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Abstract—Following up on our previous work, we formulate a
linear, loss-adjusted, shift factor mixed integer program (MIP)
to co-optimize generation and network topology. While both
the Bθ and shift factor topology control (TC) formulations
lead to production cost saving, we showed that the shift factor
formulation performs better for small to medium switchable sets.
In this paper we extend the original TC shift factor formulation
to include marginal losses. We derive loss-adjusted shift factors
and show that both losses and flows can be updated linearly
with a change in topology by taking advantage of flow-canceling
transactions (FCTs). The marginal loss formulation we present
in this paper closely resembles that of most market engines. In
doing so, we aim to better approximate the AC power flow and
to generate topologies leading to production cost savings while
maintaining feasibility subject to AC security constrained power
flow (SCOPF) constraints.

I. NOMENCLATURE

Vectors are indicated by lower case bold, matrices by upper
case bold, and scalars by lower case italic characters indexed
appropriately. Upper limits are indicated by an over-bar, and
lower limits by an under-bar. Diagonal matrices are denoted
with a tilde. Sensitivities are indicated with Greek characters.

Indices

m,n Nodes.
k, ` Lines.
m` Line ` from node.
n` Line ` to node.
τ Contingent topologies.

Contingent Topology-Dependent Parameters and Variables

For contingent topology τ ,
fτ Vector of real power flows on transmission elements.
gτ Bias from linearization of transmission flows.
fτ , fτ Vectors of transmission limits.
F̃τ , F̃τDiagonal matrices of transmission limits.
vτ Vector of flow-canceling transactions.
Ψτ Shift factor matrix.
Ψ̂τ Loss-adjusted shift factor matrix.
ΨMτ Shift factor matrix associated with monitored lines.
ΨSτ Shift factor matrix associated with switchable lines.
ΦSSτ PTDF matrix of switchable lines for transfer between

switchable line terminals.
ΦMSτ PTDF matrix of monitored lines for transfer between

switchable line terminals.
Φ̂τ Loss-adjusted PTDF matrix.

ψm`τ Element of Ψ for line `, node m.
φk`τ PTDF of line ` for a transfer across line k.
ok`τ LODF of line ` for the outage of line k.
µ
τ
,µτMonitored facilities shadow prices.

ατ ,ατSwitchable facilities shadow prices.

Contingent Topology-Independent Parameters and Variables

1 Vector of ones.
0 Vector of zeros.
I Identity matrix.
z Vector with the state of transmission lines.
c Vector of nodal generation variable cost.
p Vector of nodal generation.
l Vector of nodal loads.
x Line loss factors.
I` Line current.
R` Line resistance (RMS value).
V` Nominal Line voltage (RMS value).
d Normalized vector that allocates total transmission

losses to busses.
τ0 Full topology without contingencies.
f0 Reference flows from topology τ0 of a load flow

solution.
x0 Line loss factors for a reference flow vector f0.
b0 Bias factor from linearization of transmission losses

in topology τ0.
g0 Bias factor from linearization of transmission flows

in topology τ0.
l Vector of nodal loads.
λ Power balance shadow price.
η Loss equation shadow price.
ΨS Matrix of all ΨSτ .
ΨM Matrix of all ΨMτ .
OMS LODF matrix of monitored branches for the outage

of switchable branches.
M Sufficiently large number.

