t |FCRS
]

∑

τ

ftτ+

Pr (FCE)E
[

λ̃E
t |FCE

]

∑

τ

ftτ

(23)

D. Bellman Equation

In order to formulate the Bellman Equation (27) concisely,

we define vector notation in (24)-(26).

λ̃t =
[

λ̃E
t , λ̃

R
t

]

(24)

xt = [ntτ , xtτ ] (25)

ut = [itτ , ftτ , πtb] (26)

The allowable control set, Ut (xt), is defined by (20)-(22) as

well as non-negativity constraints on the flexible and inflexible

quantities and state variables. The boundary condition (28) is

an end of cycle cost consisting of the sum of two terms. First,

a marginal penalty cost φ assessed for any PEVs scheduled

to depart at the end of the horizon (i.e., τ = 24) but not fully

charged; and second, a marginal extension period cost µτ per

unit of uncharged energy of PEVs scheduled to depart outside

the modeled cycle (i.e., τ > 24).

Jt (xt) = min
ut∈Ut(xt)

E
[

gt

(

xt,ut, λ̃t

)

+ Jt+1 (xt+1)
]

(27)

with boundary condition,

J24 (x24) = φx24(τ=24) +
∑

τ>24

x24τµτ . (28)

It is important to note that the cost-to-go is a function of

the state, emphasizing that the utility of PEV charging during

period t is a function of the expected future consumption

trajectory as it will be determined by optimal future bidding.

IV. SOLUTION APPROACH ADOPTED

A full backward recursion solution of the proposed finite

horizon stochastic dynamic program (SDP) is not tractable for

any real system due to uncountable state and control spaces.

Therefore, we approximate the SDP cost-to-go by a multistage

stochastic programming (MSP) model. This modeling frame-

work is scalable, in that it can handle the many departure

classes that may occur at a particular feeder while limiting

state space explosion.

A. Multistage Stochastic Programming

As shown in (17), uncertain market outcomes play a central

role in the PEV energy dynamics, as the energy capacity state

variables evolve according to market events associated with

the flexible energy bid. Therefore, as in [20], we propose

a forward-looking modeling framework that captures these

uncertainties by approximating the SDP cost-to-go function

using a MSP formulation [25].

The MSP model, depicted in Fig. 2, has an explicit look-

ahead which models future states using a scenario tree based

on all possible market events or realizations of m̃ (πtb). Each

node has associated state and decision variables and the

problem complexity grows exponentially in the number of time

periods considered for the look-ahead. Therefore, we consider

a limited look-ahead for a portion of the horizon (indicated

by solid arrows) combined with a certainty equivalent for the

remaining horizon (indicated by dashed arrows).

The SDP cost-to-go is approximated by minimizing the sum

of the expected period costs at each node in the scenario tree,
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FCRS

FCE

FR

t

Fig. 2. Graphical depiction of forward looking MSP scenario tree.

weighted by the probability of visiting that node. The MSP

solution indicates values for the decision variables at every

node; however, as an optimal open loop feedback formulation,

the only decisions implemented are those at the root node,

or the first time period in the modeled horizon. The MSP is

resolved in subsequent time periods.

The resulting MSP problem is non-linear and non-convex.

To clarify, consider a component of the period costs (23),

Pr (FCE)E
[

λ̃E
t |FCE

]

ftτ .

Recall that the probability and conditional expected value of

the flexible bid cleared as energy market event (FCE) are a

function of the flexible bid price, πtb, as we see in (10).

B. Extension Period Cost Approximation

The MSP hour-ahead formulation has equality constraints

whose associated dual variables provide an estimate of the

extension period costs, µτ . The constraints corresponding to

the initial state of uncharged energy at the root node of the

scenario tree, have dual variables that represent the marginal

cost of an additional kWh of energy in departure class τ

plugged-in at the beginning of the modeled cycle. Assum-

ing that the modeled cycle is not drastically different from

the subsequent daily cycle, these values provide a extension

period cost approximation and motivate the Extension Period

Estimation Algorithm presented in Fig. 3. Here we introduce

the superscript k as an iteration counter for the algorithm.

Step 0 initializes k = 1 and sets the high initial estimate of

µk
τ = φ, ∀τ > 24.

Step 1 solves the MSP hour-ahead market problem using

µk
τ as the extension period costs. The new estimate of the

extension period costs, µk+1
τ , is obtained using the optimal

dual variables.

Step 2 checks the convergence of the estimation, and if

µk+1
τ = µk

τ , ∀τ > 24,

then the algorithm terminates and the solution is stored.

Otherwise the iteration counter is incremented and the MSP

hour-ahead market problem is resolved in Step 1.

In Theorem 1 we prove the algorithm converges given the

reasonable assumption of finite clearing prices. Moreover, we

show the convergence rate is a function of feeder congestion.

The proof requires Claims 1-3.

Claim 1: The sequences {µk
τ} are bounded below ∀τ > 24.

Proof: For iterations k ≥ 2, µk
τ is defined as the shadow

price of the uncharged energy at the root node, scheduled to

depart at τ − 24. This shadow price represents the cost of

Step 1

Solve MSP using  !
"#as extension 

period costs. Obtain  !
"#$
.

Step 0

Initialize  ! " and extension 

costs  !
" # $% &' ( )*.

+ # + , -

Step 2

Stopping

Criteria?

Stop

Store solution

Met

Unmet

Fig. 3. Flow chart of the extension period estimation algorithm.

adding a marginal unit of demand with departure time τ −
24 at the beginning of the modeled cycle. PEVs are charged

by providing RS or through energy consumption, or the LA

is assessed a penalty, φ, for not charging the PEV by the

scheduled time of departure. Therefore, µk
τ for k ≥ 2 can

never be less than

min
{{

E
[

λ̃E
t − λ̃R

t

]

|∀t
}

∪
{

E
[

λ̃E
t

]

|∀t
}

∪ φ
}

,

which is finite due to our assumption of finite energy and RS

clearing prices. Therefore, {µk
τ} is bounded below as desired.

Claim 2: µk+1
τ ≤ µk

τ ⇒ xk+1
24τ ≥ xk

24τ , for all nodes s.t.

t = 24, ∀τ > 24.
Proof: Let uk∗ be the optimal solution of the kth itera-

tion. Since the feasible set does not change from iteration k to

k+1, the optimal solution u
k∗ is still feasible for the (k+1)th

iteration. Therefore, by the optimality of u
k∗ and our given

assumption that extension period costs are non-increasing we

have the desired result. In other words, if the extension period

costs decrease, then by the optimality of the previous iteration,

only more uncharged energy will be left for the extension

period in the next iteration.

Claim 3: The sequences {µk
τ} are non-increasing ∀τ > 24.

Proof: We will use a proof by induction. Please recall

that in Step 0 of the algorithm we have set

µ1
τ = φ, ∀τ > 24.

If the energy and RS prices are such that charging a PEV

would be more expensive than the penalty cost φ, then the

optimal decision will have the LA pay the penalty and not

charge the PEVs prior to their departure time. Therefore, we

get

µ2
τ ≤ φ = µ1

τ , ∀τ > 24.

The next step in this inductive proof is to assume that,

µk
τ ≤ µk−1

τ , ∀τ > 24. (29)

and show that this implies that

µk+1
τ ≤ µk

τ , ∀τ > 24.
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Given (29) we know that by Claim 2

⇒ xk
24τ ≥ xk−1

24τ , for all nodes s.t. t = 24, ∀τ > 24.

Therefore, there are two possible outcomes to consider as we

move from iteration k − 1 to k.

• Case I: No change in the optimal charging de-

cisions, meaning none of the energy has been

moved to the extension periods. Formally, xk
24τ =

xk−1
24τ , for all nodes s.t. t = 24, ∀τ > 24.

• Case II: Additional energy charging is left for the exten-

sion periods, or xk
24τ > xk−1

24τ for some node and τ > 24.