INTRODUCTION

In recent years there has been a significant interest in co-
optimization of transmission and generation in power system
operation. Applications have varied from corrective control
[1]–[3] to security enhancements [4], [5], loss minimization
[6], [7] and more recently to production cost savings un-
der economic dispatch [8]–[10] and unit commitment (UC)
[11], [12]. Previous work has shown that even under a full
security-constrained OPF, significant production cost savings
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can be achieved. In [13] we introduced a novel lossless, linear
MIP formulation to efficiently model topology control (TC)
using flow-canceling transactions (FCTs). This shift factor TC
formulation is compact and scalable, especially when the set
of candidate switchable lines is small relative to the number
of monitored transmission elements. Relative to previous Bθ
implementations of (TC), the size of the shift factor formula-
tion is a function of (the number of contingencies) times (the
number of monitored and switchable transmission elements)
as opposed to (number of contingencies) times (all transmis-
sion elements), which can be significant for large system.
Additionally, the use of FCTs keeps the linear structure of
the MIP and avoids re-calculation of the shift factor matrix
with changes in transmission topology. In [13] we compare
the computational performance of the FCT-based formulation
to the previously used B-θ formulation and find that the
FCT-based formulations result in significantly smaller solution
times. Although the MIP formulation is linear, we observe
exponential growth in computational time. For the IEEE 118-
bus test case, a full N − 1 security constrained (SC) OPF
with more than 24 switchable lines becomes impractical to
solve. To address this issue, we tested various heuristics such
as price difference, line profit and total cost derivative1 to
identify candidate lines for switching and showed that through
a combination of these heuristics we can achieve similar cost
savings to the MIP while maintaining tractable solution times.
Further, consistent with previous publications, most of the
savings are realized with only a few line openings and these
initial savings are almost fully captured by appropriate use
of heuristics. We again note that the FCT-based approach
avoids the need to recalculate the shift factor matrix with each
topology change and is more efficient than the B-θ formulation
in simulating these heuristics.

While the lossless DC formulation shows promising results,
most modern power markets include a linearized model of
losses in their market clearing algorithm. Therefore, for Inde-
pendent System Operators(ISOs) to adopt topology control,
it is important to incorporate marginal losses into the TC
MIP formulation. Additionally, while TC provides benefits
under the DC SCOPF context it must ultimately satisfy AC
OPF constraints. If the DC optimized topology is not feasible
with respect to AC constraints, it is often time consuming to
restore feasibility while maintaining production cost savings.
Including losses in the TC MIP formulation should lead to
a closer approximation of the AC OPF and thus reduce the
occurrence of AC-infeasible solutions.

The rest of this paper has six sections. Section II sum-
marizes flow-canceling transactions and the lossless TC MIP
formulation. Section III introduces a formulation with losses
and Section IV formulates the TC MIP with losses. Section
V discusses LMP decompositions with losses and Section
VI compares the performance between formulations with and
without losses and to the full AC OPF. Finally, Section VII
concludes.

1See [14], [15] for details.

II. FCTS AND THE LOSSLESS SHIFT FACTOR TC MIP

To motivate the importance of FCTs we first show the
difficulty arising from a naı̈ve shift factor implementation
of TC by deriving the flow constraints. Consider first a
transaction (pair of injection/withdrawal) of v MW from m`

to n`. The change in flow on line k due to this transaction
can be expressed using the power transfer distribution factor
(PTDF) [16] as

∆fk = φ`kv = (ψm`

k − ψ
n`

k )v

The change in flow on line k per unit of flow on line ` after
line ` is disconnected is called the line outage distribution
factor (LODF) [16] and is defined as

o`` = −1

o`k =
φ`k

1− φ``
, ` 6= k, φ`l 6= 1

Hence, after line ` is disconnected the change in flow on line
k is

∆f
(−`)
k =

ψm`

k − ψ
n`

k

1− (ψm`

` − ψ
n`

` )
f` (1)

where the superscript (−`) denotes the disconnection of line
`. Using the definition of flow as f = Ψ(p − l) and (1) we
have

f
(−`)
k = fk + ∆f

(−`)
k =

ψk(p− l) +
ψm`

k − ψ
n`

k

1− (ψm`

` − ψ
n`

` )
ψ`(p− l) (2)

where ψk denotes the row of Ψ corresponding to line k. Using
our notation of zell = 1 to denote that line ` is closed and
z` = 0 to denote that it is disconnected, we can express the
change in ψk conditional on the opening of line ` using (2)
as

∆ψk|z` =
ψm`

k − ψ
n`

k

1− (ψm`

` − ψ
n`

` )
ψ`(1− z`)