If Case I occurs, then by the optimality of u
(k−1)∗ there

will be no changes in the charging decisions for departure

classes τ = 1, ..., 24 in u
k∗ . And therefore,

µk+1
τ = µk

τ , ∀τ > 24.

For Case II, the movement of some energy to the exten-

sion periods may alleviate feeder congestion. If no binding

feeder constraint becomes unbinding, then by the optimality

of u(k−1)∗ there will be no changes in the charging decisions

for departure classes τ = 1, ..., 24 in u
k∗. In addition, even if

a binding distribution capacity constraint becomes unbinding,

there may be no changes in the optimal charging decisions. In

these instances

µk+1
τ = µk

τ , ∀τ > 24.

However, if a binding feeder constraint becomes unbinding,

then it may result in a change in the optimal charging decisions

u
(k−1)∗ in iteration k. Let’s assume this is the case for some

τ ′, such that 1 ≤ τ ′ ≤ 24. Since u
(k−1)∗ remains feasible in

iteration k, then by the optimality of uk∗, this will only occur

if the change reduces the expected cost for charging PEVs in

departure class τ ′. And therefore,

⇒ µk+1
τ ′+24 < µk

τ ′+24.

This completes the proof by induction as we have consid-

ered Cases I-II.

Given the above claims, the convergence of the extension

period cost estimation algorithm directly follows as shown in

Theorem 1.

Theorem 1: {µk
τ} are convergent sequences ∀τ > 24.

Proof: Given Claims 1 and 3, {µk
τ} converge by the

monotone convergence principle.

Corollary 1: The convergence rate of {µk
τ}, ∀τ > 24, is a

function of the feeder congestion, Ct.

Proof: By the non-increasing property proved in Claim

3, the algorithm converges in iteration k unless

µk+1
τ < µk

τ

for some τ . In the proof of Claim 3, we see that this only

occurs if a feeder constraint was binding during iteration

k − 1. Therefore, if the feeder is particularly congested then

the algorithm may take additional iterations to converge,

establishing the dependence on Ct.

C. Solving the Non-Linear MSP

We employ iterative Gauss-Seidel inspired methods in order

to solve the non-linear MSP [26]. Note that for fixed values

of πtb, the MSP reduces to a linear program (LP).

In Sections V and VI, we assume that the extension period

estimation algorithm (Fig. 3) is employed in order to estimate

the marginal costs of the subsequent daily cycle. We solve the

non-linear MSP using an iterative technique where we fix bid

prices, πtb, and solve the resulting LP to obtain the optimal

bid quantities, itτ , ftτ associated with the fixed bid prices.

We then update bid prices and resolve for optimal quantities.

Finally, we select the price-bid combination with the minimum

expected cost-to-go.

In Section VII, we assume the LA has a good estimate

of the extension period costs, and therefore, does not need

to utilize the extension period cost algorithm. In this case, a

faster gradient based approach may be employed limiting the

number of LPs that must be solved.

Assume we fix the flexible bid prices to π
k, where k is

again the iteration counter, and solve the resulting LP to get

bid quantities, xk and expected cost C
(

π
k
)

. In the look-ahead

portion of the MSP, the flexible bid prices do not impact the

feasibility of the bid quantities, but only the LP cost vector,

c
k. Therefore, by perturbing the bid prices, updating the cost

vector, ckper , and evaluating at xk, we can quickly compute an

estimate of the gradient as in (30).

∇C
(

π
k
)

=
∂C

(

π
k
)

∂πk
= c

′k

perx
k (30)

Note that the extension period costs must remain fixed for

the gradient method to converge, as changing the extension

period costs impacts the cost vector and invalidates the above

estimate of the gradient.

Using this gradient estimate, we can employ a steepest

descent gradient method [27] to update the bid prices as

presented in (31),

π
k+1 = π

k − αkI∇C
(

π
k
)

(31)

where I is the identity matrix and αk is the stepsize. Selection

of the stepsize to will be discussed in Section VII.

V. CASE STUDY

We modeled a 24 time period cycle with a second cycle

extension period. The opportunity cost of uncharged batteries

of PEVs departing during the second cycle is modeled as

described above. The cycle begins at 12am on Day One,

incorporates an estimated demand pattern, calculates charging

decisions through 12am (Day Two), and estimates extension

period costs for PEVs with departure times during the second

cycle. The first three time periods comprise the look-ahead

portion of the MSP horizon, while the remaining 19 time

periods make up the certainty equivalent portion. We chose

this look-ahead horizon so that explicit look-ahead extends to

the first PEV departure class of 3am (see Table I). A sensitivity

analysis with respect to the length of the look-ahead horizon

is presented in Section VI-A. The resulting MSP is an LP

with approximately 65k state and decision variables and a
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similar number of constraints. The algorithm was implemented

in Matlab, using the CPLEX 12.2 LP solver on a workstation

with two 2.66 GHz Intel Xeon processors and 24 GB of RAM.

Because it would be intractable to search over the entire

range space of bid prices for each node in the scenario tree,

we fix the price bids according to (32) for t = 2, . . . , 24. We

then search for the optimal initial flexible price bid, π1b. The

sub-optimality of this policy is discussed in Section VII.

πtb = E
[

λ̃E
t

]

(32)

A. Model Inputs

We modeled a low voltage residential feeder servicing

approximately fifty households. As in [20], we assumed that

the feeder was rated for 10 kW per household (500 kW

total), and estimated the non-PEV load profile to determine

available feeder capacity for PEV charging, Ct. Note that

this is a simplification, as feeder capacity has a temporal

component due to ambient air temperature variability and

other considerations. In order to evaluate the impact of pre-

existing distribution network congestion, we modeled two

distribution network scenarios corresponding to a nominal and

high congestion scenarios as shown in Fig. 4.
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Fig. 4. Available feeder capacity and price means by time period.

Electricity market price probability distributions, available

[28], were estimated using the maximum likelihood-ratio test

applied to NYISO energy and RS prices from June to August

2011. Results for ERCOT and CAISO data are presented in

[20]. Energy and RS price means by time period are presented

in Fig. 4.

Similar to [20], we developed a simple PEV neighborhood

demand pattern on which to test our market participation

policy. This is intended as a proof of concept rather than a

comprehensive analysis of all potential PEV demand patterns.

As shown in the left column of Table I, we assumed that

our neighborhood consisted of 100 PEVs, all of which are

plugged-in at the beginning of the modeled cycle and sched-

uled to depart between 3am and 11am. As shown on the right

column of Table I, each of these PEVs is expected to return

home in the afternoon or evening of Day One, with expected

departure times in the morning of Day Two. We assume each

of these PEVs has an empty battery when returning from

a trip and assume that the owner requested SoC is 100%.

We evaluate the impacts of different battery capacities (kWh)

in Section VI-D. For the case study, we assumed a battery

capacity of 6 kWh.

TABLE I
ESTIMATED PEV DEMAND PATTERN

arr time dep time no arr time dep time no

day one day two

before 12am 3am 2 2pm-3pm 9am 10

before 12am 4am 3 2pm-3pm 10am 10

before 12am 5am 10 2pm-3pm 11am 5

before 12am 6am 10 3pm-4pm 6am 25

before 12am 7am 25 4pm-5pm 6am 20

before 12am 8am 25 5pm-6pm 7am 10

before 12am 9am 10 6pm-7pm 7am 10

before 12am 10am 10 7pm-8pm 8am 10

before 12am 11am 5

As in [20], uncharged capacity at the requested time of

departure was penalized at $0.75 per kWh, φ, which assumes

$3.75 per gallon of gasoline, 25 miles per gallon, and 5 miles

per kWh. In addition, each PEV was assumed to have a

maximum charging rate, r, of 4 kW. Sensitivity analysis with

regards to these parameters are presented in Sections VI-B and

VI-C, respectively.