We can see that using this shift factor in an OPF formulation
would make the problem non-linear since [∆ψk|z`](p− l) is
not linear in the decision variables, z, p. The key behind the
formulation developed in [13] is that it allows us to use FCTs
to solve a linear MIP under the shift factor formulation. FCTs
are a common tool for deriving line outage distribution factors
[16] and are defined as pairs of injections and withdrawals at
the end of lines to be opened that have the same impact on all
flows in the rest of the system as actually opening these lines.
If we open a line ` the impact this opening will have on the
flow on any other line k is

∆fk = o`kf` (3)

Alternatively, if we want to replicate this impact by using
a FCT, the change in flow on line k due to an injec-
tion/withdrawal v` across line ` is

∆fk = φ`kv` (4)
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Equating (3) and (4) gives

o`kf` = φ`kv` →
φ`k

1− φ``
f` = φ`kv` →

v` =
f`

1− φ``
(5)

exactly as shown in [13].

The resulting SCOPF formulation with TC is

C = min
p,v,z

c′p (6)

s.t. 1′ (p− l) = 0, (7)
p ≤ p ≤ p, (8)

fMτ ≤ ΨMτ (p− l) + ΦMSτ vτ ≤ f
M
τ , ∀τ (9)

F̃
S
τ z ≤ ΨSτ (p− l) +

(
ΦSSτ − I

)
vτ ≤ F̃

S
τ z, ∀τ (10)

−M (1− z) ≤ vτ ≤M (1− z) , ∀τ (11)
z` ∈ {0, 1} , ∀` (12)

We refer to problem (6)-(12) as the lossless shift factor TC
formulation. The set of switchable lines S denotes the set of
lines that are enforced and are candidates for switching while
the set of monitored lines M denotes the set of lines that
are enforced and may not be switched. For each opened line
` ∈ S , z` = 0 and the corresponding FCT is unrestricted.
For all such lines, constraints (10) become a set of equality
constraints forcing the flow between opened lines and the rest
of the system to zero, thus defining a simultaneous system
of linear equations for the corresponding FCTs, which fall out
directly from the linear formulation. Solving this system is the
same as applying the principle of superposition [17] to2 (5):

vSτ = fSτ
(
I−ΦSSτ

)−1
(13)

For a single line `, (13) is identical to (5) and substituting
this value of v into equation (9) impacts flows on monitored
lines exactly as in (2). Hence, FCTs give us a way to
linearly replicate an update to the shift factor matrix while
co-optimizing transmission and generation.

III. LINEARIZED LOSS MODEL FORMULATION

Resistive losses are a quadratic function of current flowing
on each transmission line:

Loss =
∑
k

I2kRk =
∑
k

f2kRk
cos2 ϕkV 2

k

≈
∑
k

f2kRk
V 2
k

, (14)

where ϕk is the angle difference between voltage and current
and the approximation in the last equality depends on the
assumptions that reactive power flows can be ignored (voltage
and current are in phase, ϕk = 0). To incorporate a linear
approximation of losses into the DC OPF we perform the
standard Taylor series expansion around a base flow f0:

Loss ≈ b0 +
∂Loss

∂f

∣∣∣∣
f0

′

f (15)

2Under the assumption that the set S is non-islanding.

where for a line k,

∂Loss

∂fk
=

2Rk
V 2
k

fk = xk (16)

Using (16) we can also express Loss as

Loss =
1

2

∂Loss

∂f

′
f (17)

Equating (17) and (15) for f = f0 we can derive the bias term
b0 as

Loss0 =
1

2
x0′f0 = b0 + x0′f0 →

b0 = −1

2
x0′f0

Therefore, for any flow vector f , we write losses as

Loss = x0′(f − 1

2
f0) (18)

The term x0 is referred to as the vector of line loss factors. The
loss formulation we present here is similar to one used in real
markets (e.g. [18]) where losses are included in the energy
balance constraint and in the flow constraints via a nodal
allocation of Losses (represented below by the normalized
vector d). Litvinov et al. [19] showed that the advantage of this
formulation compared to other approaches is that line losses
and flows are reference bus independent. The formulation
below is slightly different from the one described in [19]
and therefore, we will repeat the proof of reference bus
independence in the Appendix. Without loss of generality,
contingency constraints are excluded.3

min
p

c′p (19)

s.t. 1′(p− l) = Loss (20)