B. Case Study Results

We compare the results for three possible PEV charging

policies. First, we evaluate the policy proposed in this pa-

per, namely market participation. Second, we consider self-

scheduling, where a LA only submits inflexible energy bids

ltb. Note this is equivalent to the LA charging batteries

based on a forecast of electricity prices. For both market

participation and self-scheduling we assume that the LA

observes the feeder capacity constraint (20). Finally, the cost of

opportunity charging, namely the cost of charging immediately

upon plugging-in until the desired state-of-charge is reached

regardless of available feeder capacity, is calculated using time

dependent electricity costs. Column 1 of Table II presents

the benchmark case of opportunity charging. Columns 2-3

show the nominal congestion scenario and columns 4-5 the

high congestion scenario for the self-scheduling and market

participation policies. The expected flexible bids row indicates

the expected percentage of all market bids which are flexible,

while the expected RS energy row indicates the expected

percentage of energy consumed while providing RS.

The self-scheduling and market participation policies result

in significant cost savings. By allowing flexible bids, the

cost savings increased by approximately 15% in the nominal

congestion scenario and 5% in the high feeder congestion

scenario. For the market participation policy, the increased

feeder congestion decreases the percentage of expected flexible

bids by more than 10% and the expected energy from RS

provision by 20%.
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TABLE II
CASE STUDY RESULTS SUMMARY

nominal congestion high congestion

metric opportunity self- market self- market

charging scheduling participation scheduling participation

expected total cost ($) 71.57 39.00 28.19 44.05 40.10

expected savings (%) n/a 45.50 60.62 38.46 43.98

scenario min / max expected total cost n/a n/a 21.89 / 29.22 n/a 37.25 / 41.67

expected incremental cost ($ per kWh) 0.060 0.032 0.023 0.037 0.033

expected flexible bids (%) 0.00 n/a 92.21 n/a 79.19

expected RS energy (%) 0.00 n/a 55.88 n/a 36.47

extension period estimation algorithm iterations n/a 2 3 2 6

computation time (s) n/a 0.19 0.94 0.22 1.903

The extension period approximation algorithm took three

additional iterations to converge due the increased feeder

congestion, validating Corollary 1. The impacts of extension

period costs are discussed in the individual sensitivity analyses

and in particular in Fig. 9.
Fig. 5 shows the expected cost-to-go as a function of the

period 1 flexible price bid for the nominal and high congestion

scenarios. The function has an optimum at an initial bid price

of $0.03 for the nominal congestion scenario, which is below

the expected energy price of $0.05 for 12am-1am. By selecting

a bid price below the expected value, the LA is taking a risk

that it may not receive the energy, but if it does, it will incur

a lower cost. At an initial flexible bid price of $0.03, there

is a 0.20 probability of the flexible bid cleared as RS market

event, and only a 0.04 probability of the flexible bid cleared as

energy market event; however, the expected costs are $0.0167
and $0.0003, respectively. In the high congestion scenario, the

optimal initial flexible bid price is $0.06, which is greater

than the expected energy price for 12am-1am. By increasing

the initial bid price in the high congestion scenario, the LA

is placing a premium on feeder capacity, as the probability it

receives the energy increases but the expected costs do as well.

At a bid price of $0.06, the before mentioned probabilities

increase to 0.40 and 0.48, respectively; however , the expected

costs increase to $0.0408 and $0.0323, respectively.
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Fig. 5. Expected cost-to-go as a function of first period flexible price bid.

As presented in [20], the market participation policy

presents the best option for valley filling, a fact corroborated

by Fig. 6. Given the assumed demand pattern, opportunity

charging increases and extends peak power consumption by

several hours, and the feeder capacity constraint is violated.

As suggested in [20], it may be possible for the LA to negotiate

discounted distribution network charges for limiting feeder

wear and tear by observing a capacity constraint in the market

participation and self-scheduling policies. Self-scheduling will

shift the charging to times of low feeder congestion; however,

charging will gravitate to a few hours resulting in a second

peak in the load profile, sometimes referred to as a rebound

peak. A similar result is reported in [18], [20]. For the market

participation policy, due to the uncertainty in the market events

with respect to the flexible bids, and the fact PEVs must charge

below their maximal consumption rate in order to provide RS,

there is an incentive to start charging earlier and at a lower

rate.
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Fig. 6. Expected load profile by PEV charging policy.

Fig. 7 shows the expected aggregate uncharged energy

and flexible and inflexible bids for the market participation

policy under nominal feeder congestion. In the morning, the

LA enters inflexible bids to ensure all PEVs have reached

their desired SoC by their scheduled departure time. In the

afternoon, only flexible bids are entered in order to avoid

extension period costs.

VI. SENSITIVITY ANALYSIS

In this section, we examine the sensitivity of our case study

results to specific model parameters including the length of

the look-ahead horizon, maximum PEV charging rate, penalty

cost, and PEV battery capacity.
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A. Look-Ahead Sensitivity

In the case study presented in Section V-B, we included

three periods in the look-ahead horizon, and 19 periods in

the certainty equivalent. A full look-ahead formulation ensures

all PEVs are charged prior to their scheduled departure time,

for all possible market outcomes, when this is physically

feasible and economically desirable. In a certainty equivalent

formulation, market outcomes with positive probability may

result in uncharged energy at the time of PEV departure and

associated penalty costs.

We examined explicit look-ahead horizons of length one

through four to determine the impacts on the initial bidding

policy. Interestingly, results showed that the initial bid price of

$0.03 was consistent for all length of look-ahead horizons. In

addition, aggregate initial flexible and inflexible bid quantities,

constrained by the available feeder capacity, were consistent

across all look-ahead horizons. However, the allocation of the

initial flexible bid quantity across departure classes varied.

In general, shorter look-ahead horizons resulted in more

aggressive bidding strategies, where energy is not allocated

exclusively to the nearest departure classes. Longer look-ahead

horizons are better able to account for low probability, high

cost scenarios where consecutive flexible bid rejected market

events occur resulting in PEV departures prior to reaching

their desired SoC. Computation time increases exponentially

according to the length of the look-ahead horizon; although,

since the resulting model is an LP, the computation time is

still reasonable, where a look-ahead horizon of four can be

solved in approximately eight seconds.

B. Penalty Cost Sensitivity

The penalty cost, φ, of PEVs that do not reach their desired

SoC by the time of scheduled departure should depend on

the characteristics of the PEV as well as user preference. For

example, uncharged batteries at the time of departure for an

all-electric vehicle should be costlier than uncharged energy

for a hybrid electric vehicle. In addition, an environmentally

conscious driver may place a high premium on using electricity

in preference to gasoline. The purpose of the penalty cost

is to ensure that PEVs reach their desired SoC by their

scheduled departure time, given that it is physically feasible

and economically desirable. Higher penalty costs result in

more risk averse bidding, either through more inflexible bids,

see Fig. 8, or higher initial flexible bid prices; however, we

found the optimal flexible and inflexible bids converged for

relatively low values of φ.

The optimal initial flexible bid price was −$0.03 for φ =
$0.00, $0.02 for φ = $0.01, and $0.03 for φ ≥ $0.02. The

initial optimal flexible and inflexible bid quantities converge

for all values of φ ≥ $0.06. As shown in Fig. 8, due to the

relative cheap costs of electricity, low values of φ resulted in

identical expected bidding policies as those for φ = $0.75.
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Fig. 8. Expected cost and initial bid price as a function of penalty cost.

C. Maximum Charge Rate Sensitivity

Case study results, presented in Section V-B, show that

the maximum charging rate of each PEV, r, is binding for

several departure classes and time periods. Therefore, we

performed a sensitivity analysis on the maximum charge rate

in order to determine its impact on the PEV charging costs

and expected optimal bids. As shown in Table III the expected

charging cost decreases as r increases, until r = 8, where the

vehicle charging rates are no longer binding in any scenarios.