Loss = x0′(g0 + Ψ(p− l− d · Loss)− 1

2
f0
)

(21)

f ≤ g0 + Ψ(p− l− d · Loss) ≤ f (22)
p ≤ p ≤ p (23)

We will refer to constraints (19)-(22) as Formulation L1.
In the flow constraints (22) the d vector allocates Loss to
busses. Without this term, losses would be balanced at the
reference bus and thus the formulation would be reference
bus dependent. There are many ways to select d and we will
not delve into this problem here. An intuitive approach, and
the one we assume in this paper, is to set

dn =
ln∑
m lm

∀n,

which allocates losses to load busses in proportion to their
contribution to total load.

3Note that only losses in the base topology are included in the energy
balance equation, losses in contingent topologies only impact contingent flows.
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IV. TC MIP FORMULATION WITH LOSSES

As we saw in section II, FCTs linearly impact flows in
the same way as updating the shift factor matrix. With the
introduction of losses, however, these FCTs would no longer
be balanced since the injection at one end of the line is not
equal to the withdrawal at the other end. In the case of losses
we must redefine FCTs as the loss-adjusted canceling flows
that need to be introduced so that the effect from these flows
is the same as actually opening the lines4. Fortunately, we
can still retain the same framework of the lossless shift factor
TC problem. To do this, we first derive the loss-adjusted
shift factor matrix, Ψ̂ and loss-adjusted PTDF matrix, Φ̂, by
explicitly expressing flows in terms of losses.
Re-arranging (21) we have

Loss =
x0′(g0 + Ψ(p− l)− f0

2

)
x0′Ψd + 1

The flow equation can thus be expressed as

f = g0 + Ψ
(
p− l− d

x0′(g0 + Ψ(p− l)− f0

2

)
x0′Ψd + 1

)
= g0 −Ψd

x0′(g0 − f0

2 )

x0′Ψd + 1
+ Ψ(p− l)

− Ψd
x0′Ψ(p− l)

x0′Ψd + 1

= ĝ0 + Ψ
(
I− dx0′Ψ

x0′Ψd + 1

)
(p− l)→

f = ĝ0 + Ψ̂(p− l) (24)

from which we see that the loss-adjusted shift factor matrix
and flow bias are

Ψ̂ = Ψ
(
I− dx0′Ψ

x0′Ψd + 1

)
ĝ0 = g0 −Ψd

x0′(g0 − f0

2 )

x0′Ψd + 1

For completness the flow bias g0 can be calculated as:

g0 = f0 −Ψ(p0 − l0 − d · Loss0)

= f0 −Ψ(p0 − l0 − dx0′ f
0

2
)

= (I + Ψd
x0′

2
)f0 −Ψ(p0 − l0)

The loss-adjusted PTDF can now be expressed as:

φ̂`k = Ψ̂m`

k − Ψ̂n`

k

=
(
ψm`

k −ψ
m` ′ x

0(ψkd)

x0′Ψd + 1

)
−

(
ψn`

k −ψ
n` ′ x

0(ψkd)

x0′Ψd + 1

)
= φ`k − φ

k′x0 ψkd

x0′Ψd + 1

where ψm` denotes the column of Ψ corresponding to bus
m and φk denotes the column of Φ corresponding to line k.

4These FCTs will be adjusted to account for losses across all transmission
lines, measured at the receiving ends.

Although this derivation is not necessary for the MIP formu-
lation it provides some intuition for how the PTDF is adjusted
for losses. We should note that although the loss-adjusted shift
factors and PTDF matrices depend on an initial dispatch and
set of flows, they can neverthless be pre-calculated from the
original shift factor matrix using only matrix multiplication,
which would be fast even for large systems.
With these loss-adjusted shift factors and PTDFs we can now
express loss-adjusted FCTs similarly to (13). In addition, since
the Loss equation is a function of flows, we apply FCTs to
update Loss for line openings. Partitioning transmission losses
into losses from monitored and switchable lines respectively,
we have:

LossM = x0′(g0M − 1

2
f0
M

+ ΨMτ0 (p− l− d · Loss)

+ Φ̂MSτ0 vτ0
)

LossS = x0′(g0S − 1

2
f0
S

+ ΨSτ0(p− l− d · Loss)

+ (I − Φ̂SSτ0 )vτ0
)

Finally, the full topology control DC SCOPF MIP with losses
is:

C = min
p,v,z

c′p (25)

s.t. 1′ (p− l)− Loss = 0 (26)

Loss = LossM + LossS (27)

LossM = x0M
′(

ĝ0M − 1

2
f0
M

+ Ψ̂Mτ0 (p− l)+

Φ̂MSτ0 vτ0
)

(28)

LossS = x0S
′(

ĝ0S − 1

2
f0
S

+ Ψ̂Sτ0(p− l)+

(Φ̂SSτ0 − I)vτ0
)

(29)

fMτ ≤ ĝ0
τ + Ψ̂Mτ (p− l) + Φ̂MSτ vτ ≤ f

M
τ , ∀τ (30)

F̃
S
τ z ≤ ĝ0

τ + Ψ̂Sτ (p− l) +(
Φ̂SSτ − I

)
vτ ≤ F̃

S
τ z, ∀τ (31)

−M (1− z) ≤ vτ ≤M (1− z) , ∀τ (32)
p ≤ p ≤ p (33)

z` ∈ {0, 1} , ∀` ∈ S (34)

We refer to problem (25)-(34) as the loss-adjusted shift factor
TC formulation. Note that the d · Loss term in the above
formulation is replaced via the equivalence relationship shown
in (24). Generally, ISOs may only monitor a subset of all
transmission lines for losses. This means that Loss will be
aggregated over a set that is smaller thanM∪S . In the extreme
case when no lines in S are monitored for losses, constraint
(29) would be empty. If additionally the end nodes of lines
in S are not load busses (dm, dn = 0), constraints (31) would
reduce to (10) and FCTs would be calculated independent of
losses.

V. LOCATIONAL MARGINAL PRICES AND LOSSES

In this section we derive LMPs under the loss-adjusted shift
factor TC formulation. By definition the LMP of problem (25)-
(34) equals the derivative of the Lagrangian with respect to a
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change in nodal load. Let the Lagrangian multipliers or shadow
prices associated with constraints (26), combined constraints
(27)-(29), (30) and (31) be denoted by λ, η, µ and µ, and
α and α respectively, where the latter four shadow prices are
the collection of the respective contingent topology shadow
prices. Using these shadow prices, LMPs are given by

LMP = λ1− λ(Ψ̂M
′

τ0 x
0M + Ψ̂S

′

τ0x
0S )

− Ψ̂M
′
(µ− µ)− Ψ̂S

′
(α−α) =

= λ1− λΨ̂′τ0x
0

− Ψ̂M
′
(µ− µ)− Ψ̂S

′
(α−α) (35)

where Ψ̂M and Ψ̂S are matrices that consist of the collection
of Ψ̂Mτ and Ψ̂Sτ , for all contingent topologies τ .

To better understand the meaning of LMPs under this MIP
formulation we consider two alternate non-MIP formulations
[20] where we fix z = z∗(optimal values from the MIP
solution). In the first formulation, which we refer to as the
Static MIP problem, we re-label all lines with z = 1 as
belonging to monitored setM5 and resolve problem (25)-(34).
The LMPs for the Static MIP problem are of the same form as
(35). In the second formulation, which we refer to as the LP-
Equivalent, we recalculate the shift factor matrix given z∗ and
solve a standard SCOPF problem where the base topology has
the lines with z = 0 removed. The shift factor matrix given
z∗ is expressed as [16]

Ψ̂M∗ = Ψ̂M + ÔMSΨ̂S , (36)

where ÔMS is the loss-adjusted line outage distribution factor
matrix indicating the impact of switched lines on monitored
lines for each contingent topology. The LMPs in the LP-
Equivalent problem are defined in the standard manner as

LMP ∗ = λ1− λΨ̂M∗
′

τ0 x0M − Ψ̂M∗
′
(µ∗ − µ∗). (37)

With z = z∗, the solution to the Static MIP and LP-
Equivalent problems are identical6 and, therefore, the LMPs
and shadow prices associated with flow limits on transmission
elements (given our relabeling of lines in the Static MIP
problem) must also be identical.