Cost savings are due to increased expected energy consumed

through RS provision, which increases from 47% to 58%.

TABLE III
MAXIMUM PEV CHARGE RATE SENSITIVITY RESULTS

r obj %RS r obj %RS

2 32.89 47.28 6 27.71 57.93

4 28.19 55.88 8 27.61 57.93

The maximum PEV charging rate impacts the extension

period costs; and therefore, the LA charging decisions between

the afternoon arrivals and the end of the first cycle (or 12am

Day Two). Fig. 9, shows that when r = 2, the PEV maximum

charging rate constrains the expected flexible bid quantities

from 12am-9am. As a result, the extension period costs are

higher for r = 2 than r = 8. Therefore, the LA chooses to

place flexible bids in the evening of Day One in order to avoid

high extension period costs.

D. Battery Capacity Sensitivity

Sensitivity analysis results with respect to PEV battery

energy capacity (kWh) are presented in Table IV. Increasing

the battery capacity from 6 kWh used in the case study to 16
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Fig. 9. Expected RS bids and extension period costs by max charge rate.

kWh, which is the capacity of a Chevy Volt [29], increased

the expected cost more than 300%. Recall that flexible bids

may be rejected or cleared as RS as a result of the market

clearing. In these cases, the LA receives less energy than the

maximum indicated by the allowable control set. With high

battery capacities, energy is at a premium, so it is optimal for

the LA to submit more inflexible bids at a higher expected

cost, rather than risk consuming less energy and incurring

a penalty cost. Therefore, the percentage of inflexible bids

increases from 8% to 33%. In addition, the optimal initial bid

price increased from $0.03 in the case study to $0.04 with a

8 kWh battery capacity, $0.05 with a 10 or 12 kWh battery

capacity, and $0.06 with a 14 or 16 kWh battery capacity.

This is consistent with the risk averse bidding observed in the

penalty cost sensitivity analysis.

TABLE IV
BATTERY CAPACITY SENSITIVITY RESULTS

bat obj inflexible bat obj inflexible

cap bids (%) cap bids (%)

6 28.19 7.79 12 74.53 18.06

8 41.89 9.95 14 97.95 25.13

10 57.73 12.23 16 123.49 32.50

The expected flexible and inflexible bid quantities as well

as the aggregate uncharged energy capacity for the case

with battery capacities of 16 kWh are shown in Fig. 10.

As mentioned above, in order to avoid high penalty costs

a significant amount of inflexible bids are submitted in the

morning hours, while in the afternoon additional flexible bids

occur relative to Fig. 7 results to avoid high extension period

costs.

VII. GRADIENT METHOD RESULTS

In this section, we employ the gradient method presented

in (31) in order to evaluate the sub-optimality of the bidding

policy (32) used in Sections V and VI. Therefore, we fix

the extension period cost estimates. In order to obtain a

good estimate, initial bid prices are set to the energy price

means, we solve the resulting LP, and employ the extension

period estimation algorithm to obtain good extension period

costs estimates, which we then fix during the gradient method

application. The stepsize is selected during each iteration so
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Fig. 10. Flexible policy expected bids and uncharged energy by time period
for battery capacity of 16 kWh.

that the maximum change in the flexible bid price is $0.01,

and the stepsize is reduced if an iteration yields an increase

in expected cost [27].

Table V presents the results of the gradient method. The

first column indicates the number of time periods for which

the flexible bid prices were optimized. Due to the fact that

price bid decision variable exist for each node of the scenario

tree (Fig. 2), the number of bid prices optimized grows

exponentially in the number of time periods considered, as

shown in the second column. The expected cost savings of

optimally determining the bid prices decreases as the optimiza-

tion extends to future time periods. Optimizing the first time

period bid prices results in an expected cost savings of 1.24%.

Extending this to the second time period saves an expected

0.97%, and to the third time period only 0.29%.