LMP = LMP ∗ (38)
µ = µ∗. (39)

Substituting (35) and (37) into (38) and canceling the energy
component yields,

λ(Ψ̂M
′

τ0 x
0M + Ψ̂S

′

τ0x
0S ) + Ψ̂M

′
(µ− µ) + Ψ̂S

′
(α−α) =

λΨ̂M∗
′

τ0 x0M + Ψ̂M
′∗(µ∗ − µ∗). (40)

Furthermore, substituting (36) and (39) into (40) and appro-
priately canceling like terms yields,

Ψ̂S
′
(α−α) = λΨ̂S

′

τ0 ÔMS
′

τ0 x0M − λΨ̂S
′

τ0x
0S

+ Ψ̂S
′
ÔMS

′
(µ− µ). (41)

5As mentioned previously, for all lines ` with z` = 1, v` = 0 for all
topologies and constraints (31) reduce to constraints (30).

6We do not recalculate line loss factors in the LP-Equivalent problem as
this would yield a different solution.

Finally, by substituting (41) into (35), canceling like terms
and grouping appropriately, we see that the LMP derived from
the loss-adjusted TC MIP formulation is

LMP = λ1− λ
(

Ψ̂M
′

τ0 + Ψ̂S
′

τ0 ÔMS
′

τ0

)
x0M

−
(

Ψ̂M
′
+ Ψ̂S

′

τ0 ÔMS
′
)

(µ− µ) (42)

As an aside, we observe that equation (41) has a loss compo-
nent, which is only relevant in topology τ0. By appropriately
grouping terms by topology we can partition (41) into two
components:

(ατ0 −ατ0) = ÔMS
′

τ0 (µτ0 − µτ0)

+ λ

(
ÔMS

′

τ0 x0M − x0S
)

(43)

and

(ατ −ατ ) = ÔMS
′

τ (µτ − µτ ) ∀τ 6= τ0 (44)

Expressions (43)-(44) are similar to the relationship between
shadow prices for switchable and monitored lines reported in
[20]. This relationship provides a generalization of the ”total
derivative” concept for line openings introduced in [14], where
ατ − ατ reflects the marginal value (positive or negative) of
line switching. As shown in (43), this value consists of both
congestion and loss components. The congestion component is
the scalar product of shadow prices for monitored constraints
and LODFs of the open line on these constraints. The loss
component is the difference between: the impact of line
opening on losses in monitored facilities (LODFs multiplied
by the corresponding line loss factors) and, the loss factors of
open lines. While in the lossless formulation topology change
is never beneficial in the absence of transmission congestion
(congestion component equals zero), incorporating marginal
losses recognizes potential benefits of topology control due to
a reduction in losses, which may be realized in the absence
of congestion.

VI. SIMULATION RESULTS

For all analyses we fixed a set of 16 switchable lines (to
maintain tractable run times as mentioned in the introduction)
and performed a Monte Carlo simulation by randomly varying
fuel prices and wind capacity over 100 samples7. For each
sample we modeled the lossless DC SCOPF and the DC
SCOPF with shift factors and bias terms adjusted for losses8.
Taking the optimal topology from each of the two formulations
we solved the AC SCOPF for each sample to assess the
feasibility of the DC solutions and the (p.u.) congestion cost
savings9. Congestion cost savings for the DC and AC models
are calculated relative to the DC and AC models with no
TC respectively. Table I below summarizes the results from

7See [14] for details on this approach.
8In the lossless formulation the bias term is calculated as g0 = f0 −

Ψ(p0 − l0).
9Per-unit (p.u.) congestion savings are calculated as CMIP−Cbase

Cbase−C0
where

CMIP is the system cost from the DC MIP or from the AC OPF based
on this MIP, Cbase is the DC or AC system costs with no switching and
C0 is the DC or AC system cost with no enforced transmission constraints.
Cbase − C0 represents the maximum savings possible for any sample.
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TABLE I
MEDIAN NUMBER OF LINE OPENINGS AND AVERAGE PER-UNIT
CONGESTION COSTS SAVINGS WITH DIFFERENT LOSS MODELING

ASSUMPTIONS OVER 100 SAMPLES

Num. Lines Congestion Cost
Model Opened Savings with TC
DC w/Losses 11 16.64%
DC Lossless 14 22.09%
AC Based on DC w/Losses N/A 20.66%
AC Based on DC Lossless N/A 20.65%

which we make three key observations. First, based on the
AC SCOPF solutions, accounting for losses does not improve
congestion cost savings. The AC OPF based on the loss-
adjusted DC MIP solution produces more savings in 53 of
the samples, compared to the AC OPF based on the lossless
DC MIP, however, the magnitude in savings tends to be greater
for the latter model so that both AC solutions lead to about
the same 20.65% p.u. congestion cost savings. Second, solving
the AC SCOPF using the optimal topologies from the two DC
formulations confirms that both DC formulations reflect legit-
imate congestion cost savings. The lossless MIP formulation
overstates the benefits from switching by an average of 1.44%
in 76 samples while the loss-adjusted MIP understates them
by 4.03% in 93 samples. Both formulation, however, provide
a good indication of potential savings from topology control.
Finally, we observe that the loss-adjusted DC MIP tends to
open 3 fewer lines than its lossless counterpart. Opening fewer
lines is clearly preferable; operating circuit breakers, although
not included explicitly modeled, has a cost and, achieving
the same savings with fewer openings is more efficient and
reduces the number of discrete changes to the state of the
system. Figure 1 below shows the number of line openings
across all samples. As shown in the figure, the loss-adjusted

Fig. 1. Number of Lines Opened in DC MIP Formulations

MIP opens between 1 and 9 fewer lines in 79 samples, opens
the same number of lines in 18 samples, and opens only 1
additional line in 3 samples.

VII. CONCLUSION

In this paper, we develop a loss-adjusted MIP-based TC
formulation and show that both losses and flows can be
updated linearly with changes in topology. We prove that
our formulation is reference bus independent and extend the
notion of FCTs to account for losses by deriving loss-adjusted
shift factors and PTDFs. We derive locational marginal prices
(LMPs) for the LP equivalent to the loss-adjusted TC MIP
formulation and show how the marginal value of transmission
switching can be expressed in terms of a congestion and
loss component. Through simulation, we analyze the impact
of losses on the DC formulation and compare the optimal
topologies from the lossless and loss-adjusted formulations by
solving an AC SCOPF. We find that both DC formulations
lead to almost identical savings when solving the AC SCOPF
and while the loss-adjusted formulation opens fewer lines both
can be used reliably to assess the benefits of topology control.
Future work will focus on adjusting loss factors not only
for topology changes but also for re-dispatch. Although this
would make the problem non-linear, it may lead to a better
solution in terms of the number of line openings, as indicated
by our results, or congestion cost savings. One approach
for addressing the non-linearity is to iterate on the MIP
solution, updating loss factors after each iteration, although
the practicality of this approach along with other alternatives
needs to be studied.

APPENDIX

Proof that formulation L1 is reference bus independent

To demonstrate that L1 is reference bus independent we
modify the choice of reference bus by introducing a nor-
malized vector w that assigns a weighting to each node in
proportion to its contribution to the new distributed reference
bus (a single reference bus n can be represented by setting
wn = 1). As shown in [19], a weighting w modifies the shift
factor matrix according to

Ψw = Ψ−Ψw1′ (45)

Substituting (45) into (21) gives

Lossw = x0′(g0 + (Ψ−Ψw1′)·

(p− l− d · Loss)− 1

2
f0
)

=

x0′(g0 + Ψ(p− l− d · Loss)− 1

2
f0
)
−

x0′Ψw1′(p− l− d · Loss) = Loss

since 1′(p− l−d ·Loss) = 0. Similarly, substituting (45) into
(22) gives

fw = g0 + (Ψ−Ψw1′)(p− l− d · Loss) =

g0 + Ψ(p− l− d · Loss)−
Ψw1′(p− l− d · Loss) = f

We have thus shown that the constraint set is reference bus
independent. Further, since the objective function is reference
bus independent, by definition, the shadow prices will be
reference bus independent as well.