TABLE V
GRADIENT METHOD RESULTS

t # prices iterations obj change (%)

0 0 n/a 28.8026 n/a

1 1 2 28.4442 1.24

2 4 5 28.1661 2.21

3 13 32 28.0832 2.50

It is important to note that although the expected cost

changes, the initial price and quantity bids do not change as we

optimize the bid prices for future time periods. Therefore, in

our optimal open loop feedback formulation, the implemented

policy appears to be unaffected by the bidding policy in (32).

However, this result is specific to the case study presented in

this paper for three reasons. First, we used discrete probability

distributions [28]; second, we chose a reasonable price bid

policy in (32); and third, the inputs used in the case study

result in the first period being non-marginal.

Assume that rather than the bidding policy described in (32),

the price bids for t ≥ 2 are instead set equal to the high

price of $0.5 per kWh. Given this price bidding policy, the

flexible bids are equivalent to fixed bids, the FCE market event

occurs almost certainly, and no additional information derived

with regards to the expected clearing prices conditional on the

FCE market event. Using this sub-optimal bidding strategy for

t ≥ 2, the optimal first period bid price increases to $0.05, as
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compared to $0.03 for the near-optimal first period price bid

presented in Section V. This premium results from LA desiring

a high probability of the FCE or FCRS market events, and the

associated lower conditional expected cost, in the one period

it has the ability to do so.

Therefore, if the LA has a reasonable estimate of the

extension period costs, or has few PHEVs leaving outside the

modeled horizon, then using the gradient method to determine

optimal price bids is preferable to approximating them. In

fact, as we have done here, a reasonable extension period

cost estimate can be computed using the extension period cost

estimation algorithm and then fixed for the gradient method

computations.

By examining optimal bid prices, we can gain intuition for

general rules on the optimal flexible price bids. For example, if

previous time periods realized market events have been flexible

bid cleared as energy (FCE) or flexible bid cleared as RS

(FCRS), the price bids can be more aggressive, i.e., lower. In

particular, if consecutive FCE market events occur, then the

optimal bid prices are much lower than the expected energy

price, as the LA has already received its maximum quantity

in the previous time periods. However, if the realized market

events have been flexible bid rejected (FR), than the optimal

bid price is higher in order to increase the probability of being

scheduled in the current time period. Finally, it appears that

price bids should be set below the expected energy price, given

the nominal congestion scenario evaluated in this section.

VIII. CONCLUSION AND FUTURE WORK

We developed a market participation policy for a LA man-

aging the charging of PEVs connecting at the same distribution

network feeder. Our case study indicates that the market

participation policy has the potential to substantially reduce

daily electricity costs for PEVs as compared to opportunity

charging. In addition, we found that by acting to account for

the uncertainty of future power market clearing prices, rather

than acting certainty equivalent point estimate may result in

additional cost reductions. Finally, our market participation

policy provides ISOs the opportunity to clear PEV demand in a

manner that most benefits renewable generation, as flexible bid

price-quantity pairs can be considered simultaneously for all

reserve and load following functions, rather than being targeted

for a specific type of reserves.

Future research will build on our hour-ahead market frame-

work to examine a systematic coupling between existing

wholesale and developing dynamic retail markets and the po-

tential impacts of allowing load-side complex-bids (e.g., bids

that include inter-temporal constraints) in day-ahead markets

[30]. In addition, since we use a MSP to approximate the SDP

cost-to-go, future work will evaluate the sub-optimality of the

policies derived from the MSP formulation. In preliminary

work, we evaluated a single PEV with an uncharged energy

of 6 kWh at 12am and scheduled to depart at 5am. The MSP

result suggests a conservative policy of an initial flexible bid of

4 kWh at a price of $0.03 for 12am–1am. The SDP indicates

that a more aggressive policy is optimal, were the LA does

not bid until 2am–3am; however, the bid during that time

period is the same as that derived from the MSP. In addition,

future work will analyze the robustness of optimal bids to

unexpected changes in the PEV demand pattern, and relax the

energy neutrality assumption on the RS signal. Finally, as we

mentioned in [20], we hope to show that this methodology can

be applied to other types of demand such as space conditioning

systems and data centers.
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