7

REFERENCES

[1] A. Mazi, B. Wollenberg, and M. Hesse, “Corrective control of power
system flows by line and bus-bar switching,” IEEE Trans. Power Syst.,
vol. 1, no. 3, pp. 258–264, Aug. 1986.

[2] A. G. Bakirtzis and A. P. S. Meliopoulos, “Incorporation of switching
operations in power system corrective control computations,” IEEE
Trans. Power Syst., vol. 2, no. 3, pp. 669–675, Aug. 1987.

[3] W. Shao and V. Vittal, “Corrective switching algorithm for relieving
overloads and voltage violations,” IEEE Trans. Power Syst., vol. 20,
no. 4, pp. 1877–1885, Nov. 2005.

[4] G. Schnyder and H. Glavitsch, “Security enhancement using an optimal
switching power flow,” IEEE Trans. Power Syst., vol. 5, no. 2, pp. 674–
681, May 1990.

[5] H. Glavitsh, “Power system security enhanced by post-contingency
switching and rescheduling,” in Proc. IEEE Power Tech 1993, Sep. 1993,
pp. 16–21.

[6] R. Bacher and H. Glavitsch, “Loss reduction by network switching,”
IEEE Trans. Power Syst., vol. 3, no. 2, pp. 447–454, May 1988.

[7] S. Fliscounakis, F. Zaoui, G. Simeant, and R. Gonzalez, “Topology
influence on loss reduction as a mixed integer linear programming
problem,” in Proc. IEEE Power Tech 2007, Jul. 2007, pp. 1987–1990.

[8] R. O’Neill, R. Baldick, U. Helman, M. Rothkopf, and W. Stewart,
“Dispatchable transmission in RTO markets,” IEEE Trans. Power Syst.,
vol. 20, no. 1, pp. 171–179, Feb. 2005.

[9] E. B. Fisher, R. P. O’Neill, and M. C. Ferris, “Optimal transmission
switching,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1346–1355,
Aug. 2008.

[10] K. W. Hedman, R. P. O’Neill, E. B. Fisher, and S. S. Oren, “Optimal
transmission switching with contingency analysis,” IEEE Trans. Power
Syst., vol. 23, no. 3, pp. 1577–1586, Aug. 2009.

[11] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S.
Oren, “Co-optimization of generation unit commitment and transmission
switching with n-1 reliability,” IEEE Trans. Power Syst., vol. 25, no. 2,
pp. 1052–1063, May 2010.

[12] C. Liu, J. Wang, and J. Ostrowski, “Static security in multi-period
transmission switching,” IEEE Trans. Power Syst., vol. 27, no. 4, pp.
1850–1858, 2012.

[13] P. A. Ruiz, A. M. Rudkevich, M. C. Caramanis, E. A. Goldis, E. Ntakou,
and C. R. Philbrick, “Reduced MIP formulation for transmission topol-
ogy control,” in Proc. 50th Allerton Conf. on Communications, Control
and Computing, Monticello, IL, Oct. 2012, pp. 1073–1079.

[14] P. A. Ruiz, J. M. Foster, A. Rudkevich, and M. C. Caramanis, “Tractable
transmission topology control using sensitivity analysis,” IEEE Trans.
Power Syst., vol. 27, no. 3, pp. 1550–1559, Aug. 2012.

[15] J. D. Fuller, R. Ramasra, and A. Cha, “Fast heuristics for transmission-
line switching,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1377–1386,
Aug. 2012.

[16] B. Wollenberg and A. Wood, Power Generation, Operation and Control,
2nd ed. New York, NY: John Wiley, 1996.
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